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Abstract  

The type1 of diabetes is a chronic situation characterized by abnormally 

high glucose levels in the blood. Persons with diabetes characterized by 

no insulin secretion in the pancreas (ß-cell) which also known as insulin-

dependent diabetic Mellitus (IDDM). In order to keep the levels of glucose 

in blood near the normal ranges (70–110mg/dl), the diabetic patients 

needed to inject by external insulin from time to time. In this paper,  

a Modified Second Order Sliding Mode Controller (MSOSMC) has been 

developed to control the concentration of blood glucose levels under a dis-

turbing meal. The parameters of the suggested design controller are 

optimized by using chaotic particle swarm optimization (CPSO) technique, 

the model which is used to represent the artificial pancreas is a minimal 

model for Bergman. The simulation was performed on a MATLAB/SIMULINK 

to verify the performance of the suggested controller. The results showed the 

effectiveness of the proposed MSOSMC in controlling the behavior of glu-

cose deviation to a sudden rise in blood glucose. 
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1.  INFORMATION  

 

Diabetes mellitus is one of the most important chronic diseases which results 

from a high blood sugar for a long time due to insufficient insulin generation in 

the blood (Bergman, Phillips & Cobelli, 1981). The concentration of glucose in the 

bloodstream is naturally regulated by two hormones: insulin and glucagon. Both of 

these hormones are secreted by β-cells and α cells in the Langerhans islands of the 

pancreas, respectively. The concentration of glucose ranges from 70 to 110 (mg/dL). 

Accordingly, there are two states, hyperglycemia (glucose concentration is above the 

normal ranges) and hypoglycemia (low glucose concentration than the normal 

ranges) (Basher, 2017).  

Diabetes is broken down into two major types. The type 1 diabetes mellitus 

(T1DM) and Type 2 diabetes mellitus (T2DM) in the first type the patient's body 

can’t produce enough insulin and doses of insulin need to be injected into the 

human body to control blood glucose levels, while the second type starts with 

insulin resistance, a condition in which cells do not respond properly to insulin. 

This type of diabetes is a common type and known as noninsulin-dependent 

diabetes (Sylvester & Munie, 2017).  

In order to prevent the effects of high blood glucose levels the best approach  

is to administer insulin during a moment when blood glucose is supposed to rise. 

With the Advance of technology, the so-called artificial pancreas emerged its 

consists of three main components, glucose sensor, insulin pump and control 

techniques to generate the necessary insulin dose based on glucose measurements 

(Kaveh & Shtessel, 2006). The block diagram of the closed – loop system for 

glucose level control shown in Figure 1. 

 

 
Fig. 1. Block diagram of closed-loop insulin delivery system 

 

There are several studies that use a closed-loop controller to keep blood glucose 

(BG) diabetic concentration within the appropriate range, such as: (Kaveh and 
Shtessel, 2006) used higher order sliding mode controller (HOSMC) to regulate 

the levels of blood glucose. (Garcia-Gabin, et al., 2009) suggested a sliding mode 

predictive control (SMPC) which is the combining sliding mode control technology 
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with model predictive control (MPC). In a (Abu-Rmileh & Garcia-Gabin, 2011) 

used a combination of the robust sliding mode control (SMC) and the Smith predic-

tor (SP) structures. Nasrin et al. suggest a Sliding Mode Control (SMC) based on 

Backstepping technique (Parsa, Vali & Ghasemi, 2014). Waqar et al. suggest  

a non-linear super twisting control algorithm based on SMC approach has been 

addressed for regulation of glucose concentration in blood plasma of type 1 diabetes 

patients (Alam, et al., 2018).  

In this paper, the MSOSMC is suggested to regulate the levels of blood glu-

cose, the CPSO algorithm was used for tuning the parameters of the controller. 

