

Applied Computer Science, vol. 17, no. 3, pp. 5–18

doi: 10.23743/acs-2021-17

5

Submitted: 2021-06-13 | Revised: 2021-09-07 | Accepted: 2021-09-21

 CPU-GPU, High-performance computing,

Kernel, Data transfer, CUDA streams

K. RAJU [0000-0001-6731-5427]*, Niranjan N CHIPLUNKAR [0000-0003-4223-2355]**

PERFORMANCE ENHANCEMENT OF CUDA

APPLICATIONS BY OVERLAPPING DATA

TRANSFER AND KERNEL EXECUTION

Abstract

The CPU-GPU combination is a widely used heterogeneous computing system in which

the CPU and GPU have different address spaces. Since the GPU cannot directly access

the CPU memory, prior to invoking the GPU function the input data must be available

on the GPU memory. On completion of GPU function, the results of computation are

transferred to CPU memory. The CPU-GPU data transfer happens through PCI-

Express bus. The PCI-E bandwidth is much lesser than that of GPU memory. The speed

at which the data is transferred is limited by the PCI-E bandwidth. Hence, the PCI-E

acts as a performance bottleneck. In this paper two approaches are discussed to

minimize the overhead of data transfer, namely, performing the data transfer while the

GPU function is being executed and reducing the amount of data to be transferred to

GPU. The effectiveness of these approaches on the execution time of a set of CUDA

applications is realized using CUDA streams. The results of our experiments show that

the execution time of applications can be minimized with the proposed approaches.

1. INTRODUCTION

The Graphics Processing Unit (GPU) was originally developed for rendering the images.

With hundreds of processing cores modern GPUs are found to be ideal for speeding up data

parallel applications. CUDA C/C++ API is used for programming the GPU for general-

purpose computation. The execution time of a program can be easily reduced by offloading

the CPU computations to the GPU. As a result, nowadays the CPU-GPU heterogenous

computing systems are extensively used in many high-performance computing applications.

The GPU is a co-processor operated under the control of central processing unit (CPU).

According to CUDA terminology (NVIDIA, 2015), the CPU with its memory is called as

host and the GPU with its memory is called as device. The function to be executed on the

device is known as kernel. Thousands of threads are created when the kernel is invoked from

the host. These threads are organized as blocks, and the blocks are organized as grid. An instance

of the kernel code is executed by each thread of the grid.

* Department of CSE, NMAM Institute of Technology, Nitte, India, rajuk@nitte.edu.in,

nchiplunkar@nitte.edu.in

https://orcid.org/0000-0001-6731-5427
https://orcid.org/0000-0003-4223-2355

6

Figure 1 depicts the control flow during the execution of any CUDA program. A CUDA

program is the combination of host executable and device executable code. Since the host

memory is not directly accessible to the device, input data is copied through PCI-e from the

host to device. The kernel function is invoked after transferring the input data. The kernel is

parallelly executed by several threads. However, each thread computes on separate portion

of input data. On completion of kernel execution, the computed results are transferred from

the memory of device to that of the host.

Fig. 1. Flow of control during the execution of CUDA program

The communication bandwidth of GPU memory is much higher than that of PCI-e.

The data transfer speed is limited by the bandwidth of PCIe bus. The latest version of PCIe

standard (PCI-e 5.0) supports a bandwidth of 128 GBps. NVIDIA’s recent, most powerful

supercomputing GPU architecture for PC, TITAN V, has a memory bandwidth of 652.8 GBps

(NVIDIA TITAN V, n.d.), which is much higher than the bandwidth of PCIe 5.0. The data

transfer overhead reduces the performance gain obtained from the use of GPU (Gregg

& Hazelwood, 2011). This overhead can be reduced if the data transfer can happen in parallel

with the kernel execution.

Another method to mitigate the data transfer bottleneck is to offload a part of GPU

workload to the CPU cores. From the host’s perspective, calling a kernel is an asynchronous

process. A call to GPU function returns immediately and does not wait until the completion

of kernel execution. While the GPU is executing the kernel, the CPU can continue the

execution of host code, where it can perform computations, launch any other kernels, or

transfer data between host and device memory. Modern CPUs comprise multiple cores, each

with immense computing capacity. Huge amount of CPU computational power is wasted

unless these cores are involved in some useful computation when the GPU is executing the

kernel function. It is hard to find computation that can be performed on CPU cores in parallel

with kernel execution, as these computations which are performed after the kernel launch

normally depend on the results produced by the current kernel. However, in the case of data

parallel applications a part of GPU workload can be offloaded to CPU cores. This approach

reduces the GPU workload and also the volume of data traffic between CPU and GPU

(Huang et al., 2012). Moreover, with this technique the idle CPU cores can be efficiently utilized.

