
73

Applied Computer Science, vol. 16, no. 1, pp. 73–84

doi:10.23743/acs-2020-06

Submitted: 2020-03-05

Revised: 2020-03-07

Accepted: 2020-03-13

recognition software, car number plate, design

Mohanad ABDULHAMID*, Njagi KINYUA**

SOFTWARE FOR RECOGNITION

OF CAR NUMBER PLATE

Abstract

The purpose of this paper is to design and implement an automatic number

plate recognition system. The system has still images as the input, and extracts
a string corresponding to the plate number, which is used to obtain the output

user data from a suitable database. The system extracts data from a license

plate and automatically reads it with no prior assumption of background

made. License plate extraction is based on plate features, such as texture,

and all characters segmented from the plate are passed individually to a char-

acter recognition stage for reading. The string output is then used to query

a relational database to obtain the desired user data. This particular paper

utilizes the intersection of a hat filtered image and a texture mask as the

means of locating the number plate within the image. The accuracy of location

of the number plate with an image set of 100 images is 68%.

1. INTRODUCTION

Automatic Number Plate Recognition (ANPR) is a mass surveillance method

that uses optical character recognition on images to read the license plate on vehicles
using existing closed circuit television cameras or road-rule enforcement cameras,

or ones specifically designed for the task-some systems commonly use infrared

lighting to allow the camera to take the picture at any time of day. They are used

for various tasks, including electronic toll collection on pay per use roads,
restricted car identification access control schemes such as for pay parking-lots

or for secured office compounds, monitoring traffic activity such as red light

adherence in an intersection and for direct marketing. ANPR technology tends to
be region specific, owing to plate variation from place to place. The first ANPR

was invented in 1976 at the Police Scientific Development Branch in the UK.

* Al-Hikma University, Karada Kharidge, Baghdad, Iraq, moh1hamid@yahoo.com
** University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya, researcher12018@yahoo.com

74

Prototype systems were working by 1979 and contracts were let to produce
industrial systems at the Computer Recognition Systems (CRS) in Wokingham,

UK. Early trial systems were deployed on the A1 road and at the Dartford Tunnel

(Badr & Abdelwahab, 2011; Sharma, 2018).

License Plate Recognition(LPR) has a wide range of applications, which use
the extracted plate number and optional images to create automated solutions for

various problems (Lin, Lin & Liu, 2018; Xie & Zhang, 2018), these include:

1. Parking – the plate number is used to automatically enter pre-paid members
and calculate parking fee for non-members by comparing the exit and entry

times.

2. Access control – a gate automatically opens for authorized members in a se-

cured area, thus replacing or assisting the security guard. The events are
logged on a database and could be used to search the history of events

3. Law enforcement – the plate number is used to produce a violation fine on

speed or red-light systems. The manual process of preparing a violation fine
is replaced by an automated process which reduces the overhead and

turnaround time. Using a list of stolen cars or unpaid fines, an Automatic

License Plate Recognition(ALPR) system deployed on the roadside, may
perform a real-time match between the passing cars and those on the list,

hence raise alerts for passing cars on the list.

4. Marketing tool – the car plates may be used to compile a list of frequent

visitors for marketing purposes, or to build traffic profiles, such as the fre-
quency of entry verses the hour or day.

5. Tolling – the car number is used to calculate the travel fee in a toll-road,

or used to double-check the ticket.

Such routine tasks, possibly handling large volumes of traffic, maybe more

efficiently done if automated than if done by humans. This would reduce associ-
ated costs of operation, increase processing speed and minimize errors that may

result due to fatigue or monotony if a human operator were involved (Silva

& Jung, 2018).

The automatic plate recognition system may be decomposed into three blocks:
an image processing stage, an optical character recognition stage and the database.

2. PROBLEM SOLUTION AND DESIGN

The automatic license plate recognition application is developed using the

license plate extraction, character segmentation and optical character recognition

modules. The automatic number license plate presented in this work is developed

in MATLAB 7.6. Implementation is grouped into image processing, optical
character recognition and database blocks.

