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Abstract 

The classical n-body problem in physics addresses the prediction of individual motions 

of a group of celestial bodies under gravitational forces and has been studied since 

Isaac Newton formulated his laws. Nowadays the n-body problem has been recognized 

in many more fields of science and engineering. Each problem of mutual interaction 

between objects forming a dynamic group is called as the n-body problem. The cost of 
the direct algorithm for the problem is O(n2) and is not acceptable from the practical 

point of view. For this reason cheaper algorithms have been developed successfully 

reducing the cost to O(nln(n)) or even O(n). Because further improvement of the 

algorithms is unlikely to happen it is the hardware solutions which can still accelerate 

the calculations. The obvious answer here is a computer cluster that can preform the 

calculations in parallel. This paper focuses on the performance of a low-budget 

computer cluster created on ad hoc basis applied to n-body problem calculation.  

In order to maintain engineering valuable results a real technical issue was selected to 

study. It was Discrete Vortex Method that is used for simulating air flows. The pre-

sented research included writing original computer code, building a computer cluster, 

preforming simulations and comparing the results. 

1. INTRODUCTION 

The n-body problem arises occasionally in physics and thus also in engineering.  
The prerequisite for its emergence is (1) description of a physical phenomenon by means of 

a dynamic and discrete set of particles, which (2) influence mutually in the relationship “each 

with everyone”. Computer modelling of physical phenomena in this way is simple and so 
attractive from an engineering point of view. However, the simplicity and purity of the 

method carries time–consuming calculations resulted from the necessity of recalculating all 
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the mutual interactions at every step of the simulation. Engineers who applies n-body particle 

models in their practice always face the challenge of time-intensive computer calculation.  

It also should be noted that various particle models and methods (those in which the n-body 

problem occurs) are always accompanied by other additional complications that forms the 
individual computational specificity of them. Research presented in this article focuses on 

Discrete Vortex Method (DVM). The authors tried to answer the question what the effi-

ciency of low-budget computer clusters can be when applied to DVM simulations. 

1.1. The generalized n-body problem 

Firstly, the n-body problem is going to be formulated in the simplest and general way 
(Fig. 1). For this purpose one should: 

 define a metric space with a metric d and supply it with time t, 

 spread at t = 0 a finite set of particles (called a discrete population or a discrete system) 

numbered i = 1, 2, 3, …, n in the space by determining their initial positions Pi and 

velocities ui, 

 abstract one common attribute of the particles, which intensity C determines the 

strength of mutual influence, 

 chose a mutual influence function Q, which lets calculate influence from the particle 

j on i Qij = Q(Ci, Cj, dij), 

 choose a velocity function u which lets calculate change in the velocity of the particle 

i Δui = u(ui, Ci, Q1, Q2, Q3, …, Qn), 

 choose a displacement function D, which lets calculate the change in a particle 

position after time Δt: Δdi = D(ui, Ci, Δt), 

 let the particles change their positions with time. 

 

 

Fig. 1. A four-element discrete population (n = 4) in the “each to everyone” relation: a) the initial 

configuration, b) the change under mutual interactions; the description: i = 1, 2 ,3, 4 – particle numbers, 

Ci – the intensity of a attribute , Pi Pi’ – the location in the space (before and after the change), 
ui ui’ – velocity, Qij – the influence on particle i from j, Δdi – the location change 
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Such a discrete population constantly reconfigures itself as time runs. All the particles 

continually influence each other and move in the space due to the influence. The movement 

results in a change of the mutual influences. The population equilibrium may or may not be 
achieved. Such a “numeric ecosystem” has the ability to reproduce a real phenomenon if 

constructed and interpreted in a correct way. 
The n-body problem is considered resolved when is known the configuration of the 

population (positions and velocities of all the particles) at any time t > 0. It turns out that the 

n-body problem has in general no analytical solution. Subsequent configurations of the 

population may be determined only by direct simulations. There are three main groups of 
algorithms for n-body problem (Hockney & Eastwood, 1988): 1) particle-particle (P2), 

2) particle-mesh (PM) and 3) particle-particle-particle-mesh (P3M). The P2 algorithm is the 

simplest one and consists in calculating all single interactions in a direct way. It results in 

the numerical cost of O(n2), which is usually unacceptable in engineering practice. The PM 
algorithm employs a calculating mesh, which let reduce the cost to O(n) but also decreases 

accuracy of the results because small-scale local effects are not able to develop. The last 

P3M algorithm is a combination of the previous two. For each particle a direct neighbour-
hood area is established within which the P2 algorithm is used to calculate the influence from 

other particles from the neighbourhood. The influence from the remote particles are 

determined using the P3M algorithm. The numerical cost of the last algorithm is O(n·ln(n)). 

