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Abstract  
The identity of a language being spoken has been tackled over the years via 

statistical models on audio samples. A drawback of these approaches is the 

unavailability of phonetically transcribed data for all languages. This work 

proposes an approach based on image classification that utilized image 

representations of audio samples. Our model used Neural Networks and deep 

learning algorithms to analyse and classify three languages. The input to our 

network is a Spectrogram that was processed through the networks to extract 

local visual and temporal features for language prediction. From the model, 

we achieved 95.56 % accuracy on the test samples from the 3 languages. 

 

 

1. INTRODUCTION 

 

Speech is an important means of human communication. Recently, speech 

serves a means of interaction between machines and humans as seen in voice 

control and commands, map navigation/guide, robotics, intelligent assistants like 

“Siri”, “Alexa”,”Bixby” e.t.c. Thoughts and ideas are exchanged through speech 

and statistics shows that there exist over 7,111 unique languages of the world 

(Eberhard, Simons & Fennig, 2020).  

There are several attributes contained in speech utterance which can be extracted 

via machines, and over the years, efforts have been made by researchers to create 

methods for extracting the fundamental information which a speech utterance 

conveys. This led to the development of various extraction modules such as 

‘Speech to Text’, Speaker Recognition, Topic Identification, Spoken Language 

Recognition and many ways to understand the semantic meaning which speech 

utterance coveys via machines. (Li, Ma & Lee, 2013). 
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Spoken Language Recognition (SLR), also known as Automatic Language 

Identification, is the process by which the identity of a language in a given speech 

sample is detected. Spoken language recognition task is perceived as a pre-

processing step for Speech technologies such as Automatic Speech Recognition. 

SLR can also be applied as a standalone task. (Zissman, 1993; Muthusamy, Cole 

& Oshika, 1992) 

In the area of Spoken Language Recognition, studies have shown that it is part 

of human intelligence to distinguish between languages, and this is a natural 

ability we are born with (Zhao et al., 2008). It was also discovered that with 

minimal exposure to a language, humans can detect the identity of the language 

being spoken in a conversation with reference to languages they have heard or 

languages they know. Although these judgments may be less precise when hard 

decisions need to be made for an identification task, they show that human 

listeners can apply auditory perception with linguistic knowledge at different 

levels to distinguish between broad language groups (Li, Ma & Lee, 2013). Most 

SLR systems are based on high level features such as Frequency, Phonotactics, 

Prosodic and Acoustic-Phonetic Modelling. Such systems have an inherent 

problem: tokenizing the features accurately.  

In this study we developed a model for Automatic Spoken Language Recognition 

Systems (ASLRs) from a Computer-vision perspective, using deep learning 

algorithms, similar to that proposed by (Bartz, Herold, Yang & Meinel, 2017).  

We proposed an ensemble of Convolutional Neural Network (CNN)-Recurrent 

Neural Network (RNN) algorithm. The system adopts existing algorithms, with  

a variant in network architecture on the deep learning techniques. Furthermore, 

training and testing of the system was carried out on 3 Spoken Nigerian Languages 

(English, Yoruba and Igbo). The research does not consider full development of  

a SLRs, nor the other aspects of Speech information extraction such as Automatic 

Speech Recognition (Speech to text transcription), Language Translation, 

Machine hearing/ Language understanding, linguistic analysis etc. Our approach 

is restricted to the computer vision perspective and not the advanced signal 

processing techniques or statistical modelling approach. 

 

 

2. REVIEW OF RELATED LITERATURE 

 

Language recognition systems are usually categorized by the features they use, 

such as the acoustic–phonetic approach, the phonotactic approach, the prosodic 

approach, and the lexical approach. More recently, newer features for identifica-

tion have surfaced which do not fall into any of these categories thanks to deep 

learning. These are lower level features like ‘Spectrogram images extracted from 

sounds. The mainstream research on spoken language recognition adopts techniques 

utilizing these higher level features (Torres-Carrasquillo et al., 2002).  
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Acoustic Phonetics refers to the wide range of sounds that the human speech 

apparatus is capable of producing. Speech sounds as concrete acoustic events are 

referred to as phones. Whereas speech sounds as entities in a linguistic system are 

termed as phonemes (Kirchhoff, 2006). The phonotactic constraints dictate the 

permissible phone sequences. Each language has its unique set of lexical– 

phonological rules that govern the combinations of different phonemes. Phonemes 

can be shared considerably across languages, but the statistics of their sequential 

patterns differ very much from one language to another. Prosody refers to supra-

segmental features in running speech, such as stress, duration, rhythm, and 

intonation (Ashby & Maidment, 2005). The set of interrelated prosodic features 

are all important characteristics of spoken languages. Prosody appears to be useful 

for distinguishing between broad language classes (e.g., tonal versus non-tonal 

languages). However, human listening experiments reported in (Navratil, 2001), 

and (Ramus & Mehler, 1999) show that prosodic cues are less informative than 

the phonotactic one. In the past few decades, researchers have explored many 

speech and language knowledge sources, including articulatory parameters, acoustic 

features (Sugiyama, 1991), prosody (Adami & Hermansky, 2003), phonotactic 

(Zissman, 1996), and lexical knowledge (Adami & Hermansky, 2003).  

