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Abstract  

The rapid and uncontrollable cell division that spreads to surrounding tissues medically 

termed as malignant neoplasm, cancer is one of the most common diseases worldwide. 

The need for effective cancer treatment arises due to the increase in the number of cases 

and the anticipation of higher levels in the coming years. Oncolytic virotherapy is a prom-

ising technique that has shown encouraging results in several cases. Mathematical 

models of virotherapy have been widely developed, and one such model is the interaction 
between tumor cells and oncolytic virus. In this paper an artificially optimized Immune-

Linear Quadratic Regulator (LQR) is introduced to improve the outcome of oncolytic 

virotherapy. The control strategy has been evaluated in silico on number of subjects.  

The crow search algorithm is used to tune immune and LQR parameters. The study is 

conducted on two subjects, S1 and S3, with LQR and Immune-LQR. The experimental 

results reveal a decrease in the number of tumor cells and remain in the treatment area 

from day ten onwards, this indicates the robustness of treatment strategies that can 

achieve tumor reduction regardless of the uncertainty in the biological parameters. 

1. INTORDUCTION 

With more than 17 million cases registered in 2018 and reports indicating that this 

number will reach 23.6 million in 2030, cancer is one of the most common diseases around 

the world (Cancer Research UK, 2016; NIH, 2016). Cancer is the name given to a group of 
diseases that share a set of common characteristics, rapid uncontrollable cell division and 

spread into surrounding tissues (Jenner, 2020). The reason for this rapid and uncontrolled 

growth of cells is mutation in signaling that regulates the growth and division processes 
within the cells (Priya & Reyes, 2015). Conventional cancer treatment includes surgery, 

chemotherapy, radiotherapy, targeted therapy, immunotherapy and stem cell transfusion 

therapy (Cancer Research UK, 2016). 

The effectiveness of cancer treatment has improved significantly in recent years,  
but despite this there are certain types of cancer for which treatment options are still limited, 
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and there are tumors that remain completely incurable, which increases the need for long-

term treatment strategies (Crivelli et al., 2012). 

Biotherapy is a cancer treatment that uses the ability of viruses to infect and replicate  

to destroy cancer cells, these viruses are often called oncolytic viruses (Arum, Handayani  
& Saragih, 2019). Viruses favorably act on cancer cells rather than healthy cells. There are 

many viruses that have proven effective against cancerous tumors, including them Adenovirus, 

Reovirus, Measles, Herpes Simplex, Vesicular-Stomatitis Virus (VSV) (Crivelli et al., 2012).  
Oncolytic virotherapy has shown success in some patients although this is not clear how 

to obtain good results in all cases. It is difficult to set the injections’ number, quantity and 

scheduling to reduce the tumor size within specified time frame (Anelone, Villa-Tamayo  
& Rivadeneira, 2020). 

Mathematical modelling help in prediction of the system’s future behavior and assess the 

impact of variables and parameters on the overall dynamics of a cancer. These parameters 

are relevant to the patient’s physiology, treatment strategy and disease type. It is challenging, 
risky, and expensive to carry out such expectations in vivo, vitro, or clinical trials (Cancer 

Research UK, 2016). These models can be used to improve and optimize the impact of 

different factors such as changes in the virus's genetics, dosage, or injection schedule. 
Optimization is the achievement of the desired goal (s) exactly or roughly by obtaining 

the best set of variables maybe by trial and error. Nature inspired optimization algorithms 

are metaheuristic algorithms developed from biological principles, swarm behavior, and 
chemical or physical processes (Yang, 2020). Crow search algorithm (CSA) an algorithm 

inspired by crow’s behavior was introduced in (Askarzadeh, 2016), its main use in solving 

engineering problems that contain constraints. 

Recently, many researches aim to apply biological information processing systems  
to engineering fields due to its flexibility. As these systems are more flexible than currently 

available systems, which makes it possible to form a system whose performance is better 

than the performance of conventional systems (Takahashi & Yamada, 1998). Regulation 
Mechanism of Bio-Inspired Systems like the immune system, is a complex system consisting 

of many types of immune cells and appropriate communication channels. This is an ideal 

control system for the human body against diseases and foreign bodies (Ding, Chen & Hao, 

2018). 
Interactions between virotherapy and control theory have been illustrated in many 

previous studies. For instance, reducing the number of cancer cells using successive state 

dependent algebraic Riccati equation (SDARE) have been introduced in (Arum, Handayani 

& Saragih, 2019). In (Saputra, Saragih & Handayani, 2019) 𝐻∞ were used to control the 

controller input into a system, the results showed the effectiveness of the 𝐻∞ controller in 

reducing the number of Human Immunodeficiency Virus (HIV) particles in the blood 

plasma; In (Anelone, Villa-Tamayo & Rivadeneira, 2020) impulsive controller is designed 
to deliver a personalized dose for each case, and feedback controller showed a tumor 

reduction potential better than that obtained by former protocols. 