75

2.1. Image processing block

This block receives input images of the vehicles and produces cropped images

which are passed to the optical character recognition block that succeeds it. The image

processing block is based on image pre-processing and segmentation steps. First,
the input color (RGB) images are converted into grayscale images. An RGB image,

sometimes referred to as a true-color image, is stored as an m-by-n-by-3 data array

that defines red, green, and blue color components for each individual pixel. The color
of each pixel is determined by the combination of the red, green, and blue intensi-

ties stored in each color plane at the pixel's location. A grayscale image is a data

matrix whose values represent intensities within some range.

This conversion allows ease of thresholding, which creates a binary image using
a certain threshold. Adaptive thresholding using the Otsu thresholding scheme;

which assigns pixels with grey-level above a threshold (chosen so as to minimize

the intra-class variance of the black and white pixels) in the grayscale scale image
are assigned binary value “1” in the binary image, while those below are assigned

binary value “0” are implemented using the inbuilt graythresh function.

Next, morphological operations opening and closing are used. The morphological
closing operation is carried out using a rectangular structuring element of a size

much greater than the inter-character spacing of the license plate characters,

resulting in blurring of the plate characters in the license plate. Subtracting the result-

ant image from the original thresholded image, which constitutes top-hat filtering,
removes large parts of constant intensity background, leaving plate characters and

other fine details in the image intact. A morphological opening operation with

a structuring element, of width less than the inter- character spacing, is then used
to remove the unimportant fine details without affecting the characters themselves.

 An image mask which isolates the regions with the largest difference in pixel

intensities in a given neighborhood is then developed using a range filter. The function
rangefilt is used to obtain an output array of same size as the input image, where

each output pixel contains the range value, as the difference between maximum

and minimum pixel intensity values in the 3-by-3 neighborhood around the corre-

sponding pixel of the input image. The range filtered image is then binarized using
an experimentally determined threshold of 0.4, which preserved as much license

plate detail as possible, without including too many noise objects. A morphological

closing operation is then done on the binary image with a 9-pixel, square structur-
ing element to remove thin objects in image due to local transitions at the edges

of the input image. Larger structuring elements merge objects, yielding large area

masks that left many noise objects when overlaid with the top-hat filtered image,

whereas smaller structuring elements yield fragmented characters. An area opening
is then used to remove from the binary image all connected objects that had fewer

than 300 pixels, the figure being determined by trial and error, to produce the binary

masking image.

76

The image created by over-laying the top-hat filtered image with the mask by
carrying out the logical AND of the two images is then labeled using the bwlabel

function. The bwlabel function is used to search for connected components and

labels them with unique numbers; it takes a binary input image and a value

specifying the connectivity of objects. The function returns a matrix L of the same
size as the input image, containing labels for the connected objects in that input

image, and the number of connected objects found in the input image. The ele-

ments of L are integer values greater than or equal to 0.
The regionprops function is then used to measure object or region properties

in an image and returns them in a structure array. When applied to an image with

labeled components, it creates one structure element for each component; with the

structure array having area, centroid and bounding box fields. The area field is
scalar representing the actual number of pixels in the region. The bounding box

field is a vector representing the smallest rectangle containing the region defined

by co-ordinates of the upper left corner of the bounding box and the width of the
bounding box along each dimension, in length and height. The centroid field is

a vector that specifies the center of mass of the region; the first element of centroid

is the horizontal coordinate (or x-coordinate) of the center of mass, and the second
element is the vertical coordinate (or y-coordinate).

The centroid field of the regionprops function is used to determine the vertical

coordinate of all labeled objects obtained from the logical AND of the top-hat

filtered image and the texture map. Since few objects are members of either set,
resultant intersection of both sets is composed largely of license plate characters.