(Safitri, Zahra & Adriani, 2016) carried out a study involving the identification 

of spoken data in three local Indonesian languages: Minangkabau, Sundanese and 

Javanese. In their study, two phonotactic methods were used, namely Phone Recog-

nition followed by Language Modelling (PRLM) and Parallel Phone Recognition 

followed by Language Modelling (PPRLM). PRLM method showed the highest 

accuracy using the phone recognizer trained for English and Russian with the 

average of 77.42% and 75.94% respectively. From their study, observation was 

made that accuracy of Spoken LID system with PRLM and PPRLM methods are 

affected more by the performance of phone recognizer that is used. 

In the study carried out by (Boussard, Deveau & Pyron, 2017), several machine 

learning techniques for classifying spoken language were explored. They applied 

algorithms which utilized various spectral features derived from English and 

Mandarin Chinese phone call audio to predict the language of conversation. They 

assert that to a large extent, a language is not distinguished by the presence of 

certain sound waves, but rather by the patterns they form and the sequence in 

which they are produced. The information was incorporated explicitly via Shifted 

Delta Cepstrum (SDC) features and using Gaussian Mixture Method (GMM) and 

neural network models, they were able to effectively capture this crucial infor-

mation, leading to improved predictive power. The modelling assumptions of the 

GMM ultimately turned out to be vital since they had only limited data. 

According to (Abdel-Hamid et al., 2014) exploration of Deep Neural Networks 

(DNN) revealed that the hybrid deep neural network (DNN)-hidden Markov 

model (HMM) showed significant improved speech recognition performance over 

the conventional Gaussian mixture model (GMM)-HMM. This improvement  

is attributed to the inherent ability of DNN’s to model complex correlations  
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in speech features. Their study attempted to further reduce error rate in the underlying 

model by using Convolutional Neural Networks (CNNs). 

These studies, among several others, have shown that high accuracies  

in language recognition can be achieved, depending on the adopted model for 

development of the SLRs. To this effect, we undertook our study exploring  

a different approach that was motivated by the recent successes in the area of deep 

learning and Computer Vision.  
 

 

3. METHODOLOGY 
 

The field of Computer vision deals with utilization of techniques to help machines 

understand the content of digital images. It involves the extraction of information 

from images to infer something about a real world problem. The application of 

computer vision techniques to this problem domain, meant audio samples had to 

be represented with images for further processing. We applied Convolutional 

Neural Network-Recurrent Neural Network (CNN-RNN) in an ensemble, to the 

development of our model for SLRs thus, the approach is image processing based. 

More specifically, these Deep Neural Networks were adapted to the problem of 

identifying the language of a given spoken utterance from short-term spectral 

features.  
 

3.1. Dataset  
 

Our model was trained and tested using the three languages: Yoruba (Ibadan 

dialect), Igbo, and English. Audio recordings of conversations in all the three 

languages were acquired from various sources such as Radio streams, Video 

Streams and other available online corpus for research purposes (Kaggle, 

Librovox). These audio samples served as the dataset. The total data set consists 

of over 2100 wav and mp3 files, with an average of 700 samples per language.  

 
  Tab. 1. Size of the Dataset 

Language 
Length of Files 

(secs) 

Average Time 

(secs) 

English 2 < X < 5 3 

Igbo 4 < X < 10 5 

Yoruba  2 < X < 8 5 

 

From these 2100 files, we separated 80% of the sample files for training and 

the rest for validation and testing. The recordings had varying length of approxi-

mately 10 seconds. Some of the audio files contained background noise, 

intermittent laughter, music and other unwanted properties while some samples 

were noise free. 
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3.2. Pre Processing 

 
As part of our pre-processing step, all the mp3 format files were first converted 

to a lossless wav format at a 22050 kHz/16bit sampling rate. We investigated 

audio specific techniques to denoise and remove unwanted properties of our audio 

samples and resorted to manually denoising each file thereby utilizing an audio 

engineering tool called FL Studio (Fig. 1). We removed unnecessary silences 

between sentences, intermittent jingles or unwanted background sounds and we 

removed noise stemming from recording apparatus (mic and general audio 

recording setup), while maintaining characterizing features of the Samples. This 

process produced clean versions of the audio samples as wav files. 

