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Abstract 

Changes in the compression strength of the PMMA bone cement with a variable 

powder/liquid component mix ratio were investigated. The strength test data 

served to develop basic mathematical models and an artificial neural network 

was employed for strength predictions. The empirical and numerical results 

were compared to determine modelling errors and assess the effectiveness 

of the proposed methods and models. The advantages and disadvantages of 

mathematical modelling are discussed. 
 

 

1. INTRODUCTION 
 

The use of polymer biomaterials has become a common standard in a range of 

medical applications, including orthopaedic surgery and dentistry, where they are 

referred to as cements (Balin, 2004, 2016). In orthopaedics, they are predomi-

nantly found in joint arthroplasty and as a filler material in extensive bone defects. 
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At present, in total joint replacement, prostheses are commonly fixtured with the 

PMMA bone cement (polymethyl methacrylate), which has been in use since 

1960s (Charnley, 1960). Charnley, an early pioneer in modern arthroplasty, was 

the first to use the methyl methacrylate resin to bond endoprostheses (Balin, 2016; 

Matuszewski et al., 2014). Considering the applications of bone cements in medicine, 

the fundamental factors of their biofunctionality are as follows: carrying static and 

dynamic loads, dampening vibrations, abrasion resistance and biocompatibility 

(Balin, 2016; Wekwejt et al., 2019).  

Given the aggressive operating environment, it is of great importance that bone 

cements are described in due detail with respect to their resistance to ageing 

processes and the resulting deterioration in strength (Lelovics & Liptakova, 2010, 

2019; Matuszewski et al., 2014). Early loss of mechanical properties could cause 

endoprosthesis loosening and, thereby, necessitate revision surgery. These processes, 

i.e. the rate of ageing and depletion of mechanical parameters, can be contributed 

to several factors, including the mixing (Dunne & Orr, 2001; Lelovics & Liptakova, 

2010; Liptáková, Lelovics & Necas, 2009), porosity (Dunne, Orr, Mushipe  

& Eveleigh, 2003; Pałubicka, Czubek & Wekwejt, 2019), contamination of 

cement with bone marrow, blood, Ringer’s solution and other biofluids that by 

enabling micromovements, increase the risk of debonding at the bone-cement 

interface (Bialoblocka-Juszczyk, et al., 2008; Karpiński, Szabelski & Maksymiuk 

2019a, 2019b; Tan, Koh, Ramruttun & Wang, 2016), or adding special-purpose 

admixtures into the cement structure (Wekwejt, Moritz, Świeczko-Żurek  

& Pałubicka 2018, Wekwejt et al., 2020).  

Experimental investigations of ageing processes and changes in mechanical 

properties of biomaterials are cost-intensive let alone exceptionally time-consuming. 

The intrinsic limitations of empirical testing can be overcome using computer-

aided methods, which exponentially reduce data collection and processing times 

and limit the required computational cost. As a result, they may help select or 

refine the optimal direction of further research. Numerical methods include 

predictive analytics, whose models enable the determination of relationships 

between corresponding parameters on the basis of experimental data (Younesi, 

Bahrololoom & Ahmadzadeh, 2010). Other analytical instruments of established 

computational prowess that have been put to use in this work, are the finite 

element method (FEM) (Falkowicz & Debski, 2019, 2020; Falkowicz, Debski  

& Wysmulski, 2020) and the boundary element method (BEM). 

 

 

2. PREDICTIVE ANALYSIS 

 

The performance of the selected analytical methods and tools was verified using 

statistical analysis and artificial neural network (ANN) modelling. The testing data 

were obtained from the results of the strength of bone cements in compression. 

The test specimens had been prepared with a variable amount of the liquid monomer 
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– one of the two components of bone cement – to evaluate how the changes in the 

PMMA cement composition by mass correlate with its strength performance 

(Karpinski, Szabelski & Maksymiuk, 2018, 2019a, 2019b). Two learning datasets 

were used for predictions and verification against the actual data (Fig. 1): 

 the data from the range -30 % to +25 % served to predict the +35 % variant, 

 the data from the range -20 % to +35 % served to predict the -35 % variant. 