It is most frequently implemented and was used in the presented research. 

1.2. The Discrete Vortex Method 

The Discrete Vortex Method (DVM) (Lewis, 1991; Cottet & Koumoutsakos, 2000)  

is one of methods dedicated to computer simulating of turbulent fluid flows. The method 

was originated in the thirties of the twentieth century and has been applied successfully to 
fluid mechanics since then (Fig. 2). 

 

Fig. 2. Turbulent air flow over a cylinder with correctly developed vortex street 
as an example of DVM in action (Nowicki, 2012) 

DVM is a numerical method developed for solving the Navier-Stokes equation (N-S) 

based on the Lagrangian model of a particle tracing. In DVM, the equation is solved by  
a direct computer simulation of a physical phenomena. A finite mesh known from finite 

element or finite volume methods is not applied in DVM. Artificial models of turbulence 

such as LES or k-ε are also not used. The most valuable feature of the method is its self-

adaptability to geometry of computational task (Nowicki, 2015) and numeric stability.  

The biggest drawback of DVM is time consuming simulations come from the n-body 

problem. 
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Considering 2D euclidean areas of fluid flow and assuming a homogeneous dry air with 

a constant density, the following form of the N-S equation can be used to describe the 

phenomenon under interest: 

 
𝜕𝑢

𝜕𝑡
+ (𝑢𝛻)𝑢 = −

1

𝜌
𝛻𝑝 + 𝜈𝛻2𝑢       (1) 

where:  𝑢 – velocity field, 
(𝑢𝛻)– operator of the material derivative, 

𝑝 – pressure field, 

𝜌 – density of air, 

𝜈 – kinematic viscosity of air, 

𝑡 – time. 

 

Eq. (1) can be decomposed by calculating the rotation of the vector u, which gives the so-
called vorticity transport equation: 

 
𝜕𝜔

𝜕𝑡
+ (𝑢𝛻)𝜔 = 𝜈𝛻2𝜔       (2) 

where:  𝜔 = 𝛻 × 𝑢 – vorticity field of the flow (treated as scalar for 2D flows). 
 

The last eq. (2) is composed of two components: advection (3) and diffusion (4): 

 
𝜕𝜔

𝜕𝑡
+ (𝑢𝛻)𝜔 = 0           (3) 

 
𝜕𝜔

𝜕𝑡
= 𝜈𝛻2𝜔               (4) 

The separation (known as Split Algorithm) lets us treat the fluid flow as two simultaneous 
and independent phenomena: advection and diffusion, wherein only advection eq. (3) 

describes the vortex kinematics that leads to the n-body problem. 

In DVM the computational particle is a discrete vortex. The abstracted attribute of the 

particle is its vorticity traditionally denoted by the letter 𝛤. The vorticity equals the value of 
circulation of velocity field over a contour (with element dr) of an area from which the 

vorticity is reduced to a single point: 

 𝐶 = 𝛤 = ∮ 𝑢
𝐿

𝑑𝑟        (5) 

The mutual influence function Q from particle j on i is given by a formula: 

 𝑄𝑖𝑗 = 𝛤𝑗 ⋅ 𝐾 × 𝑑𝑖𝑗        (6) 

where:  𝑑𝑖𝑗 = 𝑃𝑗 − 𝑃𝑖- distance between vortexes as the metrics, 

𝐾 – kernel articulating inverse-square law. 
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Since the influence function in DVM describes velocity field, there is no need to introduce 

an extra velocity function and: 

 𝑢𝑖 = ∑ 𝑄𝑖𝑗𝑗=1,2,3,...,𝑛∧𝑖≠𝑗         (6) 

After the short glimpse of DVM given above it should be clear that the method incorporates 

the n-problem method. 

