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Abstract 

The increasing electrification of powertrains leads to increased demands for the test 

technology to ensure the required functions. For conventional test rigs in particular,  

it is necessary to have knowledge of the test technology's capabilities that can be 

applied in practical testing. Modelling enables early knowledge of the test rigs dynamic 

capabilities and the feasibility of planned testing scenarios. This paper describes the 
modelling of complex subsystems by experimental modelling with artificial neural 

networks taking transmission efficiency as an example. For data generation, the 

experimental design and execution is described. The generated data is pre-processed 

with suitable methods and optimized for the neural networks. Modelling is executed 

with different variants of the inputs as well as different algorithms. The variants compare 

and compete with each other. The most suitable variant is validated using statistical 

methods and other adequate techniques. The result represents reality well and enables 

the performance investigation of the test systems in a realistic manner. 

1. INTRODUCTION 

The steadily advancing climate change requires a reduction of greenhouse gases.  

With annual emissions of 160,000 kilotons of CO2 equivalent, the transportation sector in 
Germany has great potential for savings (German Environment Agency, 2020). As a result, 

there is a demand for and promotion of climate-friendly solutions for mobility. The electri-

fication of vehicles is a key tool for the reduction of CO2 emissions (Hoekstra, 2019). 
Currently, a corresponding increase in electric drives is discernible. Still, the potential for 

climate-neutral transportation also brings challenges in vehicle technology. The functionality 

of electric powertrains must be validated on test rigs. Increased dynamics of electric 

powertrains must be considered. Knowledge of the physical limits of the test rig, like the 
dynamics, is not always available. Especially with conventional test rigs, the required 

dynamics may exceed the accessible ones. In the best case, the planned test setup can then 

only be carried out by means of an adaptation, in the worst case, not at all. 
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The use of testing technology models enables an early statement about the feasibility of 

the tests. In doing so, the test rig can be modelled in its entirety (Bauer, Bauer & Kley, 2021). 

The model includes the electrics, the mechanics as well as the control system. By means of 

white-box modelling, the model is represented theoretically and idealized. Complex 
processes, such as friction, can hardly be represented by theoretical modelling. They can be 

represented using the conventional approaches of experimental modelling, such as the 

description by characteristic maps and curves (Stütz, Beck & Kley, 2021). The calculation 
is performed using measured data at specified operating points. Between the measured 

operating points, the data is interpolated. Patterns in the measured data are recognized only 

sparsely. Due to the necessary intermediate steps for the calculation, modelling with maps 
also has a relatively low computational efficiency. 

By using innovative approaches for modelling, the available information content of the 

measured data as well as the computational efficiency can be increased (Bauer, Beck, Stütz 

& Kley, 2021). The aim of this work is to provide an experimental model of the efficiency 
of an electrical machine. The result is a function that continuously describes the efficiency 

based on the mechanical inputs speed and torque. For this purpose, the mechanical, electrical 

and thermal influences on the system are investigated in detail. The procedure for modelling 
the function is described in detail. Suitable experiments are planned and carried out to 

generate the data. The measured data is pre-processed by suitable methods. The model is 

built using artificial neural networks (ANN). To optimize the model, different inputs as well 
as different training algorithms are compared. The result is validated by different approaches, 

such as a statistical evaluation of the error. 

2. STATE OF THE ART 

The product creation process is described in particular with the help of the V-Model 

(see Fig. 1). Simulations can already be carried out in the component specification. These 

enable tests without a physical Device Under Test (DUT). (Stütz, Bauer & Kley, 2019) 
 

 
Fig. 1. V-Model based on (Dohmen, Pfeiffer & Schyr, 2009) and (Paulweber & Lebert, 2014) 
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As time increases during the product development process, so does the number of available 

physical DUTs. This enables increasing, real testing in the component integration. As the 

number of available DUTs increases, the scope of the tested systems increases, for example 

from individual components to the complete powertrain. Finally, the complete vehicle is 
tested on the road. Any necessary changes are implemented iteratively in optimisation loops. 

