
85

Applied Computer Science, vol. 16, no. 4, pp. 85–102

doi:10.23743/acs-2020-31

Submitted: 2020-10-25

Revised: 2020-12-21

Accepted: 2020-12-28

Computer vision; Raspberry Pi system

Mohanad ABDULHAMID*, Otieno ODONDI**,

Muaayed AL-RAWI***

COMPUTER VISION BASED ON

RASPBERRY PI SYSTEM

Abstract
The paper focused on designing and developing a Raspberry Pi based system

employing a camera which is able to detect and count objects within a target

area. Python was the programming language of choice for this work. This

is because it is a very powerful language, and it is compatible with the Pi.

Besides, it lends itself to rapid application development and there are online

communities that program Raspberry Pi computer using Python. The results

show that the implemented system was able to detect different kinds of

objects in a given image. The number of objects were also generated displayed
by the system. Also the results show an average efficiency of 90.206 % was

determined. The system is therefore seen to be highly reliable.

1. INTRODUCTION

Object counting is an important image processing technique that is applicable

in many industrial applications. Some examples of these applications include:
counting the number of products passing a conveyor belt, counting the number of

cars passing through a given road at a given time, or counting the number of a par-

ticular species in a wildlife park.

Cameras have become a standard hardware and a required feature in many
mobile devices. These developments have moved computer vision from a niche

tool to an increasingly common tool for very many applications such as facial

recognition programs, gaming interfaces, industrial automation, biometrics,
medical image analysis, and planetary exploration.

* Al-Hikma University, Karada Kharidge, Baghdad, Iraq, moh1hamid@yahoo.com
** University of Nairobi, P.O.Box 30197, GPO, Nairobi, Kenya,
researcher12018@yahoo.com
*** AL-Mustansiryia University, Baghdad, Iraq, muaayed@yahoo.com

86

Raspberry Pi is one such mobile device that comes with a built in camera slot.
There are a number of applications that can be achieved through the Pi camera.

Hobbyist use it to develop gaming programs and robotic applications. They direct

a robot using a given set of image instructions such as, turn left, or right, or stop.

Computer vision is the automated extraction of information from images. Such
information includes: 3D models, object detection and recognition, grouping and

searching information, image warping, de-noising among others. Intelligent

Transportation Society of America (ITSA) defines computer vision as the process
of using an image sensor to capture images, then using a computer processor to

analyze these images to extract information of interest.

Computer vision is used in a wide variety of real-world applications such as

Optical Character Recognition (OCR) to read handwritten postal codes, rapid
machine parts inspection in production plants for quality assurance, using stereo

vision with specialized illumination to measure tolerances on aircraft wings or

auto body parts, and looking defects in steel castings using X-ray vision.
Computer vision is also used in object recognition for automated check points in

retail, automotive safety by detecting unexpected obstacles such as pedestrians on

the street, under conditions where active vision techniques such as radar do not
work, and in medical imaging.

Raspberry Pi is defined as a low cost, credit-card sized computer that plugs

into a computer monitor or TV, and uses a standard keyboard and mouse. It is

presented as a little device that enables people to experience computing and learn
programming languages such as Scratch and Python. Essentially, it can perform

anything that one would expect a desktop computer or laptop to perform. Some

works which use Raspberry Pi in computer vision are found in literatures (Islam,
Azad, Alam & Hassan, 2014; Jana & Borkar, 2017; Nikam, Doddamani,

Deshpande & Manjramkar, 2017; Odondi, 2016; Sandin, 2017; Senthilkumar,

Gopalakrishnan & Sathish Kumar, 2014).

2. DESIGN PROCEDURE

2.1. Hardware Requirements

This work is accomplished using the following hardware components: Raspberry
Pi, Pi camera, and power supply.

2.1.1. Raspberry Pi and SD card

The design of this work uses PI (Model B+). In order to efficiently execute the
work, Raspbian Jessie OS was installed in a 16GB Secure Digital (SD) card.

As opposed to Raspbian Jessie Lite OS and Whizzy OS, Raspbian Jessie gives

87

a Graphical User Interface(GUI) experience. Therefore, it was not imperative to
use Putty to access the Raspberry Pi remotely. With Remote Desktop Protocol

(xRDP) installed in the Pi, one can connect to the Raspberry Pi remotely using the

Windows Remote Desktop Connection application. It was developed by Raspberry

Pi foundation in UK to be used for the advancement of computer science
education. The second version of the Raspberry Pi is used here.