1.3. Literature review 

The results presented in this paper concern a numerical experiment carried out in 2007 

(Nowicki, 2007). The aim of that experiment was to determine the performance of a low-
cost computer cluster dedicated to DVM simulations. At the time, the method was in its early 

stage of development and such data was lacking. Today in 2021 the method can be still 

characterized as academic one because neither commercial nor open source software has 

been released yet. The interest of the method has not stopped as well, but its development is 
rather slow. In the period of 2007–2012 several hundred scientific papers on the subject have 

been published. About 300 can be found in the Scopus database, 100 in SpringerLink and 

200 in ScienceDirect. The majority of published works concerns engineering applications of 
DVM or improving its accuracy. The problem of accelerating calculations appears extremely 

rarely and relates to modification of DVM algorithms rather than parallelization of 

calculations. And so, for example, Ricciardi, Wolf & Bimbato, 2017 studied the combination 
of exponential and power series expansions implemented using a divide and conquer strategy 

to accelerate the calculation while two years earlier he proposed fast multipole method 

algorithm to accelerate the expensive interactions of the discrete vortices (Ricciardi et al., 

2015). The results of analysis on possibility of using fast matrix multiplication methods for 
the approximation of the velocity field when solving the system of differential equations 

describing the vorticity transport in an ideal incompressible fluid in Lagrangian coordinates 

can be found at Aparinov & Setukha (2009). Whereas Dynnikova (2009) explored the 
construction of a hierarchical structure of regions (tree) in order to accelerate the calculations. 

A different approach represents Huang, Su & Chen (2009), who introduced a concept of 

residual circulation in that sense that only a partial circulation of the vortex sheet is diffused 
into the flow field. The cited examples show that accelerating calculations with hardware 

methods has not been of interest to the researchers. Only Kuzima, Marchevsky & Moreva 

(2015) studied the speed-up in DVM calculations on multicore (using MPI and OpenMP) 

and graphic workstation (CUDA). She reported acceleration in calculations up to 40 times. 
On the other hand the interest in the classic n-body problem itself has not stopped. Despite 

the fact that today it is a well-recognized problem novel simulations are being preformed 

(e.g. Groen, Zwart, Ishiyama & Makino, 2011) and new software is being developed  
(e.g. Incardona, Leo, Zaluzhny, Ramaswamy & Sbalzarini, 2019). 

Taking into account the above information any practical study on usage of computer 

clusters in the DVM should be in the field of interest of so called theoretical engineers.  

It happens very often that small research groups (at universities or in start-ups) ask themselves 
if it is worth to invest their time in building a computer cluster and creating parallel solvers 

in order to speed up calculations. The aim of this paper is to facilitate the answer to such 

questions in the case of Discrete Vortex Method. In this respect, the presented results remain 
still valid. 
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2. THE COMPUTER EXPERIMENT 

The experiment was carried out in 2007 in a computer laboratory at Lublin University of 

Technology. The laboratory was equipped with 12 single-processor PCs connected with Fast 
Ethernet network. All the computers had the AMD Atlon XP 1600+ 1.6GHz processor and 

256MB RAM. The cluster was a symmetric one and was build according to Soan 2005.  

The Ubuntu Linux 6.10 was used as an operating system and the Mpich 2.0 as a communi-
cation layer. As a part of the experiment, three original DVM solvers were developed (see 

Suplement): vorsym_s, vorsym_q and vorsym-p. The program vorsym_s (vortex simulator 

slow) is a single-process and single-threaded program which implements the PP algorithm. 

The vorsym_q (quick) is also a single-process and single-threaded program but it implements 
the P3M algorithm. Whereas the vorsym_p (parallel) solver is a multi-process (but still 

single-threaded) solver implementing the P3M algorithm. The last program was run on the 

computer cluster using 4 or 9 nodes of it. (The number of nodes has been added in round 
brackets.) From the engineering point of view, the most important thing was to compare the 

execution time of calculations between vorsym_q along with vorsym_p(4) and vorsym_p(9). 