7

CUDA provides streams, a mechanism that facilitates execution of the kernel in parallel with

data transfer. Thus, CUDA applications can be positively sped up by offloading GPU

workload to the CPU together with the overlapped kernel execution and data transfer.

In a CUDA program the operations that involve the device, such as CPU-GPU data transfer,

kernel launch, etc., are issued by the host. A queue of GPU operations or commands is known

as stream. The commands in a stream are executed in their arrival order. Every GPU com-

mand is associated with a stream, whose identifier is specified as a parameter to the command.

If no stream identifier is specified by the programmer then that command is issued to the

default stream or null stream.

A host thread can define multiple non-default streams. The commands in the different

non-default streams are considered to be independent and can be executed concurrently. The

commands coming from the same stream are executed in the sequential order. Figure 2-a

depicts the execution timeline of the GPU operations with a default stream. The captions

HtoD and DtoH followed by an index stand for the host to device and device to host data

transfers respectively. A kernel is referred to by the caption K followed by an index. The

index of a data transfer operation is same as the index of the corresponding kernel.

The commands are performed in the same order that they appear in the stream. The

commands in the non-default streams will be started only after the completion of operations

in the default stream. However, a new operation in the default stream cannot be started before

the completion of already initiated operations in the non-default streams. Figure 2-b gives

the execution timeline of the GPU operations on two non-default streams. As shown in this

figure, the operations from two different streams can be overlapped. For example, execution

of kernel K1 and the HtoD2 data transfer can happen simultaneously.

Fig. 2. Execution time line of CUDA commands with (a) single default stream,

and (b) two non-default streams

Modern GPUs possess one execution engine and two copy engines. The host to device

and device to host data transfer operations use separate copy engines. Data transfer

commands from different streams are issued to the relevant copy engines. The copy engines

can utilize the full duplex nature of PCI-e bus. That is, two data transfer operations of

opposite directions which are from two different streams can be overlapped. Multiple cores

of a GPU are considered as a single execution engine for kernel scheduling purpose.

The following are the requisites to use CUDA streams to enable concurrent execution of

operations through copy and the execution engines:

8

1. The device must support concurrent copy and kernel execution.

2. Two data transfer operations can be overlapped only if they are in different directions.

3. Commands (for copying the data and invoking the kernel) which are to be over-

lapped need to be added to separate non-default streams.

4. Pinned or non-pageable memory must be used at the host side.

Fig. 3. Issue order of commands to CUDA engines

Fig. 4. Execution order of commands in copy and execution engines

Figure 3 shows the order in which the data transfer and kernel launch operations of a pro-

gram are issued to appropriate CUDA engines. The execution order of commands from

different engines are as shown in the figure 4. The operations from different engines can be

overlapped if there exists no dependency among the them. Execution of kernel K1 cannot

be overlapped with HtoD1 data transfer, as K1 and HtoD1 are from the same stream as

shown in figure 2-b and K1 depends on the completion of HtoD1. Whereas HtoD2 data

transfer and execution of kernel K1 can be overlapped since these two operations are from

different streams and K1 does not depend on the HtoD2 data transfer. Data transfer

operations HtoD3 and DtoH1 can be overlapped as these operations are from separate

streams and are in opposite directions.

In CUDA, the data transfer operations using cudaMemcpy() are synchronous or

blocking in nature. The function returns only after the data is copied. The non-blocking

version this operation is cudaMemcpyAsync(), which requires the data to be allocated

in the page-locked memory. The memory allocated using malloc() is pageable memory.

9

Host can swap this memory to disk when more space is required. Page-locked memory or

pinned is a portion of memory that is not available for swapping. The pageable memory of

the host does not support DMA transfers to or from GPU. Data has to be temporarily stored

in page-locked memory before it is transferred to device. By explicitly allocating the data in

page locked memory it can be safely used for DMA. Allocation of data in the pinned memory

can be done with cudaHostAlloc(). It takes the same arguments as cudaMemcpy()

except that it has an additional argument specifying the stream index into which this

command is added. A stream can be created using cudaStreamCreate() and destroyed

using cudaStreamDestroy() functions.

In this paper we aim to speed up the execution of CUDA programs by overlapping kernel

execution with the data transfer between CPU and GPU. Using streams, we have

implemented different kinds of concurrency for the execution of a set of CUDA kernels. We

compared the overlapped execution time with the time taken by the non-overlapped or serial

execution. Experimental results show that execution time of CUDA applications can be

decreased by simultaneously performing the transferring of data and the execution of kernel.