The y-coordinate values corresponding to the objects are observed to be randomly

distributed over the image height, but objects corresponding to license plate
characters had approximately the same centroid value. This variation in the

centroid value is exhibited in the ones digit of the value; hence a rounding-off of

the centroid values to the nearest ten-arrived at by trial and error eliminates this
variation. The mode of the rounded vertical coordinates of objects in this

intersection is thus the average height of the license plate characters on the image.

Selecting all objects intersecting with a horizontal line, running across the image

at this modal height yields the license plate characters. In very few cases, noise
objects are included. The area field of the regionprops function is used to remove

all noise objects with an area of less than 100 pixels, determined as the minimum

area of license plate character-corresponding to the numeral 1.
Further filtering of noise objects requires the orientation of the major axis of

the ellipse that has the same variance as the region of each object lie between 45

to 90 degrees from the horizontal axis. This allows removal of horizontally aligned

noise objects resulting from dilation of fragmented license plate edges due to the
closing operation. The Euler number of each object is also used to remove noise

objects. The Euler number is a measure of the topology of an image. It is defined

as the total number of objects in the image minus the number of holes in those
objects. Character (B) has Euler number of -1, indicating that the number of holes

77

is greater than the number of objects; characters such as (A, O, P, D, Q) have an
Euler number of zero, whereas all other simple characters have an Euler number

of 1. Due to nails in the license plate, noise is introduced to character objects due

to the connectivity used in labeling. An object having an Euler number of 1 in

isolation would show an Euler number of two if such a nail object is introduced in
its bounding box due to connectivity. As a result, all objects with an Euler number

greater than 2 or less than -1 are considered to be noise objects and are removed.

The remaining objects are subsequently considered to be characters and are passed
to the optical character recognition block.

The bounding box field of the regionprops function is then used to obtain the

smallest rectangles containing each object in the resultant image. These rectangles

are then passed to the imcrop function which crops the required labeled objects
corresponding to the license plate characters in the image, based on the rectangles’

top-left coordinates, their widths, and heights respectively. It is these objects that

are passed to the optical character recognition block. The quality of segmentation
is strongly related to the choice of the structuring element’s size on the plate

enhancement phase, choice of the threshold used for image binarization, the relative

angle between camera and plate and the quality of the image.

2.2. Optical character recognition block

2.2.1. Neural network classifier approach

A back-propagation neural network classifier is first adopted and is trained on

thirty four vectors; corresponding to all possible characters; each having 150
elements; corresponding to image objects of resolution 15×10. Each target vector

is a 34-element vector with a 1 in the position of the letter it represents, and 0’s

everywhere else. For example, the letter A is to be represented by a 1 in the first
element (as A is the first letter of the alphabet), and 0’s in elements two through

thirty four. The network receives the 150 Boolean values as a 150-element input

vector. It is then required to identify the letter by responding with a 34-element

output vector. The 34 elements of the output vector each represent a letter.
To operate correctly, the network would respond with a 1 in the position of the

letter being presented to the network. All other values in the output vector would

be 0. The neural network thus has 150 inputs and 34 neurons in its output layer
to identify the letters. The network is a two-layer log-sigmoid network, with 10

neurons in the hidden layer. Training is done for 5000 iterations, for gradient

descent with momentum. Gradient descent with momentum, implemented by the

traingdm function, allows a network to respond not only to the local gradient, but
also to recent trends in the error surface. Momentum allows the network to ignore

small features in the error surface, hence slide through shallow local minima.

Without momentum a network can get stuck in such a minimum.

78

While the neural network classifier is usually preferred owing to its higher
cognitive rate and its ability to give reasonable results when presented with new

object which it has not been trained on, several shortcomings result in adoption of

the template matching approach. With character recognition for license plate

applications, the neural network classifier requires frequent retraining, preferably
for each car image due to the large input vector size, having 150 binary elements

for each character.

Accuracy improves as the number of neurons in the hidden layer and as size of
input training vector increases. Increasing number of neurons in the hidden layer

results in a speed penalty while increasing size of the input training vector

is limited by memory constraints. Training requires either 5000 iterations or a steady-

state error of less than 0.1, which make it slower than the template matching
approach. In this case, the neural network classifier has a poor cognitive rate and

misclassified well segmented and obvious characters.