 

 

Fig. 1. Wav Sample Pre-processing 

 

In other to adopt an image processing approach to the Language recognition 

problem rather than the conventional audio processing approach, an image 

representation of the audio sample was utilized. We discovered that spectrograms 

(Fig. 2) are the standard ways to represent audio for deep learning systems from 

our investigations and also according to recent studies (Park et al., 2019; Amodei 

et al., 2015). Spectrograms are 2D visual representations of audio frequency 

spectra over time. The image depicts the intensity of sound around certain 

frequencies as time varies. A major point about speech is that the sounds generated 

by humans are filtered by the shape of the vocal tract including tongue, teeth, etc. 

This shape determines what comes out, and it gives an accurate representation of 

the phoneme being produced. More specifically, the shape of the vocal tract 

manifests itself in the envelope of short term power spectrum, and the job of the 

Mel-scepstrum is to accurately represent this envelope. Mel-Spectrogram images 

of our training files were created, and these mel-spectrogram images serve as the 

input to our DNN-based model.  

 



61 

 

Fig. 2. Sample of Spectrogram Image of an Audio file 

 

The mel-spectrogram can be viewed as a sequence of column vectors that consist 

of 256 (or 128, if only <5.5 KHz frequencies are used) numbers. We considered only 

frequencies of less than 5.5 KHz. 

 

3.3. Network Architecture (CNN-RNN Ensemble) 

 
As illustrated in Figure 3, the overall architecture of our model comprised of  

3 stages. In the first stage, a convolutional feature extractor was utilized.  

The convolutional feature extractor transformed our input (Spectrogram image  

of recordings) into a feature map through several series of processing. This CNN 

algorithm was used in the model because they can transform high level infor-

mation in images with great capacity thereby improving predictive power of our 

model. The output of the convolutional neural network (feature map) was then fed 

into a variant of the Recurrent Neural Network (RNN) architecture known as the 

Bi-directional Long-short term memory (having two LSTM layers). This Bi-

LSTM was introduced in the model due to their ability to store information of both 

past and future sequences at the same time, such that at every point in time large, 

information is available to the model thereby improving chances of obtaining 

higher classification accuracy. The data sequence (RNN’s Output) is further passed 

to a fully connected layer in order to solidify training efficiency of our model. 

Finally, a Softmax layer was introduced for classification purpose. The output of 

the model is the detected language.  

20% dropout was factored in our model in order to reduce overfitting in the 

network. The Activation function, Rectified Linear Units activation function 

(ReLU) was used in this model to increase non linearity of the CNN. We also 

utilized batch normalization in the model to increase the stability of the neural 

network. This model used Adam optimization algorithm instead of the classical 

stochastic gradient descent procedure to update the network weights. 

 



62 

 
Fig. 3. Model for Spoken Language Recognition 

 

3.3.1. Convolutional Neural Network 

 

CNN’s have the ability to capture and transform high level images with great 

capacity and our model leveraged on this property to explore its performance on 

the input features (Spectrogram images). As shown in Figure 4, the network had 

6 convolutional layers thus a deep convolutional network. It consisted 6 blocks of 

2D convolution, ReLU nonlinearity, 2D max pooling between each layer and 

batch normalization. 3x3 filters was used for all the convolutional layers with  

a stride 1. Pooling size was always 3x3 with a stride 2. The network used “Same” 

padding throughout. Learning rates were set to be higher for the first convolutional 

layers and lower for the top convolutional layers. We trained the CNN on Keras 

framework with Python with 32 images in a batch. This significantly increased 

the training speed. 

 

 

Fig. 4. Convolutional Neural Network Architecture 

http://caffe.berkeleyvision.org/
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3.3.2. Recurrent Neural Network 

 

The RNN accounts for the sequential characteristic of the audio data; therefore 

we applied a Bi-directional long short term memory (BLSTM). As shown in 

Figure 5, the output of the CNN were sets of several channels (feature maps). 

These feature maps were then reshaped to the RNN input dimension (which takes 

3dimensional input). Two layers of LSTM in opposite directions captured and 

stored information on sequences from the past and future set. These units then 

combine and were fed to a fully connected layer. The Bi-directional LSTM makes 

large amount of information available in the network.  
 