(Dohmen, Pfeiffer & Schyr, 2009) 

A minimum value of kilometres to be driven is required to fully validate product features. 
Typical values for the example of autonomous driving range from one million kilometres 

for the validation of a function to one billion kilometres for the complete validation of the 

system. A corresponding safeguarding by driving on the road is hardly feasible in the avail-
able development time. A procedure with increasing relevance is therefore testing on the test 

rig. (Beine & Rasche, 2018). 

Early validation on the test rig or through simulation also keeps product development 

costs low (Albers, Behrendt, Klingler & Matros, 2016). 

2.1. Efficiency Mapping 

Test rig experiments for efficiency testing provide knowledge about the usable energy 
share of a system. During power difference measurement, the input power Pin and the output 

power Pout are determined. From this, the efficiency η is derived according to formula (1): 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
              (1) 

where: 𝜂 – efficiency, 

 𝑃𝑜𝑢𝑡  – output power, 

 𝑃𝑖𝑛 – input power. 

 
The power of the drive unit can be determined, for example, by torque Mout and speed nout 

sensors on the output shaft or current I and voltage U sensors in the armature of the electric 

machine. With the power difference measurement, the efficiency in the motor operation can 
be calculated according to formula (2): 

 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
 =

2𝜋∙𝑀𝑜𝑢𝑡∙𝑛𝑜𝑢𝑡

𝑈∗𝐼
          (2) 

 

where: 𝑀𝑜𝑢𝑡  – output torque, 

 𝑛𝑜𝑢𝑡  – output speed, 

 𝑈 – armature voltage, 

 𝐼 – armature current. 

2.2. Modelling 

Currently, there is also an increasing trend to shift testing assignments from road and test 
rig applications to simulation software. Nevertheless, it can be assumed that physical testing 

will be necessary for the foreseeable future to ensure the required product properties 

(Dismon, 2017). It is not to be seen as a competitor to simulation, but as an extension to be 
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used synergetically in order to achieve optimized results (Guggenmos, Rückert, Thalmair  

& Wagner, 2015). Willmerding & Häckh (2017) for example, describe the combination of 

vehicle simulation and test rig control for mapping highly dynamic driving cycles on test 

rigs. The winEVA tool used thus enables more realistic results through driving maneuver-
based test scenarios. The validation on the test rig can be optimized by using such numerical 

tools. 

The simulation of scenarios on the computer requires models that describe the planned 
or real system. Isermann (2008) principally distinguishes between the theoretical and the 

experimental modelling. The main kinds of modelling as well the intermediate stage grey-

box model are displayed in Fig. 2. 
 

 

Fig. 2. Modelling concepts 

Theoretical modelling of white-box models requires comprehensive knowledge of the 

system to be modelled. The overall system is usually subdivided into smaller subsystems. 

The processes and relationships are described physically. The theoretical modelling for the 
efficiency of a transmission using a simulation is described, for example, by Li et al. (2014) 

and Ratov & Lyfar (2020). 

In experimental modelling of black-box models, also referred to as parameter identifica-
tion, the processes in the system are not known. It is described exclusively with the input 

and output variables as well as its transfer function. There are various ways to establish the 

relationship between the variables like the classic methods of using characteristic diagrams 
or the calculation of polynomials. In addition to the classical methods, modelling with 

artificial neural networks is increasingly used. Machrowska et al. (2020) compare the 

mathematical modelling with polynomials to the modelling with ANNs. The ANNs lead to 

superior results. The creation of a transfer function for recognition and depiction of 
correlations between input and output signals is one of the basic ideas of ANNs. Therefore, 

they’re suitable for the modelling of complex systems. There is a wide range of possible 

applications in modelling. Khan et al. (2020) describe the creation of an efficiency function 
of an electrical machine by means of ANNs. The training data originates from numerical 

calculations. Çelik et al. (2017) describe the creation of an efficiency and power function of 

an electric machine. The training data results from measurements.  
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Yadav & Yadava (2017) describe the modelling of an ANN for an EAHM process.  