In this paper, the principle of the body’s immune mechanism is presented as a controller 
with LQR based on CSA for parameters optimization are used to control the number of 

viruses given to patients. To accomplish these objectives, the result of personal protocol is 

investigated as a reference for comparison (Anelone, Villa-Tamayo & Rivadeneira, 2020). 
The remaining sections of this paper are organized as follows, the mathematical model is 

discussed in the second part, the immune system is defined in the third part, and the crow 
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search algorithm (CSA) is demonstrated in the fourth part. The fifth section includes  

a definition of the proposed Immune-LQR structures controller. The simulation results and 

review of the proposed controllers are addressed in the sixth section, and the conclusion  

is presented in the final section. 

2. MATHEMATICAL MODELLING 

In the studies (Jenner et al., 2018; Kim et al., 2011), nude mice were given a genetically 

modified virus to reduce the number of breast cancer cells in it in just 60 days. Since these 

naked mice have no immune system, the tumor reduction is entirely due to the oncolytic 

virotherapy. Experiments began with mice containing between 90 and 300 cancer cells.  
All experiments follow a fixed protocol in injecting 1010 viral particles on days 0, 2, 4.  

The interaction between oncolytic virus and carcinoma cells shown in Fig. 1, and illustrated 

mathematically using (ordinary differential equations) ODEs according to work in (Jenner 
et al., 2018): 

𝑆̇(𝜏) = 𝑟𝑙𝑜𝑔(
𝐾

𝑆(𝜏)
) −

𝛽𝑉(𝜏)𝑆(𝜏)

𝑆(𝜏) + 𝐼(𝜏) + 𝜀
 (1) 

𝐼̇(𝜏) =
𝛽𝑉(𝜏)𝑆(𝜏)

𝑆(𝜏) + 𝐼(𝜏) + 𝜀
− ⅆ𝐼𝐼(𝜏) (2) 

𝑉̇(𝜏) = 𝑈𝑣(𝜏) − ⅆ𝑣𝑉(𝜏) + 𝛼 ⅆ𝐼𝐼(𝜏) (3) 

 

where, 𝑆̇ denotes the density of susceptible tumor cells (×106 cells), 𝜏 represents the time, r 

is the tumor growth (day-1), K describes the caring capacity (cell x 106), β is the tumor cells 

rate of infection (day-1), 𝐼̇ refers to the density of infected tumor cells (×106 cells), ⅆ𝐼  is the 

infected tumor cells death rate (day-1), 𝑉̇ is the density of virus particles (×109 virus), dv is 

the viral decay (day-1) and 𝛼 viral burst size (virus x 109). 

T=S+I is the total number of tumor cells, 𝜀 is a small value (𝜀 > 0 ) set to avoid 

singularity occurring as (S+I) approaches zero. 

The injection of virus particles is expressed by the model's input 𝑈𝑣(𝜏). While T 

represents the model’s output. The tumor volume is calculated as 𝑇 =  0.523 × 𝐻 × 𝐵2, 

where, (𝐻) is the height and (𝐵) is the breadth. Both (𝐻) and (𝐵) are measured with a caliper 

(Kim et al., 2011). Then, assuming a density of 106 cells per mm3, T is calculated (Jenner et 

al., 2018). 
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Fig. 1. An interface between oncolytic viruses and tumor cells 

In Fig. 1, tumor cells are represented by red balls, while virus particles are represented 

by green balls). Table 1 summarizes the model's initial conditions and parameter values for 
AD- PEG-HER treatment.  