       Tab. 1. The set of data used to perform the simulations 

No. File Vortexes Size  No. File Vortexes Size 

1 9.vrt 9 14 MiB  18 30k.vrt 29 929 45 GiB 

2 25.vrt 25 38 MiB  19 40k.vrt 40 000 60 GiB 

3 36.vrt 36 55 MiB  20 50k.vrt 49 729 74 GiB 

4 49.vrt 49 75 MiB  21 60k.vrt 59 536 89 GiB 

5 81.vrt 81 124 MiB  22 70k.vrt 69 696 104 GiB 

6 100.vrt 100 153 MiB  23 80k.vrt 79 945 119 GiB 

7 200.vrt 196 299 MiB  24 90k.vrt 90 000 134 GiB 

8 300.vrt 289 441 MiB  25 100k.vrt 100 489 150 GiB 

9 400.vrt 400 610 MiB  26 200k.vrt 200 704 299 GiB 

10 500.vrt 484 739 MiB  27 300k.vrt 299 209 446 GiB 

11 600.vrt 576 879 MiB  28 400k.vrt 399 424 595 GiB 

12 700.vrt 676 1032 MiB  29 500k.vrt 499 849 745 GiB 

13 800.vrt 784 1196 MiB  30 600k.vrt 600 625 895 GiB 

14 900.vrt 900 1373 MiB  31 700k.vrt 700 569 1044 GiB 

15 1k.vrt 1024 1563 MiB  32 800k.vrt 801 025 1194 GiB 

16 10k.vrt 10 000 15 GiB  33 900k.vrt 900 601 1345 GiB 

17 20k.vrt 19 881 30 GiB  34 1M.vrt 1 000 000 1.5 TiB 

 
For the experiment 34 numerical samples were generated. They were files defining the 

initial conditions of the n-body DVM tasks. The samples differed in the number of vortex 

particles (Tab. 1). In each case the size of the computational space (domain) was of the same 

size of 100×100. Initially the vortexes were randomly and evenly distributed in the domain. 

The random Marsagil generator was used. The vortexes had also random strengths from  

–1.0 to 1.0. All the initial velocities were zero. All simulations were carried out with  
a constant step time equals to 0.01. The number of vortices in the domain was fixed. Vortices 

that crossed the domain boundary making their moves were returned to the domain from the 

opposite edge in such way that they continued their movement on the opposite side.  

The column Size gives the sizes of the output files for a 100 000 step simulation for each case. 
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3. RESULTS 

The main aim of the simulations was to test the efficiency of the developed computational 

system considered as the computer cluster and dedicated solver vorsym_p. The simulations 
were carried out for all prepared files (Tab. 1). Depending on the size of a task a single 

simulation took form 3 to 10 000 steps due to time constraints. In order to normalize the 

obtained results, the average execution time of a single step was calculated. Results has been 
presented in a table (Tab. 2) and in a diagram (Fig. 3). The specimen numbers from Tab. 1. 

agrees with numbers from Tab. 2. Simulations for the specimens number form 22 to 34 were 

not performed with vorsym_s due to too long calculating times. Additionally, for the for 

vorsym_q and vorsym_p simulators number of computing subdomains were given. The 
subdomains were formed by dividing the square main domain to, also square, areas. The 

sides of the main domain were divided as follow: 2×2, 3×3, 4×4, …, 19×19, which resulted 

in 4, 9, 16, …, 361 subdomains respectively. They determined the calculating mesh of the 

P3M algorithm. For the parallel vorsym_p solver firstly the main domain was divided into 

subdomains of distinct processes (4 or 9) then each process created its own subdomains 

according to the previously described rule. 
A typical engineering problem solved using DVM requires at least tens of thousands 

discrete vortexes and performing about 100 000 simulation steps. Approximate times of 

completing such tasks were estimated on the basis of results from Tab. 2 and presented in 
Tab. 3. The results were valid in 2007 (for hardware reasons) but still clearly show 

significant reduction of computational time when a computer cluster is used for DVM. 

Whereas relative speed-ups of calculations presented on a diagram in the Fig. 4 has not 
outdated at all. It was noticed that 4 node cluster speeded up simulation 8 times and 9 node 

cluster – 22 times! The results are dubious but absolutely correct. So why did cooperation 

of n nodes caused acceleration greater than n times? The answer is the large amount of data 

generated at each calculating step and written into files. In the case of n nodes there were n 
different files on different hard dives instead of one big file on a single drive, which 

shortened the execution time of each step. Each node wrote only its own data. It was the 

amount of output data along with the specificity of n–body problem what determined the 
time of simulations. It is also the reason why obtained results does not correspond with those 

found in Kuzmina et al. (2015) where for small number of calculating cores linear 

acceleration was observed. Simply, the simulation time did not include data recording to 
files at each step of the simulation. This can not be avoided in engineering practice, which 

makes low-budget cluster very effective while deployed in DVM calculations. Such 

observation is very important to an engineer who has a task to shorten the time of DVM 

simulations as much as possible. 
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 Tab. 2. Averaged time of performing a single simulation step for each file 

N
o
. 