 

Fig. 1. Result from experimental research on compressive strength  

Due to the physical nature of the investigated changes, it was resolved that 

polynomial models including linear would be most suitable to carry out the cal-

culations, specifically, to determine the relationship accounting for the course of 

changes in the compressive strength in the specified range. The selected range is 

a slice of the entire hypothetical range from -100 % (no liquid component) to +∞ 

(only liquid component). From the logical analysis of the boundary conditions,  

it seems that, globally, the most appropriate is the quadratic polynomial model.  

In the model, which is a concave downward parabola, the maximum parameters 

are recorded in the middle of the range, and towards the edges, they decrease to 

the minimum (zero). However, in the tested range, it may emerge that one of the 

other models will perform with higher precision, both in terms of goodness of fit 

and prediction results. 

 

2.1. Mathematical modelling of compressive strength 

 

Statistical modelling was carried out using Microsoft Excel and Tibco Statistica 

software. It consisted in the analysis of relationships between variables, the deter-

mination of its linearity (regression) and approximation by means of the linear 

function and polynomials.  
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2.1.1. Excess of the liquid component (+35 %) 

The generated mathematical models are as follows: 

𝜎+35_1 = 34.349𝑥 + 74.494 

𝜎+35_2 = 14.443𝑥2 + 34.963𝑥 + 74.026 

𝜎+35_3 = −108.11𝑥3 + 7.3284𝑥2 + 41.435𝑥 + 74.213 

𝜎+35_4 = 300.64𝑥4 − 71.069𝑥3 − 15.498𝑥2 + 39.628𝑥 + 74.376 

𝜎+35_5 = −8803.6𝑥5 − 1357.4𝑥4 + 634.85𝑥3 + 88.061𝑥2 + 31.816𝑥 + 73.878 

 

where: 𝜎 – a modelled compressive strength of the cement sample, 𝑥 – the liquid 

component excess (wt. %). 

The model accuracy is assessed by the coefficient of determination 𝑅2, and it 

displays a good correlation with the empirical results, which is confirmed by the 

following: 

𝑅2(𝜎+35_1) = 0.7911 

𝑅2(𝜎+35_2) = 0.7951 

𝑅2(𝜎+35_3) = 0.7995 

𝑅2(𝜎+35_4) = 0.7999 

𝑅2(𝜎+35_5) = 0.8022 

 

Having established that the models were of adequate predictive capacity, they 

performed the compressive strength simulations for the material with a +35% 

excess of the liquid part. The numerical data were subsequently verified using the 

mean results from the experimental tests: 

 

𝜎+35_1_𝑚𝑜𝑑𝑒𝑙 = 86.52 𝑀𝑃𝑎 

𝜎+35_2_𝑚𝑜𝑑𝑒𝑙 = 88.03 𝑀𝑃𝑎 

𝜎+35_3_𝑚𝑜𝑑𝑒𝑙 = 84.94 𝑀𝑃𝑎 

𝜎+35_4_𝑚𝑜𝑑𝑒𝑙 = 87.81 𝑀𝑃𝑎 

𝜎+35_5_𝑚𝑜𝑑𝑒𝑙 = 56.41 𝑀𝑃𝑎 

while 

�̅�+35_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 73.30 𝑀𝑃𝑎. 

 

The root-mean-square error (RMSE) and its coefficient of variation (CV 

(RMSE)), accounting for the discrepancies between the predicted and observed 

values, were shown to attain notably higher values compared to the liquid component 

deficiency variant: 
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𝑅𝑀𝑆𝐸+35_1 = 13.45, 𝐶𝑉(𝑅𝑀𝑆𝐸+35_1) = 15.5% 

𝑅𝑀𝑆𝐸+35_2 = 14.94, 𝐶𝑉(𝑅𝑀𝑆𝐸+35_2) = 17.0% 

𝑅𝑀𝑆𝐸+35_3 = 11.94, 𝐶𝑉(𝑅𝑀𝑆𝐸+35_3) = 14.0% 

𝑅𝑀𝑆𝐸+35_4 = 14.72, 𝐶𝑉(𝑅𝑀𝑆𝐸+35_4) = 16.8% 

𝑅𝑀𝑆𝐸+35_5 = 17.07, 𝐶𝑉(𝑅𝑀𝑆𝐸+35_5) = 30.3% 

 

The models generated from the experimental data in the range from -30 % to 

approx. +25 % of the liquid component can be compared with the actual values 

for the predicted range of +35 % in Fig. 2. 