Tab. 1. Parameters and initial conditions values (Jenner et al., 2018) 

Symbol S0 I0 V0 r K β ⅆ𝑰 dv α 

S1 238.3535 0 0 0.0378 8466.8 1.12 2 2.0872 2 

S2 200.0340 0 0 0.0733 3179.1 1.4987 1.9995 3.2287 2.0015 

S3 101.5400 0 0 0.0224 4922.4 0.2 2 3.5 2 

S4 140.3436 0 0 0.0316 8317.1 1.2108 0.1 1.8730 3.7748 

S5 128.1481 0 0 0.0603 936.4293 1.3606 0.1 1.8416 3.7541 

unit Cells cells virus day−1 
cells × 

106 
day−1 day−1 day−1 

virus × 

109 

3. IMMUNE FEEDBACK MECHANISM 

Recent immunology researches have shown that the immune system is essential  

in protecting the body against complex and hostile changes in the environment through the 
interaction between antibodies and lymphocytes. Antigens have the potential to impact  

the immune system's simultaneous dynamics (Rochdi, 2014). This process is known as the 

immune T-cell regulatory circuit because of T cells' primary function in the immune 
response (Takahashi & Yamada, 1998). 

The main cells in this process are Ab antibodies, Ag antigens, B cells, suppressor T cells Ts 

and T helper cells Th. Antigen Information is passed on to T cells as antigens infect the body. 
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After receiving the message, the T cells activate the B cells, which then produce antibodies 

to remove the antigen. The number of Th cells in the human body increases as the number of 

antigens increases, and more B cells can be produced to protect the body (Rochdi, 2014). 

Ts cells number in the body will increase and consequently B cells will decrease, in 
conjunction with the decrease in the antigen level. After a while the immune system begins 

to balance out. The immune system is able to react quickly to foreign bodies and regulate 

the immune system as a result of this collaboration between the feedback mechanism and 
the related mechanism (Rochdi, 2014). The suppression function of B cells will be discussed 

here. B cells are triggered and restricted by Ts cells in response to antigen invasion, so the B 

cells consistency of tth cell generation can be determined by (Rochdi, 2014): 

𝐵(𝑡) = 𝑇𝐻(𝑡) − 𝑇𝑆(𝑡) (4) 

𝑇𝐻(𝑡) = 𝐾1𝛼(𝑡) (5) 

𝑇𝑆(𝑡) = 𝐾2{𝑓[∆𝐵(𝑡 − ⅆ)]}𝛼(𝑡) (6) 

where B(t) represents the consistency of B cells, K1 and K2 represents the helper and 

suppressor genes respectively, 𝛼(t) refers to the tth generation antigen consistency, f is  
a nonlinear function, that represents the relationship between the antigen and antibody, that 

elicits from the B cells, d is the time delay of the immune response and Δ𝐵 refers to the 

change of consistency in the B cell that can be determined by: 

Δ𝐵(𝑡 − ⅆ) = 𝐵(𝑡 − ⅆ) − 𝐵(𝑡 − ⅆ − 1) (7) 

From equations (4–6), the relationship between the antigen and the B-cell's consistency, can 

be expressed as: 

𝐵(𝑡) = 𝐾1{1 − 𝜂0𝑓[∆𝐵(𝑡 − ⅆ)]}𝛼(𝑡) (8) 

where 𝜼𝟎 is the proportional coefficient between 𝑻𝑯 
and 𝑻𝑺, 𝜼𝟎 = 𝑲𝟐/𝑲𝟏. The immune 

feedback mechanism performs two inconsistent processes simultaneously: it reacts quickly 
to foreign bodies and works to restore the immune system stability. Additionally, a high 

level of antibodies must be coordinated and controlled because they can be harmful to the 

body. Deviation must be avoided in a complex regulation control system to ensure system 
stability, which is consistent with the immune system's targe. 

4. CROW SEARCH ALGORITHM 

Crow search algorithm (CSA) is an optimization algorithm that mimics the crow flock 

behavior in storing and retrieving their surplus food (Askarzadeh, 2016). 

Generally, the adjustable parameters of CSA are: population (flock) size (𝑁), Flight 

length (𝐹𝐿), awareness probability (𝐴𝑃) and maximum number of iterations (Maxiter).  

The implementation of CSA can be done by the following steps: 
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1. Define the optimization problem and initialize the decision variables and any constraints 

needed. 

2. The position and memory of each crow is initialized (each crow represents a viable 

solution to the optimization problem). 
3. Evaluate the position of each crow using a fitness function. 

4. Generate new position in the search space. 

5. Determine the viability of new positions. 
6. Evaluate the new position's fitness feature. 

7. Update the crow memory by the new position. 

8. Verify the termination criterion. 
 

In this paper the CSA is used to tune the parameters of the Immune-LQR (kI and η, k1, k2, 

and k3). The CSA can be described by the following flowchart: 
 
 

 
Fig. 2. CSA Flowchart 
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No 
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end 
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5. PROPOSED CONTROLLER 

In this paper the continuous administration of viruses using an Immune-LQR controller 

are suggested to monitor the number viruses provided to patients. The CSA is used to tune 
immune and LQR parameters. The study is conducted on two subjects, S1 and S3, with LQR 

and Immune-LQR. The block diagram of the suggested controller is shown in Fig 3. 