To accomplish these objectives Bergman Minimal (BEM) mathematical model 

which considered here. The outliner of this paper as follows: The BEM math-

ematical model of blood glucose system presented in section 2. The details of 

the SOSMC described in section 3, while the design of the MSOSMC explained 

in section 4. And the CPSO algorithm illustrated in section 5. The proposed 

controller's analysis and simulation results will be discussed in section 6, while 

the final conclusions listed in the last section. 
 

 

2.  BERGMAN GLUCOSE-INSULIN REGULATION MODEL  

Specific mathematical models have been suggested to explain the complexi-

ties of diabetes and to compare the interaction between models of glucose and 

the delivery of insulin that helps design a diabetes model. Among these models, 

the minimal Bergman model, a common reference model in the literature, 

approaches the dynamic response of blood glucose concentration in a diabetic to 

insulin injections. Bergman model consists of three differential equations as 

follows (Sylvester, 2017), (Abu-Rmileh & Garcia-Gabin, 2011): 

�̇�(𝑡) = −𝑝1(𝐺(𝑡) − 𝐺𝑏) − 𝑋(𝑡)𝐺(𝑡) + 𝐷(𝑡) 

�̇�(𝑡) = −𝑝2𝑋(𝑡) + 𝑝3(𝐼(𝑡) − 𝐼𝑏)        (1) 

𝐼(̇𝑡) = −𝑛(𝐼(𝑡) + 𝐼𝑏) + 𝛾[𝐺(𝑡) − ℎ]+𝑡 + 𝑢(𝑡) 

where: 𝐺(𝑡) is the plasma glucose concentration in [mg/dL], 𝑋(𝑡) proportional 

to the insulin concentration in the remote compartment [1/min], 𝐼(𝑡) is the plasma 

insulin concentration in [mU/dL], and 𝑢(𝑡) is injected insulin rate in [mU/min], 

(𝑝1, 𝑝2, 𝑝3, 𝑛, ℎ, 𝛾) are parameters of the model. The term, 𝛾[𝐺(𝑡) − ℎ]+ in the 

third equation of this model, serves as an internal regulatory function that formu-

lates insulin secretion in the body, which does not exist in diabetics, the 𝑢(𝑡) 

represent the rate of exogenous insulin. The value of 𝑝1 will be significantly 

reduced; therefore it can be approximated as zero (Parsa, Vali & Ghasemi, 

2014). Which 𝐷(𝑡) is disturbance signal (meal disturbance) can be modeled by  

a decaying exponential function of the following form (Fisher, 1991): 

𝐷(𝑡) = 𝐴𝑒𝑥𝑝(−𝐵(𝑡 − 𝑡𝑚𝑒𝑎𝑙))        (2) 
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where: 𝐵 represents the absorption rate of the meal, 𝐴 is meal size and 𝑡𝑚𝑒𝑎𝑙 

represents the beginning time of meal digestion. 

 

3.   SLIDING MODE CONTROLLER DESIGN 

SMC is a robust and simple procedure for synthesizing controllers for linear 

and nonlinear processes based on the Variable Structure Control (VSC) 

principles.  

  The discrete control has high switching frequency, which causes a "chattering-

phenomenon", it considered undesired property that appear in SMC's control 

action (Djouima, et al., 2018). There are different methods that have been used  

to overcome the chattering phenomena such as replacing the sign(s) by boundary 

function like sat(s), using terminal SMC, integral SMC, and other different methods. 

One of the most efficient methods to overcome this problem by using Second 

Order Sliding Mode Control. There are different SOSMC algorithms, such as 

Sub-Optimal (SO), Twisting (TW) and Super-Twisting (ST) algorithm. ST-SMC 

does not require the information of ṡ in its formulation and application which is 

simpler and preferable (Matraji, Al-Durra & Errouissi, 2018).  

The ST-SMC utilized similar design steps as standard SMC. The same 

sliding surface as in Eq. (3) is applied and the control laws are stated in Eq. (8). 