2.1.2. Raspberry Pi Camera

The Raspberry Pi camera board plugs directly into the Camera Serial Interface

(CSI) connector on the Raspberry Pi. The Raspberry Pi camera module attaches
to Raspberry Pi by way of a 15 pin Ribbon cable to the dedicated 15-pin Mobile

Industry Processor Interface (MIPI) CSI which was designed especially for inter-

facing to cameras. It is able to deliver a clear 5 megapixel resolution image or

1080p High-definition (HD) video recording at 30 frames/sec.

2.1.3. Power Supply

The power supply on Raspberry Pi is quite simple. It powers through a Micro

Universal Serial Bus (USB) connection which is capable of supplying at least
700 mA at 5 V.

2.2. Ethernet Cable

There are various ways of accessing the Raspberry Pi. It is not possible to work
on the Raspberry Pi on its own as it does not have either a monitor or a keyboard.

It is therefore important to have an Audio-visual/High-Definition Multimedia

Interface (AV/HDMI) display and a keyboard. However, it can also be accessed
remotely by connecting it to a laptop or a desktop using an Ethernet cable. The later

method was adopted for its convenience.

2.3. Software Used

The software used to successfully realize the objectives of the work include:

Python, Open source Computer Vision software (OpenCV), Microsoft Office

Visio and Word, Raspbian Jessie OS and Remote Desktop Connection application
in Microsoft Windows 8.1 which granted remote access to Pi.

2.4. Modeling

The overall design is visualized at hardware level by block diagram of Fig. 1

while the flowchart of Fig. 2 gives the steps used in implementing the system.

88

2.4.1. Block Diagram

The integration of different hardware components is as shown by the block

diagram of Fig. 1. The figure shows the integration of various hardware components.

Fig. 1. Block diagram showing the integration of the hardware

The Pi camera was inserted into the CSI slot provided on the Pi, an Ethernet

cable is connected to the Ethernet ports of both Pi and the laptop to access Pi

remotely. The micro USB 5 V 700 mA was used to power Raspberry Pi.

2.4.2. Methodology

There are several ways in which this task could be achieved. However, design

settled on the solution shown in the flowchart of Fig. 2 below. The critical steps
in the design were as outlined.

89

Fig. 2. Flow chart of the algorithm

2.4.2.1. Image Acquisition

This step involves image capture using the Pi camera mounted on the Raspberry

Pi computer and saving it to Pi root directory. There are several ways of capturing
an image using a Pi camera for example the command “raspistill -o

my_image.jpg” captures and saves a Joint Photographic Experts Group (JPEG)

image as my_image to the root directory of the Raspberry Pi.

2.4.2.2. Image Processing

The first step in image processing is to import the necessary OpenCV libraries

(numpy and cv2) before load the image off disk using cv2.imready (“image.jpg”)

function. This function reads the image that was captured so that it can be

processed. The next step is grayscale conversion. This is achieved using the
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) where cv2.COLOR_BGR2GRAY

is the flag which converts a BGR image to a GRAY image.

90

It is necessary to blur the grayscale image slightly to reduce high frequency
(Gaussian) noise and increase the efficiency of the algorithm. This was realised

using cv2.GaussianBlur(gray, (3, 3), 0). The function takes four arguments.

The first is the image, the second shown in the bracket are the height and the width

of the standard deviation. Finally, we also need to specify sigmaX and sigmaY.
If only sigmaX is specied, sigmaY is assumed to be the same as sigmaX. In this

case, sigmaX was zero which implied that the two sigmas were calculated from

the kernel. There are other functions in openCV that can also be used to blur an
image such as averaging (cv2.blur()), median blurring (cv2.medianBlur()) and

bilateral filtering (cv2.bilateralFilter()) but Gaussian blurring was used because it

is highly effective in removing Gaussian noise from the image.

The next step is to detect the edges of objects in the image. Canny edge
detection algorithm was used because it is widely accepted as the optimal detection

algorithm. The openCV function cv2.Canny(gray, 10, 250) was used with 10 and

250 as the minimum and maximum values respectively.
In many cases, some outlines of the objects in the images are not “clean” and

complete. There are usually gaps in between the outlines that must be closed if

objects were to be successfully detected. To solve this, a “closing” operation was
applied to close the gaps between the white pixels in the image. Two morphologi-

cal transformation functions: cv2.getStructuringElement(), and cv2.morphologyEx()

were used. cv2.morphologyEx() takes three inputs. The first one is the image while

second is the morphological function, for example, cv2.MORPH_OPEN, or
cv2.MORPH_GRADIENT, or cv2.MORPH_CLOSE, etc. depending on what we

want to achieve. In this case cv2.MORPH_CLOSE is the argument passed since

there is need to close the small holes inside the foreground objects, or small black
points on the object. Lastly, the third input is by default kernel. On the other hand

getStructuringElement() takes two arguments – the first one is dependent on the

shape of kernel required, e.g. a rectangle or a cross, while the second argument
specifies the matrix e.g. (7,7) for a 7×7 matrix.