2. RELATED WORK

Several methods have been proposed by the researchers to speed up GPU applications.

These researches mainly focus on utilizing the computational power of CPU cores in addi-

tion to the GPU for kernel execution (Raju & Chiplunkar, 2018). Among such works,

application specific methods to improve the performance are presented in papers (Antoniadis

& Sifaleras, 2017; Fang, Chen & Mao, 2018; Siklosi, Reguly & Mudalige, 2019; Yang, Li

& Li, 2017). These parallelization approaches are based on the characteristics of individual

applications and cannot be generalized.

There exist some compiler frameworks and libraries that enable the programmer to

offload a portion of GPU workload to CPU cores. Frameworks like FluidiCL (Pandit &

Govindarajan, 2014), JAWS (Piao et al., 2015), and SKMD (Single Kernel Multiple Device)

(Lee et al., 2015) are used for the execution of OpenCL kernels using both CPU and GPU

cores. OpenCL allows the programmer to select a processing device, CPU or GPU, for the

execution of a given kernel. The compiler automatically generates the binary code for the

selected device. Since CUDA does not provide the above feature, implementation of a co-

operative execution scheme on CUDA is more complex process compared to the imple-

mentation of same on the OpenCL. Cooperative Heterogeneous Computing (CHC) (Lee et

al., 2014) is a prominent cooperative execution framework for CUDA which partitions an

input kernel and executes the partitions concurrently on host and device.

Only a few approaches have been reported that focus on hiding the data transfer overhead

by overlapping the communication and computation. A method to minimize CPU-GPU

communication overhead is suggested by (Fu, Wang & Zhai, 2017), in which two or more

data transfer operations of same direction are merged into a single operation. Using compiler

techniques, multiple commands for data copying are moved to same location in the source

code so that these operations can be merged. Merging of data transfer operations decreases

the total number of data transfer operations. Hyper-Q feature supported by NVIDIA GPUs

enables concurrent execution of multiple independent kernels on a single GPU. However,

when the execution of multiple kernels are not properly ordered, contention for shared

10

resources can degrade the overall performance (Luley & Qiu, 2016). A model has been

developed by (Lázaro-Muñoz et al., 2017) that determines the order of kernel execution so

as to increase the possibilities of simultaneously performing the data transfer and kernel

execution, and reduce the total execution time. An analytical performance model is proposed

in (Werkhoven et al., 2014) for classifying the relative performance of the different techniques

for overlapping computation and communication. An approach that partitions the input data

into sub-blocks and overlaps the data transfer and execution of sub-blocks in a pipelined

manner is proposed in (Li et al., 2017).

 Gowanlock & Karsin (2019) have developed a sorting approach in which the input

data is divided into multiple batches of uniform size which are sorted on the GPU. Sorted

batches are merged on the host which completes the task of sorting. The process of

transferring input data and sorted batches are overlapped using CUDA streams.

A method to minimize the of GPU memory consumption for training the Convolutional

Neural Networks is proposed by (Hascoet et al., 2019). In their method, the GPU memory

buffers are temporarily offloaded to CPU in the forward pass and transferred back to GPU

as needed by the computation during the backward pass of the backpropagation algorithm.

To reduce the PCI-e bottleneck the data transfers and GPU computations are overlapped

using streams.

Dhake & Walunj (2019) have used GPU to check whether input data packets contain

virus signature. A string-matching algorithm parallelly checks for the occurrence of different

patterns of virus string in the input packet. (Patil & Kulkarni, 2021) have investigated the per-

formance characteristics of CPU-GPU data transfer method that is based on pinned memory.

The research works presented in (Gowanlock & Karsin, 2019; Hascoet et al., 2019;

Dhake & Walunj, 2019) and (Patil & Kulkarni, 2021) make use of pinned memory and

streams to overcome the PCI-e transfer overhead. In our approach, in addition to overlapping

the data transfer and kernel execution we have also investigated the advantage of offloading

a portion of GPU workload to CPU through an approach called as 4– way and 4+ way

concurrency. With this approach, the data transfer from CPU to GPU, kernel execution, data

transfer from GPU to CPU, and execution on the CPU cores can occur simultaneously.