A parameter study was carried out for optimization. sufficiently good results were achieved 

with the scaled-conjugate-gradient algorithm. Payal et al. (2013) compare and compete the 

Levenberg-Marquardt algorithm and the Bayesian-Regularization algorithm. The algorithms 
are applied for the efficient localization in wireless sensor networks. It is concluded, that the 

Bayesian-Regularization algorithm produces more accurate results at the expense of higher 

training time, than the Levenberg-Marquardt algorithm. Based on this Jazayeri et al. (2016) 
compare and compete the Levenberg-Marquardt algorithm and the Bayesian-Regularization 

algorithm for power estimation of photovoltaic modules. The better accuracy at the expense 

of higher training time by using the Bayesian-Regularization algorithm can also be approved 
for the described use case. In conclusion both papers recommend to use the Levenberg-

Marquardt algorithm for time critical applications. Otherwise the Bayesian-Regularization 

algorithm is recommended. Based on this, this paper investigates the suitability of the 

described algorithms for modelling the efficiency. 

3. PARAMETER IDENTIFICATION 

The investigation is carried out using a drive test rig with a power rating of 300 kW.  

The test rig consists of a prime mover, which simulates the vehicle drive controlled by its 

speed and a load machine, which simulates the driving resistances controlled by its torque. 

The electrical machines are externally excited DC motors. In order to achieve a sufficiently 
high speed, transmissions are connected to the motors. The input uses a non-switchable 

planetary gear with a ratio of 3.2. The output uses a switchable planetary gear with ratios  

i1 = 1 and i2 = 3.47. Drive train components such as transmissions can be connected and 
tested between the two motors. 

As a basis for the project, a digital twin of the described test rig was developed by Bauer 

et al. (2021). This primarily represents the dynamic behavior of the given test rig. This allows 

planned test scenarios to be examined in advance for their feasibility and optimized for the 
given test technology. Up to now, the modelling has been done as a white-box model. This 

is an ideal, loss-free representation of the system. Factors such as power loss are not 

considered. For a more realistic simulation of the real system, the aim is to model the 
complex efficiency. This is to be done by functions from ANNs. Training data that can be 

processed as the basis of the ANNs are necessary for model building. For this purpose, an 

experimental design is carried out and measurement data is recorded through experiments. 
The resulting raw data is preprocessed for training the ANN. With the help of existing 

algorithms, the networks are trained on the given data and can be integrated into simulations. 

The results are validated in particular by comparing them with the real system. The 

procedure is described in detail below. 

3.1. Experimental design and data generation 

To generate data, appropriate tests are run on the real test rig. Due to its inferior 
performance, the investigation is limited to the drive for the time being. For data generation, 

the two machines are connected directly via a constant velocity drive shaft and operated 

without a DUT. This avoids disturbing influences of the DUT.  



 

10 

For data acquisition, a large number of measured values are recorded at different 

measuring points. These are differentiated into mechanical, electrical and thermal. 

The distribution of the measuring points T1, T2, T3 and T4 for the temperature is based on 

infrared images of the machine in operation. This allows points to be identified which react 
particularly quickly to the heating of the machine. The test setup with the measuring points 

and the comparison with the infrared images is shown in Fig. 3. 

 

 

Fig. 3. Schematic illustration of the measurement locations and IR-illustration of the heating after: 
a) 0 min, b) 50 min, c) 100 min and d) 150 min 

The aim of the experiments is to generate data for which an ANN can recognize 
correlations with the efficiency. This is to be described by a function from a trained network. 

The collective used for this consists of quasi-randomly distributed points in the machine's 

characteristic diagram. 

This is to ensure that no patterns are given to the network and that it recognizes any given 
patterns itself. In addition, the measuring points are approached in random order to take the 

temperature influence into account. As a result, the temperature warms up independently of 

the operating point. The principle is shown in Fig. 4. 
 