 

 

Fig. 3. Block diagram of the suggested Immune -LQR controller based on optimization algorithm 

The error e(t) represents the amount of antigen (𝛼(t) in equation 8), and the controller’s 

input u (t) will be the total incentive that the B cells accept. Then the feedback control system 

is defined as follows: 

𝑢(𝑡) = 𝑢1(𝑡) × 𝑢2(𝑡)   (9) 

𝑢1(𝑡) = 𝐾1{1 − 𝜂0 𝑓[𝛥𝑢(𝑡 − ⅆ)]} 𝑒(𝑡) (10) 

𝑢1(𝑡) = 𝐾𝐼𝑒(𝑡)  

where KI is defined as the immune controller gain that is specified by the gene  𝜼𝟎 = 𝑲𝟐/𝑲𝟏. 

The parameter 𝑲𝟏 controls the response speed, the parameter  𝜼𝟎 controls the stabilization 

effect and f (.) denotes a nonlinear-function. This function is chosen as T cell’s controls 
action-function, which is influenced by antigen consistency on antibody in immune 

response. The function𝒇(𝒙) is defined by: 

( 𝑥) = 1.0 − 𝑒𝑥𝑝(
−𝑥2

𝑎
) ,      𝑎 >  0 (11) 

where a is a parameter that changes the function shape. the range of f (x) is [0,1]. The value 

of a determines the active region of x. The output of the immune controller can be described 
as: 
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𝑢1(𝑡) = 𝐾1 {1 − 𝜂0(1.0 − 𝑒𝑥𝑝 (
−𝑥2

𝑎
))} 𝑒(𝑡) (12) 

𝑢1(𝑡) = 𝐾𝐼𝑒(𝑡)  

Since the immune controller is a nonlinear gain controller, it is not robust against noise 

and error induced by nonlinear disruption. To solve this problem and improve the system's 

efficiency, the immune controller must be combined with conventional LQR (𝒖𝟐(𝒕)). LQR 
was chosen because it can handle large disturbances while maintaining system stability 

without reducing working efficiency and can handle previous disturbances (Purnawan  

& Purwanto, 2017). When the forward gain k1 of the LQR is multiplied by the immune output, 

the final result is 𝑲𝑰𝟏, as shown in Fig 3, and Eq. 23 shows the structure's controller output. 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (13) 

𝑦 = 𝐶𝑥 (14) 

𝑢(𝑡) = −𝑘𝑥 + 𝑟 (15) 

where 𝒙̇ denotes the state vector, u is referred to the control signal,𝒚 is the output and r 
represents the reference. The equations (1-3) can be written as a matrix as follows: 

[
𝑆̇
𝐼̇

𝑉̇

] =

[
 
 
 
 −𝑟 + 𝑟 ln (

𝐿

𝑠
) − 𝛽

𝐼𝑉

(𝐼 + 𝑆)2
𝛽

𝑉𝑆

(𝐼 + 𝑆)2
−𝛽

𝑆

𝐼 + 𝑆

𝛽
𝐼𝑉

(𝐼 + 𝑆)2
−𝛽

𝐼𝑉

(𝐼 + 𝑆)2
− ⅆ𝐼 𝛽

𝑆

𝐼 + 𝑆
0 𝛼ⅆ𝐼 −ⅆ𝑣 ]

 
 
 
 

[
𝑆
𝐼
𝑉
] + [

0
0
1
]𝑈𝑣 (16) 

𝑦 = [1 1 0] [
𝑆
𝐼
𝑉
] (17) 

The matrix 𝑨 will differ based on the equilibrium point chosen, but the matrices 𝑩 and 𝑪 

will remain the same (Anelone, Villa-Tamayo & Rivadeneira, 2020). Dynamic system in 

equations (13–15) can be written as: 

𝑥̇ = [𝐴][𝑥] + [𝐵]𝑢 + [0]𝑟 (19) 

If  𝑥(∞)and 𝑢(∞) reach constant value, then 𝑦(∞) = 𝑟, and the system is stabilized.  