 In GPU-based graph processing systems the major challenge is that the size of the

input graph is so large that it cannot be fitted into the GPU memory. To manage the problem

of GPU memory oversubscription (Sabet, Zhao & Gupta, 2020) have proposed a graph

processing system in which a subgraph consisting of active vertices is loaded into GPU

memory. This method significantly reduces the amount of data transfer between CPU and

GPU and hence minimizes the overhead of data transfer. However, this approach is specific

to graph processing systems and cannot be generalized.

NVLink is an emerging CPU-GPU communication link which is faster than PCI-e. (Lutz

et al., 2020) have investigated the performance of NVLink with respect to processing large

data sets and observed significant speedups compared to the usage of PCI-e. However,

NVLink is yet to appear in the commodity hardware.

In our approach we use CUDA streams to overlap computation and communication.

The input data set is divided into chunks. The execution of a kernel associated with a chunk

and transferring of next chunk are overlapped using streams. Compared to the earlier research

works our approach not only overlaps kernel execution and data transfer but also offloads

a portion of GPU workload to CPU cores. Thereby it reduces the GPU workload as well as

the volume of data to be transferred to GPU.

11

3. METHODOLOGY

Any CUDA program consists of three device related operations: namely, copy the input

data from CPU to GPU memory, execute the kernel, and copy the results to CPU memory

from the GPU memory. Even if these three steps are added to different streams, they cannot

be overlapped due to the dependency between the operations. To enable the concurrency

within a data parallel kernel, we divide the data set into several smaller chunks or tiles. The

data transfer and kernel execution corresponding to two adjacent tiles can be overlapped by

adding them into different non-default streams. CUDA streams can support different levels

of concurrency based on the order in which the commands are organized in different streams.

These concurrency levels are referred to as 2-way, 3-way, 4-way, and 4+ way concurrency.

The effectiveness of different levels of concurrency are tested with the following data

parallel CUDA kernels:

 Vector addition,

 Vector dot product,

 1-D stencil operation,

 Matrix transpose,

 Matrix multiplication.

In the above kernels the vectors and matrices are of integer data type. Different levels of

concurrency are applied for the execution of individual kernels and also for the combined

execution of all kernels. These experiments are carried out on a system having Intel Quad-

Core i5-7300HQ, 2.50 GHz, 8GB host memory, NVIDIA GTX 1050 with 640 CUDA cores,

4GB device memory, CUDA compute capability of 6.0 and CUDA SDK 9.1. The operating

system is Ubuntu (12.04LTS) and the GPU driver version is 24.21.13.9891. While compiling

the above kernels we have not used any optimization flags supported by NVIDIA CUDA C

compiler (nvcc).

In 1-D stencil and matrix multiplication kernels, each input data element is repeatedly

used in multiple computations. On the GPU, the data elements are accessed from the off-

chip global memory. GPUs also possess shared memory located within the chip. Access

latency shared memory is lesser than that of global memory. On GTX 1050, the global

memory bandwidth is 112 Giga Bytes/second, whereas the shared memory bandwidth is

above 224 Giga Bytes/second. Shared memory is used in the implementation of above two

kernels. The input data elements which are repeatedly used in the computation are copied

from the global to shared memory. Frequent accesses to shared memory greatly reduce the

access latency, thereby reducing the execution time. Since the shared memory feature is not

supported on the CPU, the implementation of above kernels on the CPU are benefited by the

same.

3.1. Two-way concurrency

To enable the two-way concurrency, we have divided the input data into four tiles of

equal size. These tiles are loaded from the host to the device in succession. The PCI-e transfer

operations are referred to as HtoD1 through HtoD4. After the data transfers are completed,

the kernel function is invoked successively four times, each time with a different tile of input

data as the input parameter. The kernels are referred to as K1 through K4. After each kernel

12

invocation, the data transfer operation is invoked to transfer the results produced by that

kernel from the device to host. These data transfer operations are referred to as DtoH1

through DtoH4. It is necessary to add a kernel invocation operation and associated GPU to

CPU data transfer operation into the same non-default stream. Four different pairs of kernel

launch operation and the corresponding data transfer operations are added into different

streams. Hence, the GPU to CPU data copying operation for a kernel can be overlapped with

the execution of another kernel as shown in Figure 5. In this approach two operations from

different streams are performed in parallel. Hence, this approach is referred to as 2-way

concurrency.

Fig. 5. 2-way concurrency

3.2. Three-way concurrency

In the previous method, kernels are launched only after all the four tiles of input data are

copied from the CPU to GPU. In 3-way concurrency, the host to device data transfer for a

given input data tile is followed by the corresponding kernel launch, which is then followed

by the GPU to CPU data transfer of the results produced by the kernel. These three operations

pertaining to a tile of input data are added to same non-default stream. The set of three

operations, each pertaining to different tiles of input data are added into different non-default

streams.