 

 
Fig. 2. Compressive strength of bone cement with a +35 % excess of the liquid component: 

comparison of mathematical models and experimental data 

 

2.1.2. Deficiency of the liquid component (-30 %) 

The methodology of computations is the same as in the former case. The fol-

lowing models were generated: 

𝜎−30_1 = 20.66𝑥 + 72.86 

𝜎−302
= −57.226𝑥2 + 24.45𝑥 + 75.457 

𝜎−30_3 = −377.13𝑥3 − 30.207𝑥2 + 54.631𝑥 + 75.075 

𝜎−30_4 = −1015.5𝑥4 − 281.68𝑥3 + 77.675𝑥2 + 49.915𝑥 + 73.816 

𝜎−30_5 = −4304.9𝑥5 − 433.68𝑥4 + 286.35𝑥3 + 29.73𝑥2 + 35.211𝑥 + 74.165. 
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The goodness of fit of forecasted data with the actual results, assessed by the 

coefficient of determination, is not as high as in the previous case: 

 

𝑅2(𝜎−30_1) = 0.4654 

𝑅2(𝜎−30_2) = 0.5904 

𝑅2(𝜎−30_3) = 0.7414 

𝑅2(𝜎−30_4) = 0.7738 

𝑅2(𝜎−30_5) = 0.7846 

 

Compressive strength forecasting results: 

 

𝜎−30_1_𝑚𝑜𝑑𝑒𝑙 = 66.66 𝑀𝑃𝑎 

𝜎−30_2_𝑚𝑜𝑑𝑒𝑙 = 62.97 𝑀𝑃𝑎 

𝜎−30_3_𝑚𝑜𝑑𝑒𝑙 = 66.15 𝑀𝑃𝑎 

𝜎−30_4_𝑚𝑜𝑑𝑒𝑙 = 65.21 𝑀𝑃𝑎 

𝜎−30_5_𝑚𝑜𝑑𝑒𝑙 = 65.49 𝑀𝑃𝑎 

while  

�̅�−30_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 65.52 𝑀𝑃𝑎. 

 

The RMSE and its coefficient of variation CV (RMSE), provide the description 

of the difference between predictions and actual strength of bone cement in 

compression:  
 

𝑅𝑀𝑆𝐸−30_1 = 2.81, 𝐶𝑉(𝑅𝑀𝑆𝐸−30_1) = 4.2% 

𝑅𝑀𝑆𝐸−30_2 = 3.61, 𝐶𝑉(𝑅𝑀𝑆𝐸−30_2) = 5.7% 

𝑅𝑀𝑆𝐸−30_3 = 2.64, 𝐶𝑉(𝑅𝑀𝑆𝐸−30_3) = 4.0% 

𝑅𝑀𝑆𝐸−30_4 = 2.58, 𝐶𝑉(𝑅𝑀𝑆𝐸−30_4) = 4.0% 

𝑅𝑀𝑆𝐸−30_5 = 2.57, 𝐶𝑉(𝑅𝑀𝑆𝐸−30_5) = 3.9% 

 

Fig. 3 presents the results from the simulations, i.e. models generated from the 

empirical data limited to the range from -20 % to approx. +35 % of the liquid 

component content, along with the actual values for the predicted range of -30 %. 
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Fig. 3. Compressive strength of bone cement with a -35 % deficiency of the liquid 

component: comparison of mathematical models and experimental data 

 

2.2. Artificial neural network forecasting 

 

Deep learning neural networks (DLN) have been steadily becoming the 

standard among machine learning algorithms. Their advantages are demonstrated 

by their great capacity for capturing existing relationships between particular data 

– including performing calculations on extensive quantities of data, on numerous 

levels of abstraction. What distinguishes them from conventional NNs (Neural 

Networks) is that DLNs’ operation is fully automated and does not require 

supervision or additional generalisation of features by human operators. DLNs are 

found in a range of applications, including speech recognition (Tu, Du & Lee, 

2019; Zhang et al., 2019), image processing (Chen, Zhang, Liu & Kamruzzaman, 

2019; de Haan, Rivenson, Wu & Ozcan, 2020; Hatt, Parmar, Qi & El Naga, 2019) 

or medical diagnosis (Hosseini, Hosseini & Ahi, 2020; Jiménez & Racoceanu, 2019; 

Lee et al., 2019).  