2.2.2. The template matching approach

The template matching approach is then implemented. The templates used have
a resolution of 42×24, hence rescaling the license plate objects prior to template

matching is necessary. Character recognition is based on calculating the correla-

tion metric, implemented using the corr2 function, which computes the correlation

coefficient between two matrices of the same size. All images from extracted
objects and the template set are thus represented as 42×24 intensity matrices.

The template images corresponding to the 34 possible characters A to Z and 0 to

9 are saved, and template matching is implemented by using the correlation
between each extracted object from the image against all the images in the

template. This removes the presumption that all license plates begin with letters

(which would affect recognition of diplomatic license plates) or that license plate
begins with letter K (which would affect recognition of foreign license plates).

The correlation coefficients for each extracted object with the template set is

ordered into a 34 element array, and the index of the element having the highest

correlation coefficient used to identify the corresponding similarly indexed
character. The characters corresponding to each extracted object are then concat-

enated to form a string, which is the detected vehicle registration number.

2.3. Database implementation

For a car identification access system, a database is needed. Since the basic

segmentation and character recognition modules have been implemented, the
output string from these modules is to be used to query a test database and extract

hypothetical user data. While the original idea is to use a MYSQL database and

use a PHP script to query the database, this is found to be unnecessary. MATLAB
supports database queries from most databases since it implements Java Database

79

Connector (JDBC), and supports JDBC to Object Database Connector(ODBC)
inter-conversion. This database support is implemented by the MATLAB database

toolbox which requires that a data source should be set up first. The data source

consists of data that the toolbox accesses and information required to find the data,

such as driver, directory, server, or network names. Data sources interact with
ODBC drivers or JDBC drivers. An ODBC driver is a standard windows interface

that enables communication between database management systems and SQL-

based applications. A JDBC driver is a standard interface that enables communication
between applications based on Java and database management systems. The database

toolbox software is based on Java. It uses a JDBC/ODBC bridge to connect to the

ODBC driver of a database, which is automatically installed as part of the MATLAB

Java Virtual Machine (JVM).
Thus a Microsoft access data source is set up, and a test database is created,

having three fields; the car registration number, the car’s color and its making or

model; with the registration number field as the primary key. A MATLAB script
is then used to connect to this database using the JDBC/ODBC driver bridge to

obtain a connection object which is then used to pass SQL queries to the test

database. In order to access the database, first a connection to the database is
created using the database function. This function takes data source, username and

password as arguments. The data source is the name of the data source in the ODBC

for Windows. This has to be configured before running MATLAB. The username

of the user has on the database to be accessed. The password is given with the
defined username to access the database. These arguments are passed to the database

function as strings.

Once the connection is established, queries to the database are performed using
the fetch function. This function takes a connection pointer and an SQL query

string as arguments. The connection pointer is the connection created with the

database function. The SQL query string contains the desired SQL query. The queries
used are based on the license number string, passed from the character recognition

block. User data corresponding to the predefined fields is thus retrieved.

The database queries however fails if fewer than 4 characters have been misi-

dentified due to deletion of the characters in the image processing block, or due
to merging of characters. When used for giving specific vehicles access to a barrier

area the decision to have an error rate of two characters is in the author’s opinion,

viewed as acceptable. This is because the likelihood of an unauthorized car having
such a similar license plate with all detected characters in their right order is seen

as quite small.

80

3. RESULTS

A set of 108 images, with a resolution of 640×480 pixels is obtained with the

camera position set at a distance of between 0.5 and 2 meters from the vehicle. Of the

108 images, 100 images are used to test the developed software, and 68 cases are
satisfactorily recognized.