The state and control signal error becomes as follow: 

𝑥(𝑡) − 𝑥(∞) = 𝑥𝑒(𝑡) 

𝑢(𝑡) − 𝑢(∞)] = 𝑢𝑒(𝑡) 
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The state error equation can be written as: 

𝑥𝑒(𝑡) = [𝐴][𝑥𝑒(𝑡)] + [𝐵]𝑢𝑒(𝑡) (20) 

with: 

𝑢𝑒(𝑡) = −𝐾𝑥𝑒(𝑡) (21) 

𝑒(𝑡) = [𝑥𝑒(𝑡)]  

𝑢2(𝑡) = −𝐾𝑥𝑒(𝑡)  

The LQR method is used to find the value of K, and the LQR cost function is defined by: 

𝐽 = 1/2∫ (ⅇ𝑇𝑄𝑒 + 𝑢𝑒
𝑇𝑅𝑢𝑒)ⅆ𝑡

∞

0

 (22) 

where 𝑄 is a positive-definite (or positive-semidefinite) Hermitian or real symmetric 

matrix, 𝑅 is a positive-definite Hermitian or real symmetric matrix. 

and Ricarte’s equation is: 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 (23) 

where 𝑃 is a positive-definite Hermitian or real symmetric matrix, with: 

𝐾 = −[𝑘1 𝑘2𝑘3]  

From equation (9), (12) and (21): 

𝑢(𝑡) = 𝑢1(𝑡) × 𝑢2(𝑡)  

𝑢1(𝑡) = 𝐾𝐼𝑒(𝑡)  

𝑢2(𝑡) = −𝐾𝑥𝑒(𝑡)  

The first LQR gain (k1) is multiplied by immune gain (𝐾𝐼) , then substituting equation 

(12) into equation (18) yields: 

𝑢(𝑡) = −[𝐾𝐼𝑘1  𝑘2  𝑘3 ] 
(24) 

𝐾𝐼1 = 𝐾𝐼𝑘1  

𝑢(𝑡) = −[𝐾𝐼1  𝑘2  𝑘3]  

where Eq. (23) represents control input. 
 



65 

6. SIMULATION RESULTS AND ANALYSIS 

In this paper, toxicity and the subsequent dosages of viral injections was not considered 

as a limitation in the design of the controller. The toxicity tests in (Kim et al., 2011) revealed 
that when the oncolytic adenovirus's surface is shielded with a biocompatible polymer like 

polyethylene glycol (PEG), the virus therapy causes no hepatic damage and minimal liver 

toxicity. 
For contrast, the same target in (Anelone, Villa-Tamayo & Rivadeneira, 2020) will be 

used, which states that the goal of the treatment is to reduce and sustain the total number of 

tumor cells below 50 cells in 60 days with discrete viral injections. The well-known PSO 

(partial swarm optimization algorithm) is used for comparison purpose with CSA. The Optimal 
control parameters obtained using optimization algorithms for S1 and S3 using LQR and 

Immune-LQR controller listed in Table 2 and 3 respectively (the a, 𝑄 matrix, and 𝑅 are 

selected as: 0.5, [
0 0 0
0 0 0
0 0 1

] , [0.1]). 

 

Tab. 2. Optimal parameters for LQR controller 

Algorithms 𝒌𝟏 𝒌𝟐  𝒌𝟑 subjects 

CSA -6.6522 5.1449 3.1093 
 S1

 PSO -7.1520 2.1023 2.4930 

CSA -27.9204 3.6500 6.7346 
 S3

 PSO -27.9640 0.7472 1.4617 

 

Tab. 3. Optimal parameters for Immune-LQR controller 

Algorithms 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝜼𝟎 𝑲𝑰 subjects 

CSA -5.9762 2.5627 6.1470 0.2243 3.7401 
S1

 PSO -5.8598 2.4347 2.4930 0.6066 4.9352 

CSA -25.1379 2.7631 7.2516 0.5570 3.8160 
S3

 PSO -27.9640 2.2416 1.4617 0 4 

The parameters used in optimization algorithms are listed in Table 4. 
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Tab. 4. Optimization algorithms parameters. 

Parameters Value Algorithms 

population size(𝑁) 25 
 CSA, PSO

 Max iteration ( Maxiter ) 50 

problem dimension (𝑃ⅆ) 5 

 CSA

 

Awareness probability (𝐴𝑃) 1.2 

Flight length (𝐹𝐿) 0.3 

Inertia weight(wmax-wmin) (0.9 – 0.4) 
 PSO

 Learning rates (𝑐1, 𝑐2) 2 
 
 

 

 

 
 

Fig. 4. Simulation result of experimental protocol for S1 (blue line) and S3 (orange line) 

 

Fig 4. shows the experimental protocol results of S1 and S3. The left figure illustrates the 

total number of tumor cells over a period of 60 days.  The middle figure illustrates the viral 

loads in vivo over the period of 60 days. The right figure illustrates the viral injections within 
4 days. This is the treatment of subject S1 and S 3 with the total injections of 10. 