In the works reported in this paper, the performance of DLN algorithms was 

compared with mathematical modelling. The procedure for analysing the effect of 

powder/liquid components mix ratio on the compressive strength of bone cements 

using DLN was the following: 

 preliminary data preparation (alignment of the input data length), 

 arranging data in the strings: -35 %, -25 %, -10 %, 0 %, +10 %, +20 % and 

+30 % of the cement mix component disproportion, 

 inserting data into MATLAB (Deep Learning package with the Adam 

optimiser), 
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 testing in two variants: testing the predictive performance for a series of data 

from random samples and training the network on mean results (Fig. 4), 

 the network architecture was: 50 hidden neurons and 150 iterations; to prevent 

overfitting, the dropout technique was employed and a gradient threshold 

was introduced. 

 

 

Fig. 4. Network training progress in MATLAB – RMSE reduction as a function of iteration 

 

The compressive strength values predicted by the DLN network are presented 

below. 

 

2.2.1. Excess of the liquid component (+35 %) 

𝜎+35_𝑑𝑙𝑛1 = 72.73 𝑀𝑃𝑎 

𝜎+35_𝑑𝑙𝑛2 = 69.83 𝑀𝑃𝑎 

𝜎+35_𝑑𝑙𝑛3 = 68.42 𝑀𝑃𝑎 

𝜎+35_𝑑𝑙𝑛4 = 69.56 𝑀𝑃𝑎 

𝜎+35_𝑑𝑙𝑛5 = 54.53 𝑀𝑃𝑎 

𝜎+35_𝑑𝑙𝑛6 = 64.00 𝑀𝑃𝑎 

 

�̅�+35_𝑑𝑙𝑛 = 76.71 𝑀𝑃𝑎 

 

𝑆𝐷(𝜎+35_𝑑𝑙𝑛) = 3.76 𝑀𝑃𝑎 

𝐶𝑉(𝜎+35_𝑑𝑙𝑛) = 4.9% 

while 

�̅�+35_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 73.30 𝑀𝑃𝑎. 
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2.2.2. Deficiency of the liquid component (-30 %) 

𝜎−30_𝑑𝑙𝑛2 = 77.67 𝑀𝑃𝑎 

𝜎−30_𝑑𝑙𝑛3 = 74.97 𝑀𝑃𝑎 

𝜎−30_𝑑𝑙𝑛4 = 78.49 𝑀𝑃𝑎 

𝜎−30_𝑑𝑙𝑛5 = 79.08 𝑀𝑃𝑎 

𝜎−30_𝑑𝑙𝑛6 = 80.10 𝑀𝑃𝑎 

 

�̅�−30_𝑑𝑙𝑛 = 66.50 𝑀𝑃𝑎 

 

𝑆𝐷(𝜎−30_𝑑𝑙𝑛) = 7.20 𝑀𝑃𝑎 

𝐶𝑉(𝜎−30_𝑑𝑙𝑛) = 10.8% 

while 

�̅�−30𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
= 65.52 𝑀𝑃𝑎. 

 

Subsequently, the results were analysed statistically and verified against the 

experimental data from the strength tests. Having proven the normality of data 

distribution, the analysis of variance confirmed their homogeneity and the Student’s 

t-test, carried out at a confidence level α = 0.05, indicated that the results from the 

neural network modelling were of good quality, that is regardless of the liquid 

component deficiency/excess variant. Therefore, given the lack of statistically sig-

nificant differences, in the subsequent analyses mean network results were used.  

 

 

3. DISCUSSION 

 

Figures 5 and 6 display differences between mean values obtained from 

analytical investigations (DLN, mathematical modelling with polynomials) and 

values obtained from destructive physical analysis for both investigated variants 

of deviation from the correct powder/liquid component mix ratio. 