The next step was to detect contours or outlines of the objects in the image.

A contour is simply a curve joining all the continuous points (along the boundary),

having same colour or intensity. cv2.findContours() function is used. It takes three
inputs: the first one is the image, the second one is the contour retrieval mode and

the third is one is the contour approximation method. The argument

cv2.CHAIN_APPROX_SIMPLE is preferred to cv2.CHAIN_APPROX_NONE
since the latter saves all the points of the contour while the former only save the

end points of the contour thus saves on memory space. For a rectangle, only four

points are saved.

To check if a contour is of the required object or not, it is necessary to loop
over each of the contours one by one. The functions cv2.arcLength(c, True), where

the first argument is the contour, while the second argument specifies whether the

shape is a closed contour (if passed True) or just a curve, and cv2.approxPolyDP
(c, 0.02 * peri, True) were used. The first argument passed is the counter and the

91

next is epsilon which is usually a percentage of the arc length (‘arcLength’).
The third argument is as in the case of arcLength() function. Finally, the processed

image is displayed on the screen using the drawContours() function.

2.4.3. Assumptions

The code assumed that a circle is a polygon with more than several edges. Any

circular object in any image was therefore processed and displayed as an object

with more than four edges.

3. RESULTS

3.1. Single Object

3.1.1. Rectangular Object

Figs. 3 to 7 show the steps involved in detecting and counting rectangular
object. Fig. 3 shows the raw image captured while Fug.4 shows the same image

in gray scale.

Fig. 3. Rectangular image

Fig. 4. Grayscale Image of Fig. 3

Fig. 5 shows the result of canny edge detection while Fig. 6 is the result of
closing operation. While a clear cut difference between them may not be easily

detected by the human eye, a keen look at the vertex of Fig. 6 (pointed to by an

arrow) shows that a tiny gap at the same corner of Fig. 5 was closed. Latter results
will clearly show this. Finally, Fig. 7 shows the output image displayed after image

processing.

92

Fig. 5. Result of edge detection

Fig. 6. Closed form of Fig. 3

Fig. 6. Output of Fig. 3

In addition to the output, the code also retuned of the number of objects

detected on the terminal upon successful completion. In this case, the following

result was generated by the system:

There isn't any triangular object in the image.
There is 1 rectangular object in the image.

There isn't any object with more than four edges in the image.

I am glad to let you know that there is 1 object in this image.

3.1.2.Triangular Object

Similar observations were made as in the case of the one triangular object.
Fig. 8 shows the test image while Fig. 9 is the blurred grayscale image of Fig. 8.

The feedback from the terminal specifies that only one triangular object has been

identified. Again there is a small gap as shown in Fig. 10 which is closed before

the contour is drawn. Fig. 11 is the result of closing operation while Fig. 12 shows
the output image displayed after image processing.

93

Fig. 8. Triangular object

Fig. 9. Grayscale image of Fig. 8

Fig. 10. Edged image

Fig. 11. Closed image

Fig. 12. System generated output

The system generated the following feedback when the code was executed to

analyze Fig. 8 The result shows that only one triangular object was detected.

There is 1 triangular object in the image.

There isn't any rectangular object in the image.

There isn't any object with more than four edges in the image.
I am glad to let you know that there is 1 object in this image.

94

3.2. Multiple Objects

3.2.1. Human Vision versus Computer Vision

The test data of Fig. 13 was used to evaluate the performance of the code when

there are different kinds of objects. While there are six rectangular shaped objects

by human, the code only identified four of them. Other objects were accurately
identified.

An interesting observation is noted here. Since the objects were cut without

a ruler and by using a scissor i.e. freehand, the code was able to detect an extra

vertex, which a human eye would not have detected at the bottom right corner of
the image. This object is therefore identified as a polygon as shown in Fig. 17.

The high level of efficiency is attributed to the fact that computer vision is based

on evaluation at pixel level while the human vision is usually based on pre-
recorded information. It is also necessary to note that the code classifies coins as

polygons with more than four edges. This is because any circular shaped object

seen as a polygon.