The sliding surface can be introduced as:  

𝑠(𝑡) = 𝛾𝑒(𝑡) − �̇�(𝑡)          (3) 

where 𝑒(𝑡) and �̇�(𝑡) is error and derivative of the error respectively, 𝑒(𝑡) is given 

by: 

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)            (4) 

where 𝑟(𝑡)  is the reference input (Basal Value) and 𝑦(𝑡) is the output signal 

(measured glucose).                                     

The constant 𝛾 is chosen to be positive. The choice of 𝛾 decides the conver-

gence rate of the tracking error. 

The ST algorithm is defined by the following control law (Matraji, Al-Durra  

& Errouissi, 2018; Levant, 2013): 

𝑢 = 𝑢1 + 𝑢2,            (5) 

 𝑢1 = −𝑎1𝑠𝑖𝑔𝑛(𝑠)           (6) 

𝑢2 = −𝑎2|𝑠|0.5sign(s),             (7) 

where 𝑎1 and 𝑎2 are positive bounded constants. The control law of the super 

twisting SOSMC is given by: 

𝑢(𝑡) = −𝑎1𝑠𝑖𝑔𝑛(𝑠(𝑡)) − 𝑎2|𝑠(𝑡)|0.5sign(s(t))         (8) 
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4.   MODIFIED SLIDING MODE CONTROLLER DESIGN 

In this paper, a Modified SOSMC based on super twisting is suggested as 

shown in fig. 2, which considered as improvement to the SOSMC, the control 

law of the super twisting SOSMC (Eq. (8)) is modified to:  

𝑢(𝑡) = −𝑎1𝑠𝑖𝑔𝑛(𝑠(𝑡)) − 𝑎2|𝑠(𝑡)|0.5sign(s(t)) + 𝑢𝑛(𝑠(𝑡))      (9) 

where 𝑢𝑛(𝑒(𝑡)) is nonlinear auxiliary part given by:  

 𝑢𝑛(𝑒(𝑡)) =
𝐿1(1−exp (𝐿2𝑒(𝑡)))

(1+exp (𝐿2𝑒(𝑡)))
        (10) 

where 𝐿1, 𝐿2 are small positive numbers that will be tuning by (PSO and CPSO) 

algorithms. 

 

Fig. 2. Modified SOSMC block diagram 

 

 

5. CHAOTIC PARTICLE SWARM OPTIMIZATION  

The Particle Swarm Optimization algorithms (PSO) is the common evolutionary 

techniques. Which is adopt a random sequence for their parameter. The PSO algo-

rithm is initialized with a population of candidate solutions which is called  

a particle. N particles are moving around in a D-dimensional search space of the 

problem (Amet, Ghanes & Barbot, 2012).  

The position of the 𝑖𝑡ℎ particle at the 𝑖𝑡ℎ iteration is represented by 𝑥𝑖(𝑡) = 

= (𝑥𝑖1, 𝑥𝑖2
, … , 𝑥𝑖𝐷). The velocity for the 𝑖𝑡ℎ particle can be written as 𝑣𝑖(𝑡) = 

= (𝑣𝑖1, 𝑣𝑖2
, . . . , 𝑣𝑖𝐷). The best position that has so far been visited by the 𝑖𝑡ℎ 

particle is represented as 𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2
, . . . , 𝑝𝑖𝐷) which is also called pbest.  

The global best position attained by the whole swarm is called the global best 

(gbest) and represented as 𝑝𝑔(𝑡) = ( 𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝐷). The velocity vector at the 

𝑖𝑡ℎ iteration is represented as 𝑣𝑖(𝑡) = ( 𝑣𝑔1, 𝑣𝑔2, . . . , 𝑣𝑔𝐷). At the next iteration, 

the velocity and position of the particle are calculated according to (11, 12): 
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 𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(pbest𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(gbest𝑖(𝑡) − 𝑥𝑖(𝑡)) (11) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)         (12) 

where 𝑐1, 𝑐2 are called acceleration coefficients. 𝑤 is called inertia weight, and 

𝑟1, 𝑟2 are random value in the range [0, 1]. The parameters 𝑤, 𝑟1 and 𝑟2 is the 

key factors that effected the convergence behavior (Wang, Tan & Liu, 2018).  