From the comparison of Figures 5 and 6, a notable discrepancy emerges 

between the accuracy of predictions with respect to particular bone cement 

composition disproportions. Up to the level of +35 %, the excess of the liquid 

component is shown to have a positive effect on the material strength; after reaching 

the threshold limit, there is a steep drop in its resistance to loading in compression. 
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Fig. 5. Differences between modelled and actual compressive strength values for -30 %  

 

 
Fig. 6. Differences between modelled and actual compressive strength values for +35 % 

 

Not entirely unexpectedly, the mathematical models have failed to forecast 

these tendencies, i.e. the differences between the predicted and the actual values 

were always in the excess of 15 %, regardless of the model (15–23 %) – Fig. 6. The 

result of mathematical computations can be thus merely treated as a useful 

forecast. However, these results may not be universally applicable to all situations, 

since the testing conditions were rather coincidental and perhaps non-replicable. 
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On the other hand, it is worth noting the exceptional predictive performance of the 

deep learning network, which displayed a slight, 5 %, error when correlated with 

the results from the strength tests. Thereby, the DLN outperformed the 

mathematical models and confirmed that the parameter change predictions from 

the latter are burdened with limitations, despite their good fit with the learning data. 

Furthermore, our findings appear to indicate that striving for the best fit is in itself 

insufficient to guarantee satisfactory predictive accuracy of the model. This is 

exemplified by Fig. 7, which compares the 𝑅2 values (the coefficient of deter-

mination) of the subsequent models and the coefficient of variation of the root-

mean-square deviation (CV (RMSD)), which describes the difference between the 

predicted and the observed values (with respect to the mean value). 
 

 
Fig. 7. CV(RMSD) vs R2 for +35 % forecasting 

 

A notable increase in the quality of predictions was observed in the case when 

the -30 % variant of the liquid component deficiency was considered. The com-

pressive strength values generated by the mathematical models did not exhibit  

a marked difference from the average values obtained experimentally (0.03–3.88% – 

within the margin of error), and the models can be, thus, considered as reliable 

predictors of the compressive strength of cement. As in the prior case, the DLN 

displayed good predictive capacity (a statistically insignificant difference of 1.5 % 

from the experimental value). Considering the deficiency of the liquid part, the 

strength parameter is shown to change in a more predictable way along with the 

decrease in the proportion of the liquid part. Similarly to the + 30 % variant, the 

model’s goodness of fit was strongly correlated with the increase with each degree 

of polynomial approximating the results from the empirical tests. However, this 

correlation did not translate into more accurate results (Fig. 8). 
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Fig. 8. CV(RMSD) vs R2 for -30 % forecasting 

 

 

5. CONCLUSIONS 

 

The results of this investigation have shown that, in general terms, there is no 

consistent association between increasing the model/learning datasets’ goodness 

of fit and an enhancement in the predictive accuracy of models. Furthermore, in 

spite of the improved values of coefficient of determination (with each degree of 

polynomial), the decrease in the root mean square error for the predicted values 

was negligible, or otherwise remained largely unchanged, except for rare cases of 

a slight increase. Therefore, based on our findings, there are no grounds to claim 

that even the best fit of the modelled and input data should guarantee a comparable 

level of predictive accuracy for values outside the range of the input data. 

Moreover, the learning data on the basis of which the models were generated, 

displayed a sharp change in the rising trend (considering the excess of the liquid 

component) above the +35 % level. This occurrence was found to severely hamper 

forecasting, as such a sudden drop is in principle impossible to predict when 

creating a mathematical model. This results in high uncertainty of the compressive 

strength values predicted with the use of the mathematical method. Interestingly, 

the artificial neural network exhibited a fairly high precision of compressive strength 

predictions despite the aforementioned problems. This may be indicative of an 

important capability of deep learning ANNs (DLN) to define relationships without 

the need to generalise their features. It is likely that the dropout technique (preventing 

overfitting) may have also played a significant role. From the point of view of 

their practical implementation, the choice of either of the described methods 

requires prior consideration and selection of the optimal modelling solution. What 
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needs to be considered is that although the network may provide a better fit, the 

use of DLN may incur a high computational cost. That is why, in some applications, 

a simple linear model is a sufficient tool that will provide an acceptable level of 

predictive capacity. 
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