The object pointed to by the arrow in Fig. 13 was not detected by the code.
The only parameter that stands out for this object is its small size relative to the

other “human perceived rectangles”. This is a typical error that would make

human vision preferred to computer vision.
Fig. 14 shows the result obtained when Fig. 13 was converted to a grayscale

image and blurring it. Fig. 15 is the result of Canny edge detection algorithm, while

Fig. 16 is the result of closing and clearly shows the need for performing closing
to an image before determining the type of the image. After edge detection, the

twenty shillings coin (the coin on the extreme left of the test image – Fig. 13) is

seen to have some gaps within its contours which without performing the closing

operation could have been considered as objects within the coin.
The following result was generated by the system when the command python

countdiffobjects.py was run in the terminal to process Fig. 13.

There are 2 triangular objects in the image.
There are 4 rectangular objects in the image.
There are 6 objects with more than four edges in the image.

I am glad to let you know that there are 12 objects in this image.

95

Fig. 13. Image with several objects

Fig. 14. Gray scale image

Fig. 15. Result of edge detection on Fig. 13

Fig. 16. Result of ‘Closing’ operation

Fig. 17. Output of Fig. 13

3.2.2. Optimal Performance

The success of the code depended on the inter-object spacing and the distance
from the object to the camera lens (focus). The code was found to be most reliable

with a better trade-off between inter-object spacing and focus. Besides, the

intensity of the background color affected the performance of the code. Using the
specimen of Fig. 18, which was captured when the distance between the objects

was optimal and with a better focus, the best result was realized.

96

Fig. 18 is the object under test while Fig. 19 is its grayscale image. Fig. 20 and
Fig. 21 are the edged and closed images respectively. It was observed that all objects

were successfully detected because of the sharp contrast in the color of objects

and that of the background.

When the image of Fig. 18 was processed, the output image of Fig. 22 was
displayed. All the objects were detected and counted. The rectangular and triangular

objects were each five while objects with more than four edges were seven.

In total therefore, seventeen objects were identified.

Fig. 18. Light colored objects in a black

background

Fig. 19. Gray image of Fig. 18

Fig. 20. Edged image of Fig. 18

Fig. 21. Closed image of Fig. 18

Fig. 22. Output of Fig. 18

97

The system generated the following results when Fig. 18 was processed:

There are 5 triangular objects in the image.

There are 5 rectangular objects in the image.

There are 7 objects with more than four edges in the image.
I am glad to let you know that there are 17 objects in this image.

The distance from the object to the camera is crucial in the performance of this
code. As above figures show, the rectangular object at the bottom of those figures

is ultimately detected as one object but when a close-up of the same image is

taken, the words and the circular drawing within the same object are detected too.

3.3. Effect of Background Color and Inter-object Spacing on the System

The accuracy of the code was seen to reduce considerably when the objects

were close to each other. This section illustrates how inter-object spacing and

color intensity of the background in relation to that of the object affected the
reliability of the code.

Fig. 23 was used to illustrate the two phenomena. It was observed that the

spacing of the object, especially when there is no sharp contrast between background

color and the color of object, two or more objects were identified as one.
When the image is converted to grayscale, the two pentagons pointed to by the

red arrow in Fig. 23, were seen to be of almost the same intensity as the

background (see Fig. 24). Their outline were therefore not detected as shown in
Fig. 25 and Fig. 26. Equally, objects that are close to one another were also

detected as one object as shown in Fig. 27. Since the rectangular object and the

triangular object adjacent to it (pointed to by the blue arrow in Fig. 23) are very
close to each other, their outlines were jointly detected as a single object (see

Fig. 27). This is attributed to the fact that the color intensity of the images and

background are almost the same in addition to them being close to each other.

The image was taken when the Pi camera was very closer to the object than the
previous one. As such, the texture of the background affected the accuracy of the

system as shown by the detection of non-object edges as shown in Fig. 25. Two

triangles on the extreme left side, and the left-most rectangular object (Fig. 23)
were therefore detected as one object as shown in Fig. 27.

The following result was obtained from the system when Fig. 23 was analyzed.

There are 2 triangular objects in the image.
There are 2 rectangular objects in the image.

There are 6 objects with more than four edges in the image.

I am glad to let you know that there are 10 objects in this image.

98

The result shows that only 10 objects were detected. In reality there were 17
objects as identified by human eye in the same image. The result shows the

limitations of the system.