Fig. 6. 3-way concurrency

The three different operations (copying of the data from CPU to GPU, execution of the

kernel, and copying of the results from GPU to CPU) corresponding to three different tiles

of input data are overlapped as shown in the figure 6. Overlapping of the three operations is

possible as these are issued to different CUDA streams and there exists no dependence

between them.

13

3.3. Four-way concurrency

In the previous two concurrency approaches, the CPU cores remain idle when the kernel

is being executed by the GPU. The overall execution time of the kernel can be improved if

we could offload some portion of the GPU workload to CPU cores. In the 4-way concurrency

approach, a portion of the input data is processed in host when the GPU is executing the

kernel processing rest of the data. To process the tile allocated to the host, a routine that is

functionally equivalent to the kernel is executed on the CPU. For any given application, the

implementation of the CPU and GPU versions of the kernels are based on the same

algorithm. Compared to OpenMP threads the thread creation and management overhead is

lesser in the case of Pthreads. Hence, we have used Pthread APIs to create the CPU thread.

This approach overlaps three different GPU operations and execution on the CPU as shown

in figure 7. Thus, four different operations are performed simultaneously and hence the name

4-way concurrency.

Fig. 7. 4-way concurrency

3.4. Four+ way concurrency

This type of concurrency is same as the four-way concurrency except that it uses multiple

CPU threads. Each thread on the CPU can be assigned with separate tile of input data or

multiple threads can be used to simultaneously process a single tile. In this way all CPU

cores can be utilized for the computation. As shown in the figure 8, in the 4+way

concurrency more than 4 operations can be performed in parallel.

Fig. 8. 4+ way concurrency

14

The above different methods of concurrency can effectively decrease the time needed for

the execution of a CUDA program. Moreover, even the CPU cores can also be engaged in

the execution of a kernel. Hence, the overall performance of an application can be improved.

4. RESULTS AND ANALYSIS

The kernels used in our experiments are listed in section 3. The concurrency levels

discussed above are applied to the execution of each individual kernel as well as the

combined execution of different kernels within a single program. The results obtained from

these experiments are discussed in section 4.1 and 4.2.

4.1. Applying concurrency for the execution of individual kernels

In this experiment, we have used 4 streams e for 2-way and 3-way concurrency, each one

comprising of three GPU operations, namely CPU to GPU data transfer, kernel invocation,

and GPU to CPU data transfer. Thus, we have executed 4 kernels, each processing the input

data of uniform size. For vector-based kernels (Vector Addition, Vector Dot Product, and 1-

D stencil operation), each of the kernels on different streams process a tile of 327680 integer

elements. In the case of 4-way concurrency, we have used 3 streams to process three tiles of

data on the GPU. The fourth tile is processed by a CPU thread. In the case of 4+ way

concurrency, the fourth tile is processed in parallel by 4 different CPU threads. We have

followed the same approach for matrix-based kernels (i.e. matrix transpose and matrix

multiplication) also. The size of the matrix processed by each kernel and also by the CPU

threads is 896×896 integer elements. Thus, for vector-based kernels the number of elements

in each input vector is 1310720 elements (i.e., 5.1 MB) and for matrix-based kernels the size

of each input matrix is 3211264 elements (i.e., 12.5 MB).

Tab. 1. Serial, 2, 3, and 4-way concurrent execution times (in milli seconds)

 for individual kernels

Kernel Name Serial 2-way 3-way 4-way

Vector Addition 6.04 3.78 2.06 1.76

Vector Dot Product 3.31 3.21 1.78 1.42

Matrix Transpose 9.67 5.19 2.97 2.12

1-D Stencil Operation 4.57 2.28 1.28 6.77

Matrix Multiplication 73.14 68.66 62.33 4486.88

Table 1 lists the serial and concurrent execution time for the above kernels with 2, 3, and

4-way concurrency. While executing any application we have ensured that no other user

applications are executing as background processes. However, we observe a slight difference

in the two successive execution times of any CUDA program. This difference in execution

times is attributed to the background processes of operating system. To protect the results of

our experiments from this factor, each application is executed several times until no further

improvement in the execution time is observed. Thus, for any application the execution time

presented in this table and all the subsequent tables represent the lowest of multiple runs of

the given application.

15

The serial execution uses the default stream as depicted in Figure 2(a). For vector addition,

vector dot product, and matrix transpose, the execution time with 4-way concurrency is

optimal and the speedup compared to the serial execution is 3.43, 2.33, and 4.56 respectively.