The successful extraction of license plate characters is limited if image has

large local variances in pixel ranges in regions other than the license plate, vehicle
has bent or warped license plates, characters on the license plate are faded, or had

very poor contrast relative to bright regions in the image, or if the vehicle in the

image is too close to the camera. Faded plates and texture conflicts present the

most difficult test cases. Of the 108 images, 7 images have faded plates, 4 images
are obtained with vehicle too close to the camera, 3 images had significantly

warped plates. Errors in recognition are largely caused by misclassification of the

characters by the template matching algorithm. Efforts to improve its cognitive
rate, by use of character standard deviations or Euler numbers to verify the

recognized characters, are hindered by an intolerable increase in processing time.

The recognition performances for simple visible plates is higher, at about 78%,
i.e. 62 correct identifications in a sample of 80 images. Contention caused by

misclassified digits is resolved by listing all probable license plates from the

database.

Fig. 1 shows input image (left) and the resulting extracted license plate characters.
The horizontal noise objects violate orientation requirements, and are thus not

considered.

Fig. 1. Input image and the resulting extracted plate characters

Fig. 2 shows input image having large texture regions in areas other than the
license plate, due to shadows on car windshield. In this case, extraction of license

plate characters is satisfactory.

81

Fig. 2. Input image having large texture regions

Fig. 3 represents the limiting case, showing car on coarse stone background.

In this case the texture mask is overwhelmed by the numerous and large changes

in local pixel intensities.

Fig. 3. Car on coarse stone background

Fig. 4 shows images for same vehicle in subsequent frames. While, noise objects

imped proper extraction of license plate characters from the first frame, successful

extraction from the subsequent frame is possible as shown in Fig. 5.
Fig. 6 shows image with warped plates occluding license plate characters.

In this case, an insufficient number of characters (A and 1) are extracted to

uniquely identify the vehicle.

82

Fig. 4. Images show same vehicle in subsequent frames

Fig. 5. Extraction of plate characters from subsequent frame

Fig. 6. Image with warped plates occluding plate characters

Fig. 7 shows images of vehicles with faded plates. The extracted license plate
characters are too fragmented to be useful as shown in Fig. 8.

83

Fig. 7. Images of vehicles with faded plates

Fig. 8. Extracted license plate characters are too fragmented

Fig. 9 shows input image (left) is too close to the camera. The fixed size of the
structuring element used in the top hat filter results in fragmented characters.

Fig. 9. Input image is too close to the camera

84

4. CONCLUSION

The car number plate recognition software, comprising of the license plate

extraction, character segmentation and optical character recognition modules was

designed and implemented. A suitable database with hypothetical user data was
also incorporated to complement the system. The ANPR achieved an overall success

rate of 68% when tested on 100 of the 108 images, with recognition performances

for simple visible plates close to 80%. Results may be improved by refining the
recognition stage and testing other classifiers. Different character templates could

be used for such refinement of the recognition stage. Future work is intended to

be done in improving and testing the system on a larger number of images.

REFERENCES

Badr, A., & Abdelwahab, M. (2011). Automatic number plate recognition system. Annals of the
University of Craiova, Mathematics and Computer Science Series, 38(1), 62–71.

Lin, Ch.-H., Lin, Y.-S., & Liu, W.-Ch. (2018). An efficient license plate recognition system using
convolution neural networks. In 2018 IEEE International Conference on Applied System
Invention (pp. 224–227). Japan: IEEE.

Sharma, G. (2018). Performance Analysis of Vehicle Number Plate Recognition System Using
Template Matching Techniques. Journal of Information Technology & Software Engineering,
8(2), 1–9.

Silva, S. & Jung, C. (2018). License plate detection and recognition in unconstrained scenarios.
In V. Ferrari, M. Hebert, C. Sminchisescu & Y. Weiss (Eds.), European Conference on Computer
Vision (pp. 593–609). Springer, Cham.

Xie, F., & Zhang, M. (2018). A robust license plate detection and character recognition algorithm
based on a combined feature extraction model and BPNN. Journal of Advanced Transportation,
2018, 1–14.