 

vorsym_s vorsym_q vorsym_p (4) vorsym_p (9) 

T [s] Nsub T [s] Nsub T [s] Nsub T [s] 

1 0.00015 1 0.00029 1 0.00660 1 0.04860 

2 0.00042 4 0.00072 1 0.00660 1 0.08000 

3 0.00066 4 0.00091 1 0.00650 1 0.05000 

4 0.00108 4 0.00111 4 0.00800 1 0.04900 

5 0.00190 9 0.00146 4 0.00804 1 0.04800 

6 0.00276 9 0.00158 4 0.00800 1 0.04600 

7 0.01060 9 0.00280 4 0.01005 4 0.06670 

8 0.02260 9 0.00490 4 0.01001 4 0.08230 

9 0.04340 16 0.00803 9 0.01030 4 0.10076 

10 0.06400 16 0.01100 9 0.01502 4 0.08330 

11 0.09100 16 0.01403 9 0.01510 4 0.06000 

12 0.14500 16 0.01900 9 0.01511 4 0.10040 

13 0.16700 16 0.02201 9 0.01512 9 0.10108 

14 0.21800 25 0.02700 9 0.01540 9 0.10204 

15 0.30082 25 0.03012 9 0.01750 9 0.10160 

16 27.1 64 0.9 36 0.3 25 0.1 

17 106.3 100 2.7 49 0.8 36 0.5 

18 241.7 121 5.1 64 1.0 36 0.7 

19 432.0 144 7.8 64 1.3 49 1.0 

20 685.0 144 10.7 81 1.7 49 1.3 

21 952.0 169 14.3 81 2.0 64 1.3 

22 - 169 18.1 100 2.7 64 1.7 

23 - 196 21.7 100 3.0 64 2.0 

24 - 225 27.0 100 3.5 64 2.3 

25 - 225 30.7 121 4.3 81 2.7 

26 - 324 89 169 12 100 5 

27 - 400 159 196 23 121 9 

28 - 441 245 225 32 144 13 

29 - 484 341 256 44 169 17 

30 - 529 452 289 57 196 22 

31 - 576 547 289 73 196 27 

32 - 625 697 324 87 225 33 

33 - 625 829 324 104 225 38 

34 - 279 994 361 122 225 44 

 Tab. 3. Estimated time of completing a 100 000 step DVM simulation  

Solver 
Number of vortexes in the simulation 

20 000 50 000 100 000 

vorsym_s 4 months 2 years 9 years 

vorsym_q 3 days 12 days 36 days 

vorsym_p(4) 22 hours 2 days 5 days 

vorsym_p(9) 14 hours 1½ day 3 days 
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Obtained results may seem outdated nowadays due to the development in computer 

hardware since 2007. It is evident that in 2021 the simulations, if recreated would be 

completed in much shorter times even using the same computer code. It would be simply 

achieved by using faster CPUs and hard disc drives. That said, it is also evident that the new 
hardware nowadays could be used for bigger problems. In other words the discussion today 

would consider bigger task. Since the nature of the n-body problem has not changed it is still 

the writing of the output to hard discs which delays calculations significantly. What could 
improve the performance in this area is using multicore CPUs, which let delegate the writing 

tasks to a separate threads. It should be undoubtedly the first idea to be explored. Another 

way to overcome the problem of time-consuming n-body simulations could be using the 
GPUs technology that is much more affordable now, though this question is beyond the 

scope of this paper. 

 

Fig. 3. Averaged time of performing a calculation step against the size of a task  
for different calculation methods  

 

Fig. 4. Relative speedup of simulation (WRT abbr “with relation to”) 
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4. CONCLUSIONS 

In this paper results on the possibility of accelerating the Discrete Vortex Method 

computer simulations were presented. A low-budget computer cluster was build and a parallel 
solver was developed. Obtained acceleration of calculations exceeded the number of the 

cluster nodes due to division of the computing domain and separation of the output files.  

The paper deals with issues rarely described in the literature on the discrete vortex method. 

Supplement 

https://github.com/TomekNowicki/vorsym 
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