These kernels involve less computation and require less time to execute. The 4+way

execution time for different kernels is shown in the Table 2. The second and third columns

of this table show the execution time when 2 threads and 4 threads respectively are used to

process the tile allocated to the CPU. When a tile of input data is processed using multiple

CPU threads, the overhead of creating multiple threads subsides the benefit of time saved by

the parallelization of processing that tile on CPU. Hence, we do not observe performance

gain with 4+ way concurrency either using two or four CPU threads.

 Tab. 2. 4+way concurrent execution times (in milli seconds) for individual kernels

Kernel Name
2 CPU

Threads

4 CPU

Threads

Vector Addition 1.83 1.84

Vector Dot Product 1.47 1.54

Matrix Transpose 2.41 2.65

1-D Stencil Operation 3.65 2.15

Matrix Multiplication 2535.96 1387.31

 Tab. 3. GPU-only and CPU-only execution time of individual kernels

Kernel Name
GPU Execution Time

(milli seconds)

CPU Execution Time

(milli seconds)

Vector Addition 1.33 1.02

Vector Dot Product 0.69 1.07

1-D Stencil 1.03 6.87

Matrix Transpose 2.27 3.73

Matrix Multiplication 20.07 95152.0

The CPU-only execution time for matrix multiplication and stencil operation is much

higher than that of GPU-only time as shown in Table 3. This is due to the fact that these two

kernels are computation intensive compared to the rest of the kernels. As GPUs consist of

large number of cores, compared to the multicore CPUs they exhibit optimal performance

for compute intensive data parallel kernels. Hence, as shown in the Table 3, for the above

two kernels and even for any other kernels the GPU-only execution time is much lesser than

the CPU-only time. The vast difference between the CPU-only and GPU-only time of matrix

multiplication is also due to the fact that the algorithm used for multiplication on the CPU is

not cache friendly. The simple matrix multiplication operation to multiply matrices A and B

to produce matrix C is defined as 𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘
𝑛
𝑘=1 𝑏𝑘𝑗 , where A, B, and C are m×n, n×p, and

m×p matrices respectively. The above method of multiplying two matrices can be

implemented using three level nested loops. If we consider all matrices to be of order n×n,

the size of the cache is B bytes, and the size of a cache line is b bytes, then the cache consists

of
𝐵

𝑏
 cache lines. C-language stores matrices in row major order. When the inner loop

accesses an element of matrix B, a cache line containing that element must be available in

16

the cache. According to the algorithm, the inner loop accesses only one element from that

cache line. When 𝑛 >
𝐵

𝑏
 , every access to matrix B causes a cache miss. The algorithm results

in 𝜃(𝑛3) cache misses in the worst case.

GPU provides shared memory which has higher bandwidth than the global memory.

We use tile-based algorithm for the matrix multiplication algorithm on the GPU. In this

algorithm, a row of matrix A and a column of matrix B is accessed by different threads of a

thread-block. By placing the tile containing these rows and columns in the shared memory,

repeated long latency global memory accesses can be avoided. Moreover, when the threads

of a warp access adjacent elements in the shared memory, GPU can coalesce these different

accesses into a single access. Due to these features, the performance of matrix multiplication

algorithm on GPU is significantly better than the performance of the same on the CPU.

Hence, the 4-way and 4+way concurrencies which offload matrix multiplication workload

to CPU increase the execution time compared to the 2-way and 3-way concurrencies which

use only GPU.

 Therefore, as shown in Table 1, the 3-way concurrency proves to be ideal for 1-D stencil

operation and matrix multiplication with a speedup of 3.57 and 1.17 respectively compared

to the serial execution. However, with 4+way concurrency it can be observed that for both

kernels the execution time decreases as the number of CPU threads are increased based on

the number of cores available. The decrease in the execution time in this case is attributed

to distribution of huge amount of computational load among multiple threads.

4.2. Applying concurrency for the combined execution of different kernels

In this experiment we have overlapped the kernel execution and data transfer operations

of five different kernels. Size of the vector for a vector-based application is 327680 elements

and the size of the matrix for a matrix-based application is 896×896 elements. Table 4 shows

the combined execution time with serial execution, 2-way, and 3-way concurrent execution

of 5 different kernels. Compared to the serial execution (using default stream), the 2-way

and 3-way concurrency results in a speedup of 1.15 and 1.28 respectively.