 

Fig. 4. Measurement point distribution with: a) uniformly sequential and b) random points 

The start-up time of the individual operating points is determined as a function of the 

speed difference. A maximum speed ramp is specified. A time buffer of 5 seconds is also 

added. After start-up, the points are held for 30 seconds. This results in an essential division 
of the measurement data into dynamic start-up and static holding of the points. 
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The collective is approached for about five hours. At a measurement frequency of 10 Hz, 

about 190,000 data samples are recorded. Through a correlation analysis between the 

efficiency and each individual temperature channel, no significant influence of the 

temperature on the overall efficiency can be determined. It can be assumed that as the 
temperature increases, the transmission efficiency increases, but the motor efficiency 

decreases. It is assumed that a superposition of the individual efficiency changes keeps the 

overall influence of the temperature low. 

3.2. Data pre-processing 

For data pre-processing, relevant measured values are selected in advance for the input. 
These are in particular mechanical values such as the speed and torque. In addition to the 

main values, the influence of derived values is also examined. These are in particular the 

torque gradient and the speed gradient. 

The efficiency of the machine is used for the ANN output. This is determined on the basis 
of the measured values. The measurement data is limited to motor forward operation. It can 

be assumed that the results can be mirrored to other operating modes. 

Some of the data contain information that apparently has no plausible information value. 
For example, in the area of the dynamic start-up of the measuring points, there is a strong 

fluctuation of the current around the expected value with a constant period of T = 0.5 s 

(see Fig. 5). 
 

 
Fig. 5. Fluctuations in the current and raw and filtered current signal 

The fluctuations are transferred to all values derived from the current, but not to the 
mechanics. Detailed investigations into the cause of the discrepancy, such as an analysis of 

the frequency response of the mechanical oscillations, did not yield any usable outcome.  

To avoid a resulting degradation of the results, the signal is smoothed with a filter. According 
to a correlation analysis a moving average with a window of 3*T = 1.5 s provides the best 

results. The consequential values in operation without field weakening run approximately 

proportional to the measured torque. 

The smoothing in the current is transferred to all values derived from it. The resulting 
signals, for example the target signal efficiency, are evaluated as plausible. 

T = 0.5 s
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To avoid an unequal effect of the inputs, the selected data for input and output are 

normalized by their maximum values. Thus, all values lie in the numerical range [0,1].  

The normalization is performed according to formula 4–7: 

 

𝑛𝑛 =
𝑛

max(𝑛)
            (4) 

𝑀𝑛 =
𝑀

max (𝑀)
            (5) 

𝑈𝑛 =
𝑈

max(𝑈)
            (6) 

𝐼𝑛 =
𝐼

max(𝐼)
            (7) 

 

where: 𝑛𝑛  – normalized rotational speed, 

 𝑀𝑛 – normalized torque, 

 𝑈𝑛 – normalized voltage, 

 𝐼𝑛  – normalized current. 

 

The output signal efficiency cannot exceed the range [0,1] by definition. A normalization 
is therefore not needed. 

3.3. Training of the artificial neural network 

The network is a fully-connected multilayer perceptron. It consists of an input layer, two 

hidden layers and an output layer. The input layer has four neurons. The first hidden layer 

has 6 neurons, the second hidden layer has 4 neurons. The number of neurons in the hidden 
layers was determined empirically. The output layer has one neuron. It provides the output 

in the form of the efficiency. The network is shown in Fig. 6. 

 

 

Fig. 6. Network architecture 
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The calculations, training and testing are done using Matlab. The training data is 

automatically and randomly divided into training data (70%), validation data (15%) and 

testing data (15%). The validation data is used to measure network generalization and halt 

the training when generalization stops improving while the testing data is used to measure 
the network performance during and after the training (The MathWorks, 2020).  

Different versions of the network are created. The distinction is made in two categories. 

For the first category, the inputs are varied to determine the most suitable combination.  
In the second category, the training algorithms are varied. This is to determine the most 

suitable algorithm for the application. 

The input variations are different combinations of speed, torque as well as their corre-
sponding gradients. The variants have the following inputs: 

 Variant 1: speed, torque. 