Fig. 23. Image with objects close to one

another

Fig. 24. Grayscale image of Fig. 23

Fig. 25. Edged image of Fig. 23

Fig. 26. Closed image of Fig. 23

Fig. 27. Output of Fig. 23

3.4. Effect of Shadow on Code

The objects with shadow in the image could not be detected especially if there

was no sharp contrast in color intensity with respect with the background. When

the image of Fig. 28 was analyzed to detect rectangular shaped objects, errors
were noted. This further showed other limitations of the code.

99

The rectangular box object had a shadow as shown in both Fig. 28 and Fig. 29
with a blue arrow. When Canny edge detector algorithm was applied, the edge

with shadow was not detected. Besides, the eraser and the coin were not detected

due to the effects of the background color. Fig. 30 and Fig. 31 show the edged

image and closed image of Fig. 28 respectively.
As shown on the output generated by the system (Fig. 32), only one rectangular

object is detected.

Fig. 28. Image with shadow

Fig. 29. Grayscale image of Fig. 28

Fig. 30. Edged image of Fig. 28

Fig. 31. Closed image of Fig. 28

Fig. 32. Output of Fig. 23

100

3.5. Effect of Close-up Image on Code

The closing operation works perfectly as long as the gaps between the objects

are small. When the gaps exceeds a threshold, the code identifies even the wittings

on the objects. The following result was generated by the system when the code

was executed for the image of Fig. 33. Fig. 34 shows the output image generated
by the system.

There isn't any triangular object in the image.
There is 1 rectangular object in the image.

There are 32 objects with more than four edges in the image.

I am glad to let you know that there are 33 objects in this image.

By the human eye, this is a serious error since only one rectangular object was

examined.

Fig. 33. Close-up image

Fig. 34. Output when a close-up is taken

4. ANALYSIS

The functionality of the system is dependent on a number of factors which include:

the background color in relation to the color of the object in the mage, the proximity

of the camera to the object and by extension the texture of the background, the
inter-object distance as well as the shadow as of the objects as was shown by the

test results.

The test results for five objects – as listed in table 1 – were analyzed to determine
the efficiency of the code.

101

Tab. 1. Efficiency analysis

 Figure Number of Objects Objects Detected by Pi Camera Efficiency

 3 1 1 100%

 8 1 1 100%

 13 13 12 92.31%

 18 17 17 100%

 23 17 10 58.72%

 Total Efficiency: 451.03

 Average Efficiency: 90.206

From the table 1, the worst case scenario was experienced when Fig. 23 was
analyzed. In this case, only 10 out of 17 objects were identified. The figures do not

tell the whole story as revealed in Fig. 27 where it is clearly shown that only wrong

objects were detected. This is because most objects were close to each other, the

camera was closer to the object than other images that were analyzed and inten-
sities of the background color and the objects were similar.

5. CONCLUSION

The work in this paper demonstrated the potential of the Raspberry Pi based

system using Python as the programming language. The system was designed

employing a camera which is able to detect and count objects within a target area.

Different tests cases analyzed revealing the performance of the system. The
reliability of the system was found out to depend on: number of objects within an

image, the background color in relation to the color of the object, distance between

objects, shadow of objects, and distance from the lens of the camera to the
specimen (focus). The system was also able to differentiate between objects in an

image based on their shapes. Rectangular objects, triangular objects and objects

with more than four edges were easily detected. However, circular objects could
not be detected as such partly because the camera was tilted at an angle and to a

larger extent due to the assumptions outlined in the design section. The contours

of circular detected as several edges with many vertices.

102

REFERENCES

Islam, M. M., Azad, M. S. U., Alam, M. A., & Hassan, A. (2014). Raspberry Pi and image processing

based Electronic Voting Machine (EVM). International Journal of Scientific and
Engineering Research, 5(1), 1506–1510.

Jana, S., & Borkar, S. (2017). Autonomous object detection and tracking using Raspberry Pi.
International Journal of Engineering Science and Computing, 7(7), 14151–14155.

Nikam, A., Doddamani, A., Deshpande, D., & Manjramkar, S. (2017). Raspberry Pi Based obstacle
avoiding robot. International Research Journal of Engineering and Technology, 4(2), 917–919.

Odondi, O. (2016). Computer Vision through the Raspberry-PI: Counting Objects (graduation

project). University of Nairobi, Kenya.
Sandin, V. (2017). Object detection and analysis using computer vision (graduation project).

Chalmers University of Technology, Sweden.
Senthilkumar, G., Gopalakrishnan, K., & Sathish Kumar, V. (2014). Embedded image capturing

system using Raspberry Pi system. International Journal of Emerging Trends and Technology
in Computer Science, 3(2), 213–215.