In the Chaotic Particle Swarm Optimization algorithms (CPSO) the parameters 

𝑐1 and 𝑐2 are modified by using logistic map based on the following equation: 

𝑀(𝑡 + 1) = 𝜇 × 𝑀(𝑡) × (1 − 𝑀(𝑡))   0 ≤ 𝑀(𝑡) ≤ 1     (13) 

where 𝜇 is s a control parameter with a real number from [0 𝑡𝑜 4] and 0 ≤ 𝑀(𝑡) ≤ 1. 

Then introduce a new velocity update as in equations (14). 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑀(𝑡) × 𝑟1(pbest𝑖(𝑡) − 𝑥𝑖(𝑡)) + (1 − 𝑀(𝑡)) ×  (14) 

× 𝑟2(gbest𝑖(𝑡) − 𝑥𝑖(𝑡)) 

Important advantages of the chaotic optimization algorithm (COA) are sum-

marized as: easy implementation, short execution time and speed-up of the search. 

Observations, however, reveal that the COA also has some problems including:  

(i) COA is effective only for small decision spaces; (ii) COA easily converges in 

the early stages of the search process. Therefore, hybrid methods have attracted 

attention by the researchers (Hadi, 2019) The flowchart that represented this 

algorithm illustrated below. 
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         Fig. 3. General flowchart of the CPSO algorithm 

 

 

6. SIMULATION RESULTS  

The results of simulations for BEM model addressed in Eq. (1), parameters of 

BEM model are available on table (1), and the suggested controller based on the 

CPSO algorithm are offered in this section for a BG levels of 70 mg/dl. The BEM 

model response without controller is showen in figure (4). In this paper, the sim-

ulations are carried out dynamically for three patients with the initial conditions 

220, 200 and 180mg/dl for patients 1, 2 and 3, respectively. In the simulation, 

the meal glucose disturbance that given in Eq. (2) the value of its parameters are 

𝐴 = 0.5, b = 0.05, and 𝑡𝑚𝑒𝑎𝑙 = 400 min.  
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   Fig. 4. Glucose output of three patients with disturbance 

      (open-loop glucose regulatory system) 

 

You can note that the glucose value of the normal person is stabilized at the 

basal level in the presence of the disturbance (meal), while the patient's glucose 

level remains dangerous outside the range. The simulation second part is the pro-

posed controller is applied to the system and the response of a patients in the 

presence of the disturbance is tested. To examine the robustness of the control 

algorithm to the parameter change, three sets of parameters for three different 

patients have been used. The parameters of CPSO algorithm are considered here 

as in Table 2.  

 
Tab. 1. Bergman Minimal Model Parameters (Garcia-Gabin, et al.,   

2009; Abu-Rmileh & Garcia-Gabin, 2011). 

Parameter Normal Patient1 Patient2 Patient3 

𝑝1 0.0317 0 0 0 

𝑝2 0.0123 0.02 0.0072 0.0142 

𝑝3 4.92 5.3× 10−6 2.16× 10−6 9.94× 10−5 

n 0.2659 0.3 0.2465 0.2814 

𝛾 0.0039 – – – 

h 79.0353 – – – 

𝐺𝑏 70 70 70 70 

𝐼𝑏  7 7 7 7 
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  Tab. 2. The parameters of CPSO algorithm 

CPSO Parameters Acronym Value 

Maximum number of iterations 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 80 

Number of particles 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 20 

Acceleration constant 𝑐1& 𝑐2 1.5 

Inertia weight factor 𝑤 0.9 

Random values 𝑟1& 𝑟2 0-1 

Control parameter 𝜇 4 

Chaotic initial value 𝑀(1) 0.3 

 

Table 3 illustrate the optimal parameters for SOSMC and MSOSMC controllers 

gotten from the CPSO algorithm. 
 