 Variant 2: speed, torque, speed gradient. 

 Variant 3: speed, torque, torque gradient. 

 Variant 4: speed, torque, speed gradient, torque gradient. 

 

The default set and frequently recommended Levenberg-Marquardt algorithm is used to 

determine the most suitable input variant (Jazayeri, Jazayeri & Uysal, 2016; Payal, Rai  
& Reddy, 2013). The training is partly random and therefore does not deliver uniform results. 

For a significant outcome, the training is performed 20 times per input variant. The char-

acteristic values are presented in Fig. 7. 
 

 

Fig. 7. Performance metrics with varying inputs 

Analogous to Jazayeri et al. (2016), the resulting functions are evaluated on the basis of 
the performance metrics achieved. A relatively small deviation can be seen in the data.  

In terms of MSE performance, variant 3 and variant 4 achieve the lowest and thus the best 

values. For the R² value, variant 4 and variant 2 achieve the highest and thus the best values. 

Thus, variant 4 shows very good values in the essential criteria for the quality of results. 
A summary of further averaged parameters is shown in Tab. 1. The values highlighted in 

green are the best. The values highlighted in red are the worst. In addition to the quality of 

the results, a good calculation time is recognizable for variant 4. Therefore, variant 4 is chosen 
as standard input for the further process. 
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Tab. 1. Performance metrics of varying inputs 

 
 

The determination of a fitting algorithm for the ANNs is done by varying different 
approaches. The following algorithms are used for that: 

 Levenberg-Marquardt algorithm (LM), 

 Bayesian regularization algorithm (BR), 

 Scaled-conjugate-gradient algorithm (SCG). 

 

Each algorithm is trained 20 times. The results are compared and competed with each 

other based on their performance metrics. The characteristic values are presented in Fig. 8. 
It can be seen that the BR algorithm gives the best results. The LM algorithm leads to slightly 

inferior results. The SCG algorithm leads to the worst results. Furthermore, it has a compar-

atively high dispersion. 
 

 

Fig. 8. Performance metrics with varying algorithms 

A summary of further averaged parameters is shown in Tab. 2. The values highlighted  

in green are the best. The values highlighted in red are the worst. 

 
 

 

Performance metrics Variant 1 Variant 2 Variant 3 Variant 4

Best training performance

(preferably low)
0.0096 0.0050 0.0029 0.0028

Best validation performance

(preferable low)
0.0097 0.0050 0.0029 0.0028

Best testing performance

(preferably low)
0.0097 0.0051 0.0029 0.0029

No. Of training epochs

(preferably low)
173 196 221 175

R²-value

(preferably high)
0.678 0.904 0.833 0.906

Minimum gradient

(preferably low)
5.16E-05 5.34E-05 1.53E-04 1.42E-04

Training time in s

(preferably low)
32 39 43 36
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   Tab. 2. Performance metrics of varying algorithms 

 
 
It is observed that the BR algorithm is superior to the competing algorithms in terms of 

performance. Regarding the R² value, the LM algorithm is equivalent. In terms of compu-

tation time and number of training epochs, the LM algorithm is superior. The SCG algorithm 
is inferior regarding the performance and the R²-value. The computation time and the number 

of raining algorithms is only intermediate. 

From the investigation the recommendation can be derived to use the BR algorithm for 
high demands on the result quality. For time-critical applications, the use of the 

LM algorithm is recommended. No recommendation can be derived for the SCG algorithm. 

4. RESULTS AND VALIDATION 

The results are displayed using an ANN based efficiency map (see Fig. 9). By multiplying 

by the original maximum values, the normalized values can be converted back to the initial 
values. A high efficiency gradient can be seen in the lower speed and torque areas. Due to 

the relatively low resolution of the measurement data in this range, the information content 

is not sufficient to describe the efficiency there. Accordingly, the areas from 0 % to 5 % of 

the torque and speed are not mapped. 
 