 

Fig. 5. Bi-directional Long Short Term Memory–RNN 

 

Finally we used only 1 fully connected layer between the RNN (Bi-directional 

LSTM) and the Softmax layer, and apply 20% dropout on that. The fully connected 

layer had 64 neurons and was trained using a Softmax loss. The output of the 

Softmax layer is the predicted language. We utilized Keras framework for Model 

implementation. 
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4. RESULT 

 

Our system was trained on 1,437 samples and tested with 360 samples all 

comprising the 3 languages. Although we had over 2100 files in our dataset, some 

samples were discarded during the processing stage, because we wanted a uniform 

dimension (128 x 128) for all our spectrogram images for less than 3secs of spoken 

utterance (~3s). The CNN algorithm which was used required uniformity for all 

training set, as such, all samples that did not meet this shape were discarded.  

For over 100 Epochs, the accuracy of the model was given at 95.56% 

 

 

Fig. 6. Confusion Matrix 

 
Shown in Figure 6 is the confusion matrix which depicts the classification 

correctness of the model. It shows the predicted class and the true class and shows 

where the classification lies for every input. We worked on 3 Languages (English, 

Yoruba, and Igbo) therefore an audio sample having an utterance or conversation 

in any of the languages should be detected by the model by correctly classifying 

it in one of the 3 classes. The English language was labelled with index 0, Yoruba 

was labelled with index 1 and Igbo language was labelled with index 2. We tested 

125 English samples with the model, and it classified all 125 samples correctly 

(as belonging to English class-index 0). From observation, there was no mis-

classification, hence the predicted class and the true class match. For Yoruba 

language, 109 audio samples were tested on the model, and from that, 106 were 
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accurately classified while 3 samples were misclassified as Igbo. And finally, for 

the Igbo language, 126 test samples were tested on the model, 113 were classified 

correctly, while 13 samples were misclassified as Yoruba language. 

 

 

Fig. 7. Model evaluation using Precision, recall, and F1 Score as metrics 

 

Figure 7 depicts the performance of the model in terms of precision, accuracy, 

and the F1 score. The precision values show the extent to which the model captures 

the true classes of a sample out of the total. It is a ratio of correctly predicted positive 

observations to the total predicted positive observations. And from the chart, we 

see that English has the highest precision value followed by that of the Igbo 

language and then the precision of the Yoruba classification is fair in relative terms. 

The recall value depicts that given the total test samples, how many elements were 

captured.it is the ratio of correctly predicted positive observations to the all 

observations in actual class. 

 

 

Fig. 8. Training Loss of the Model 
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Fig. 9. Validation Accuracy of the Model 
 

From Figure 8, it is observed that over 100 epochs of training the loss (which 

is the degree of error) is actually minimized. This shows that the level of accuracy 

of the model after training is very near optimum, which is a desired property  

in every model. From figure 9, it is observed that validation accuracy fluctuates 

but becomes stable towards last few epochs. This is also a desired property which 

shows that the model can be functional. 
 

 

5. CONCLUSION 
 

The high performance of our CNN-RNN deep learning algorithm based model 

for SLR shows that approaching the Language recognition problem domain from 

an Image classification perspective yields comparable optimal performance to the 

mainstream phonological computational and statistical modelling approach. This ob-

servation also shows that using intermediate features such as a Spectrogram is 

adequate enough to obtain improved performance for SLRs, thereby eliminating 

the need for large corpus bearing phonetically transcribed data. 

Based on the performance of the system on short speech excerpts, we infer that 

the system can classify even short speech utterances of less than 3s (~3s) thus, it 

is a long enough interval to classify a spoken language correctly with this model. 

Noises in speech samples affect SLR performance considerably as observed in our 

experiments. The observation made was that the English samples were properly 

classified due to the very minimal noise contained in the training sample. The 

English dataset had far less noise because it was created specifically for training 

purposes (Kaggle, Librovox), while the Yoruba and Igbo language testset had 

some misclassifications stemming from the noise contained in the Training set. 

Although these samples went through series of denoising, they were not as clean 

as that of the English because they contained white-noise which is almost impossible 

to completely remove. The white-noise was from the recording apparatus in the 

radio station. 
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We observed that the architecture of the deep learning model used for develop-

ing SLR’s is pertinent to the performance of a model, therefore we recommend 

the exploration of deeper architectures for future works. Google’s Inception v3 is 

one of such networks which has much more layers in its architecture and is 

considered deeper than ours. We believe a deeper network should be able to 

extract more general features thus leading to increase in accuracy although they 

come with an increase of computational cost, as the Inception-v3 model uses up 

to six times more parameters, than a regular CNN. We also suggest utilizing 

completely noise free samples as dataset for training models. 
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