        Tab. 3. Optimal controller parameters 

Controller Parameter Value 

 

SOSMC 
𝛾 0.15 

𝑎1 9.25 

𝑎2 0.00013 

MSOSMC 
𝐿1 0.037 

𝐿2 1.5 

 

Figures (5 to 10) shows the response of BEM model for three patients after 

applying the suggested controllers to regulated the BG level according to Table 3 

parameters. 

It can be noticed from simulation results (Figures (5 to 10) and Tables (4 to 6)) 

of the suggested controllers that the glucose output with these controllers tracks 

the desired BG level with small settling time (𝑡𝑠), study state error (𝑒𝑠.𝑠), and the 

Mean Absolute Percentage Error (𝑀𝐴𝑃𝐸) between the glucose value under the 

control system and that under the normal model according to the following 

formula:   

  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐵𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝐵𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐵𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑
|𝑛

𝑡=0                    (15) 

 

where 𝑛 is the duration of simulation, 𝐵𝐺𝑑𝑒𝑠𝑖𝑟𝑒𝑑  is the glucose value returned by 

the reference model, and 𝐵𝐺𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 represents the actual output of the system 

under the controller. 
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Fig. 5. Blood glucose concentration for patient 1 based on the suggested controllers  

and CPSO algorithm 
 

 

 

Fig. 6. Insulin infusion rate for patient1 based on the suggested controllers and CPSO 

algorithm 
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Fig. 7. Blood glucose concentration for patient 2 based on the suggested controllers  

and CPSO algorithm 

 

 

 

Fig. 8. Insulin infusion rate for patient2 based on the suggested controllers  

and CPSO algorithm 
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Fig. 9. Blood glucose concentration for patient 3 based on the suggested controllers  

and CPSO algorithm 

 

 

 

Fig. 10. Insulin infusion rate for patient3 based on the suggested controllers  

and CPSO algorithm 
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Tab. 4. The simulation result’s evaluation parameters for patient 1 

The controller used 𝒕𝒔 (𝐦𝐢𝐧. ) 𝑴𝑨𝑷𝑬 𝒆𝒔.𝒔. 

SOSMC 508.94 0.0565 0.0031 

MSOSMC 508.42 0.0564 0.0002 

 

Tab. 5. The simulation result’s evaluation parameters for patient 2 

The controller used 𝒕𝒔 (𝐦𝐢𝐧. ) 𝑴𝑨𝑷𝑬 𝒆𝒔.𝒔. 

SOSMC 496.14 0.0386 0.0005 

MSOSMC 495.16 0.0387 0.0004 

 
Tab. 6. The simulation result’s evaluation parameters for patient 3 

The controller used 𝒕𝒔 (𝐦𝐢𝐧. ) 𝑴𝑨𝑷𝑬 𝒆𝒔.𝒔. 

SOSMC 476.25 0.0295 0.0008 

MSOSMC 475.34 0.0293 0.0007 

 
The comparison between controllers is shown in Tables (4 to 6). This tables 

illustrates the performance of controllers. The MSOSMC has the best average 

performance which satisfies the design requirement.  
 

 

7. CONCLUSIONS 

 

In this paper, a simple modified second order sliding mode controller has been 

suggested based on ST algorithm and CPSO algorithm. The performance analysis 

of the suggested control strategy concerning plasma glucose-insulin stabilization 

is comprehensively demonstrated by computer simulations. To validate the ro-

bustness of the suggested controller, the diabetic patient is exposed to external 

disturbance, that is, a meal. The closed-loop system has been simulated for different 

patients with different parameters, in the presence of the food intake disturbance 

and it has been shown that the glucose level is stabilized at its basal value (reference 

input) in a reasonable amount of time. The effectiveness of the suggested controller 

compared with the classical SOSMC are verified by simulation results for three 

patients. 
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