Tab. 4. Combined execution time of all kernels with serial execution,

 2, and 3-way concurrency

Level of concurrency
Execution Time

(in milli seconds)

1-way (single stream) 25.63

2-way 22.33

3-way 20.03

The performance of 4-way concurrency is tested by executing 4 different kernels on the

GPU and remaining one on the CPU. In this way, the execution time for five different

combinations of kernels are tested. Table 5 lists the execution time for the same. Except for

matrix multiplication, speedup is observed when any of the kernel is executed on the CPU

and rest are executed on the GPU. The speedup is calculated with respect to the serial

execution time (i.e. 25.63ms). As discussed, GPU is suitable for matrix multiplication

compared to CPU. Hence executing it on the CPU will not improve the performance.

17

The 4+ way concurrency is realized by executing vector addition and matrix transpose

kernels on the host and the remaining 3 kernels on the device. These two kernels are chosen

for execution on the host as their execution time on the host is minimum as shown in the

Table 5. The two kernels on the host are executed in parallel by separate threads. Execution

time for the above combination of 4+ way concurrency is 19.16 milliseconds which is

slightly better than the execution time of matrix transpose kernel executed on the CPU using

4-way concurrency (i.e. 19.45 milliseconds).

 Tab. 5. Combined execution time of all kernels with 4-way concurrency

Kernel on the CPU
Execution time

(in milli seconds)
Speedup

Vector Addition 19.71 1.3

Vector Dot Product 20.43 1.25

1-D Stencil 20.05 1.28

Matrix Transpose 19.45 1.32

Matrix Multiplication 96169.88 0.0003

5. CONCLUSIONS

CUDA streams enable the overlapping of CPU-GPU communication and execution of

kernel. The results of applying concurrency for the execution of individual kernels and

combination of different kernels show a significant improvement in the execution time over

serial or non-overlapped execution. However, while applying 4-way or 4+ way concurrency

care must be taken so that the CPU thread creation overhead does not dominate the

performance benefits of offloading the workload to CPU. In this regard, this work can be

extended to device a mechanism that can dynamically select a suitable amount workload for

the CPU based on its hardware features and the computational characteristics of the given

application.

REFERENCES

Antoniadis, N., & Sifaleras, A. (2017). A hybrid CPU-GPU parallelization scheme of variable neighborhood

search for inventory optimization problems. Electronic Notes in Discrete Mathematics, 58, 47–54.

https://doi.org/10.1016/j.endm.2017.03.007

Dhake, A.A., & Walunj, S.M. (2019). Transfer Time Optimization Between CPU and GPU for Virus Signature

Scanning. In A. Luhach, D. Jat, K. Hawari, X.Z. Gao & P. Lingras (Eds.), Advanced Informatics for

Computing Research. ICAICR 2019. Communications in Computer and Information Science (vol. 1076

pp. 70–78). Springer Singapore. https://doi.org/https://doi.org/10.1007/978-981-15-0111-1_6

Fang, J., Chen, H., & Mao, J. (2018). Understanding data partition for applications on CPU-GPU integrated

processors. In Communications in Computer and Information Science (vol. 747). Springer Singapore.

https://doi.org/10.1007/978-981-10-8890-2_32

Fu, C., Wang, Z., & Zhai, Y. (2017). A CPU-GPU Data Transfer Optimization Approach Based on Code

Migration and Merging. Proceedings - 2017 16th International Symposium on Distributed Computing

and Applications to Business, Engineering and Science, DCABES 2017, 2018-Septe (pp. 23–26). IEEE.

https://doi.org/10.1109/DCABES.2017.13

Gowanlock, M., & Karsin, B. (2019). A hybrid CPU/GPU approach for optimizing sorting throughput. Parallel

Computing, 85, 45–55. https://doi.org/10.1016/j.parco.2019.01.004

18

Gregg, C., & Hazelwood, K. (2011). Where is the Data ? Why You Cannot Debate CPU vs. GPU Performance

Without the Answer. IEEE International Symposium on Performance Analysis of Systems and Software.

(pp. 134–144). IEEE. https://doi.org/10.1109/ISPASS.2011.5762730

Hascoet, T., Zhuang, W., Febvre, Q., Ariki, Y., & Takiguchi, T. (2019). Reducing the Memory Cost of Training

Convolutional Neural Networks by CPU Offloading. Journal of Software Engineering and Applications,

12(08), 307–320. https://doi.org/10.4236/jsea.2019.128019

Huang, W., Yu, L., Ye, M., Chen, T., & Hu, T. (2012). A CPU-GPGPU scheduler based on data transmission

bandwidth of workload. Parallel and Distributed Computing, Applications and Technologies, PDCAT

Proceedings (pp. 610–613). IEEE. https://doi.org/10.1109/PDCAT.2012.15

Lázaro-Muñoz, A.J., González-Linares, J.M., Gómez-Luna, J., & Guil, N. (2017). A tasks reordering model to

reduce transfers overhead on GPUs. Journal of Parallel and Distributed Computing, 109, 258–271.

https://doi.org/10.1016/j.jpdc.2017.06.015

Lee, C., Woo, W.R., & Gaudiot, J. (2014). Boosting CUDA Applications with CPU – GPU Hybrid Computing.