As illustrated in Fig. 4, the experimental treatment fails to reduce the size of the tumor in 

S1 while the tumor begins to regress after an initial rise in S3; traditional therapy with 
different subjects has various effects. 

In Fig. 5, the orange dash lines and the continuous lines indicate subjects with LQR and 

Immune-LQR controllers respectively optimized using the PSO algorithm for number of 
injections determination; while the blue dash lines and the continuous lines indicate subjects 

with LQR and Immune-LQR units respectively optimized using the CSA algorithm for 

number of injections determination. The top row (a) shows the total number of tumor cells 

within 60 days.  The middle row (b) shows the viral loads in vivo within 60 days. The bottom 
row (c) shows the viral injections within 30 days.  
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Fig. 5. Simulation result of S1(left column) and S3(right column) using Immune-LQR control  

and different optimization algorithms 

 
The feedback control reduces the size of the tumor faster than the conventional treatment, 

and there are no rebounds of the tumor after the end of the treatment, as the feedback 
controller works to keep the tumor with therapeutic zone, i.e., less than or equal to 50 total 

tumour cells in all subjects, and reduce the amount of injections overtime as showing in Fig. 
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5(a). The personalized protocol suggested using the proposed control would give higher 

initial injections than the experimental treatment. Consequently, the feedback mechanism in 

the immune controller increases the number of injections due to an increase in the 𝜂0, where 

the larger ratio indicates the increase of Th cells whose increase leads the body to form more 
antibodies to protect itself as shown in Fig. 5(b). As a result, the control signal is higher in 

treatment with feedback control than in experimental treatment during the first hours of 

treatment and decreases gradually as shown in Fig. 5(c). Nevertheless, the virus load tends 
to be lower in the feedback control compared to the experimental treatment. After the tumor 

has decreased in recent days, we suggest that viruses that may be toxic are quickly removed. 

The results suggest applying control theory in oncolytic virotherapy has benefits by 
delivering an effective amount of treatment to accomplish therapeutic goals, as both LQR 

and Immune-LQR controllers perform this task in a relatively shorter period with superior 

performance Immune-LQR over LQR at S1 by 3.1807%, 1.4020% and at S3 by 2.5490%, 

2.2083% using CSA and PSO respectively where the performance index used is Integral 
time absolute error (ITAE). Since each subject has different biological rate, they react 

differently across different elements. When tumor regression is as slow as in S3, the total 

injection will increase, implying that there is a negative relationship between the total 
number of injections and the tumor regression speed to overcome high starting spikes. 

The results obtained are consistent with (Anelone Villa-Tamayo & Rivadeneira, 2020), 

as a high injection in the beginning performs well through different subjects and reduces the 

total number of tumor cells and total injections. When significant amounts of viral loads are 
injected at the start of therapy in any subject, the total number of tumor cells and the total 

doses are reduced. However, increased viral loads in vivo and the eventual expensive cost 

of viral injections pose questions about toxicity in this case. The tumor decreases and 

remains in the treatment area from day ten onwards; This indicates that the controller 

regulates the number of injections well to reduce the tumor. 

7. CONCLUSION  

In this paper, artificially tuned Immune-LQR controller is suggested to regulate the 
number of viral load injections that are injected in order to reduce tumor cells. The 

mathematical model of interaction between tumor cells and oncolytic virotherapy has been 

considered. In order to improve the characteristics of the proposed controllers, CSA and PSO 

algorithms has been applied. The simulation results show that the Immune-LQR structure 
outperforms the other structures. As the feedback controller acts to maintain the tumor within 

the therapeutic region, i.e., less than or equal to 50 total tumor cells in all subjects, and 

minimize the amount of injections over time, the feedback control decreases the size of the 
tumor faster than traditional therapy, and there are no rebounds of the tumor after the 

treatment ends. 

To improve our understanding of the relationship between toxicity, number of viral 
injection doses, and viral load in vivo, further mathematical and experimental research is 

required. These findings may help with the development of virus therapies and control 

strategies to ensure tumour regression with minimal side effects. 
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