 

Fig. 9. Efficiency map derived from the ANN 

Performance metrics LM algorithm BR algorithm SCG algorithm

Best training performance

(preferably low)
0.0027 0.0027 0.0037

Best validation performance

(preferably low)
0.0027 NaN 0.0037

Best testing performance

(preferably low)
0.0027 0.0026 0.0037

No. of training epochs

(preferably low)
246 476 284

R²-value

(preferable high)
0.91 0.91 0.87

Minimum gradient

(preferably low)
1.48e-5 9.31e-8 5.04e-4

Training time [s]

(preferably low)
242 515 279
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Figure 10 shows a practical way of validation. For this purpose, Fig. 10 a shows the 

measured data in a specified time window. Fig. 10 b compares the time signal of the calcu-

lated and the measured efficiency. A high level of agreement is evident. However,  

the calculated value shows a smoother course than the measured value. This is attributable 
to residual oscillations in the measured current signal. 
 

 
Fig. 10. Speed and torque corresponding to the efficiency from the measured data and the ANN 

For a quantitative validation of the calculated values it is recommendable to define to  

a performance indicator. Therefore, the value xη is introduced. It’s calculated as the quotient 
of the efficiencies from the measured data ηCalc and from the ANN ηNN according 

to formula (8). 

 

𝑥𝜂 =
𝜂𝐶𝑎𝑙𝑐

𝜂𝑁𝑁
             (8) 

 

where: 𝑥𝜂 – efficiency quotient, 

   𝜂𝐶𝑎𝑙𝑐 – efficiency from measured data, 

 𝜂𝑁𝑁 – efficiency from ANN calculation. 

 
The variation in percentage between the efficiencies can be derived from the indicator. 

A value of xη = 1 describes a perfectly fitted efficiency. A value of xη < 1 describes a too 

high efficiency calculated by the ANN. A value off xη > 1 describes a too low efficiency 

calculated by the ANN. 
A representation of the indicator in the form of a histogram is shown in Fig. 11. It is 

evident that the calculated values are close to the measured values. For a numerical statement 

a statistical investigation is carried out. For this purpose, key parameters of the distribution, 
such as the standard deviation or the mean value, are calculated. 
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Fig. 11. Distribution and standard deviation of the performance indicator 

The first standard deviation is σ = 3.86%. The second standard deviation is calculated as 

2*σ = 7.72%. About 90% of the determined values for xη are within the first standard 

deviation. About 95% of the determined values for xη are within the second standard 
deviation. Thus, the dispersion of the values is classified as sufficiently low. 

5. CONCLUSION 

With the use of ANNs, the efficiency of a drive unit consisting of a DC motor and  

a planetary transmission could be described mathematically. The resulting function enables 

a variety of applications, such as the observation of the efficiency curve in real and simulated 

data or the determination and representation of characteristic efficiency maps. The appli-
cation to preexisting models by integration as a subsystem enables an approximation of the 

models to reality. The informative value of the prediction increases. The time-efficient 

calculation by the determined function enables the integration into real-time simulation 
applications. The application to real measurement data enables the early detection of optimal 

operating points. This allows the operating strategy to be optimized. 

The modelling approach specifically for efficiency can be transferred to other systems, 
such as separately considered transmissions, without a drive unit. The experimental 

modelling by ANNs can be transferred to other subsystems, such as the control system,  

in addition to the simulation of the efficiency. 

The comprehensive description of the formation of the function also includes the design 
of experiments, data generation and data pre-processing. Especially problem solving in data 

preprocessing is presented with effective and efficient approaches. 

The limitations of the approach are, for example, the inability to reliably extrapolate 
outside the measured data. In addition, the internal processes are not known due to the use 

of the black-box model. 

For further optimization, potentials were identified. For example, the quality of the training 
data can be optimized by further optimization of the experimental design, in particular by  

an intelligent distribution of the measurement point density analogous to Martini et al. (2003). 

90 %

95 %

+ σ + 2*σ- 2*σ - σ 0* σ

σ = 0.0386

2*σ = 0.0772
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