International Journal of Parallel Programming, 42, 384–404. https://doi.org/10.1007/s10766-013-0252-y

Lee, J., Samadi, M., Park, Y., & Mahlke, S. (2015). SKMD: Single kernel on multiple devices for transparent CPU-

GPU collaboration. ACM Transactions on Computer Systems, 33(3). https://doi.org/10.1145/2798725

Li, T., Dong, Q., Wang, Y., Gong, X., & Yang, Y. (2017). Dual buffer rotation four-stage pipeline for CPU –

GPU cooperative computing. Soft Computing, 23, 859–869. https://doi.org/10.1007/s00500-017-2795-0

Luley, R.S., & Qiu, Q. (2016). Effective utilization of CUDA hyper-Q for improved power and performance

efficiency. Proceedings – 2016 IEEE 30th International Parallel and Distributed Processing Symposium,

IPDPS 2016 (pp. 1160–1169). IEEE. https://doi.org/10.1109/IPDPSW.2016.154

Lutz, C., Breß, S., Zeuch, S., Rabl, T., & Markl, V. (2020). Pump Up the Volume: Processing Large Data on

GPUs with Fast Interconnects. Proceedings of the ACM SIGMOD International Conference on

Management of Data (pp. 1633–1649). ACM Digital Library. https://doi.org/10.1145/3318464.3389705

NVIDIA TITAN V. (n.d.). NVIDIA Corporation. Retrieved May 8, 2021 from https://www.nvidia.com

NVIDIA. (2015). CUDA C Programming Guide v 9.1. NVIDIA.

Pandit, P., & Govindarajan, R. (2014). Fluidic kernels: Cooperative execution of openCL programs on multiple

heterogeneous devices. Proceedings of the 12th ACM/IEEE International Symposium on Code Generation and

Optimization, CGO 2014 (pp. 273–283). ACM Digital Library. https://doi.org/10.1145/2544137.2544163

Patil, S.V., & Kulkarni, D.B. (2021). Data transfer optimization in CPU/GPGPU Communication. Turkish

Journal of Computer and Mathematics Education, 12(13), 1920–1923.

Piao, X., Kim, C., Oh, Y., Li, H., Kim, J., Kim, H., & Lee, J.W. (2015). JAWS: A JavaScript framework for

adaptive CPU-GPU work sharing. Proceedings of the ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPOPP, 2015-Janua (pp. 251–252). ACM Digital Library.

https://doi.org/10.1145/2688500.2688525

Raju, K., & Chiplunkar, N.N. (2018). A survey on techniques for cooperative CPU-GPU computing. Sustainable

Computing: Informatics and Systems, 19, 72–85. https://doi.org/10.1016/j.suscom.2018.07.010

Sabet, A.H.N., Zhao, Z., & Gupta, R. (2020). Subway: Minimizing data transfer during out-of-GPU-memory

graph processing. Proceedings of the 15th European Conference on Computer Systems, EuroSys 2020

(pp. 1–16). ACM Digital Library. https://doi.org/10.1145/3342195.3387537

Siklosi, B., Reguly, I.Z., & Mudalige, G.R. (2019). Heterogeneous CPU-GPU execution of stencil applications.

Proceedings of P3HPC 2018: International Workshop on Performance, Portability and Productivity in

HPC, Held in Conjunction with SC 2018: The International Conference for High Performance Computing,

Networking, Storage and Analysis (pp. 71–80). IEEE. https://doi.org/10.1109/P3HPC.2018.00010

Werkhoven, B. Van, Maassen, J., Seinstra, F.J., & Bal, H.E. (2014). Performance models for CPU-GPU data transfers.

Proceedings – 14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,

CCGrid 2014 (pp. 11–20). IEEE. https://doi.org/10.1109/CCGrid.2014.16

Yang, W., Li, K., & Li, K. (2017). A hybrid computing method of SpMV on CPU–GPU heterogeneous computing

systems. Journal of Parallel and Distributed Computing, 104, 49–60. https://doi.org/10.1016/j.jpdc.2016.12.023

