
103

Applied Computer Science, vol. 16, no. 4, pp. 103–117

doi:10.23743/acs-2020-32

Submitted: 2020-11-30

Revised: 2020-12-07

Accepted: 2020-12-14

order violation, conflicts of resources, static analysis of the code

Damian GIEBAS*, Rafał WOJSZCZYK [0000-0003-4305-7253]*

ORDER VIOLATION IN MULTITHREADED

APPLICATIONS AND ITS DETECTION

IN STATIC CODE ANALYSIS PROCESS

Abstract

The subject presented in the paper concerns resource conflicts, which are

the cause of order violation in multithreaded applications. The work focuses

on developing conditions that can be implemented as a tool for allowing to

detect these conflicts in the process of static code analysis. The research is

based on known errors reported to developers of large applications such as

Mozilla Firefox browser and MySQL relational database system. These errors

could have been avoided by appropriate monitoring of the source code.

1. INTRODUCTION

The authors of some works concerning multithreading stress the need for
diagnostic, monitoring or code optimization tools for developers, which will

facilitate the so-called debugging process (Lu, Park, Seo & Zhou, 2008; Savage,

Burrows, Nelson, Sobalvarro & Anderson, 1997). The basis for detecting such

phenomena as race condition, deadlock, atomicity violation and order violation is
the knowledge of resource conflicts which result in the mentioned phenomena.

The conditions developed on the basis of resource conflicts research allow to carry

out the process of static analysis of the source code to detect them (Giebas
& Wojszczyk, 2020b; Lu et al., 2008; Park, Vuduc & Harrold, 2010). Phenomena

such as race condition and deadlock are very well researched, and the literature

contains many well documented methods allowing to locate the conflicts causing

them (Bishop & Dilger, 1996; Cai, Wu & Chan, 2014; Giebas & Wojszczyk,
2018; Jin, Song, Zhang, Lu & Liblit, 2011; Netzer & Miller, 1992). Conflicts of

* Faculty of Electronics and Computer Science, Koszalin University of Technology,
Śniadeckich 2,75-453 Koszalin, Poland, rafal.wojszczyk@tu.koszalin.pl

https://orcid.org/0000-0003-4305-7253

104

resources resulting in the phenomenon of atomicity violation are more complex
than those concerning the previously mentioned phenomena, but there are also

further successes in this field (Chew & Lie, 2010; Jin et al., 2011). The knowledge

of resource conflicts causing a given phenomenon makes it possible to develop

conditions allowing to analyse the code structure in order to detect them (Giebas
& Wojszczyk, 2018, 2020a, 2020b, 2020c).

It turns out, however, that the atomicity violation, order violation and other

undesirable phenomena can only occur in specific environments or on specific hard-
ware configurations, as mentioned by Mozilla Firefox developers (Lu et al., 2008).

Today, the multitude of combinations of settings, environments, and hardware

configurations is so vast that it is impossible to perform enough tests in a real time

to determine that the selected application is free of resource conflicts causing even
one of the undesirable phenomena. As a result, applications are tested only on the

most popular hardware platforms in environments based on the most popular

operating systems. However, this process also has a number of disadvantages.
Research conducted in 2017 showed that both developers and testers were usually

unable to give the correct sequence of threads (Abbaspour Asadollah, Sundmark,

Eldh & Hansson, 2017), i.e. knowledge of the scenario predicted by the architect
or programmer implementing the indicated functionality is sometimes insignifi-

cant among other team members. In addition, the analysis of bug reports showed

that the highest number of errors related to the phenomenon of order violation was

classified in the Minor group, i.e. the fourth group on a scale from 1 to 5, where 5
are the least significant errors and 1 are the most significant ones. Therefore, the

awareness of the threats posed by the phenomenon of order violation seems to be

very low, which directly influences the amount of time spent on examining the
causes of this phenomenon.

Data on the time needed to repair various types of errors were also analysed.

The analysis shows that the repair of errors related to multithreading was 82 days
on average, while the repair of errors not related to multithreading takes 66 days

on average (Abbaspour Asadollah et al., 2017). This combined with the fact that

very often the first modification of the code does not fix the error (Lu et al., 2008),

it can be concluded that the average time spent by developers on fixing multi-
threaded errors is too short.

This work focuses on developing a condition for detecting resource conflicts

that cause order violation. The element necessary for locating the searched
conflicts turned out to be the sequential relations developed within the work (Giebas

& Wojszczyk, 2020b).

A new definition of the phenomenon of order violation was developed as well.

The own contribution should also include a review of actual errors in the open-
source software and their analysis in order to develop conditions for locating

resource conflicts causing the phenomenon of order violation. After the conditions

have been developed, it is possible to implement the method as a computer
program, used to code optimization.

105

The section after the introduction is a review of the state of knowledge in the
field of multithreaded applications and the phenomenon of order violation.

Section no. 4 describes research on known and well documented disorderly errors

from Mozilla Firefox and MySQL relational database system, which is used in many

software and scientific research (Abdulhamid & Kinyua, 2020). Section 5 formu-
lates the problem and section 6 presents a sufficient condition. Section 7 discusses,

among other things, the assumptions and limitations of the method developed.

The discussion also includes the topic of checking whether the claim is true not
only for the examples in section 4, but also for the order violation occurring in

applications written in languages other than C language. It is worth noting that the

C language is still very popular, and thanks to good optimization it is used in well-

known single-board computers, e.g. Raspberry Pi (Cygan, Borowik & Borowik,
2018). Section 8 contains a leading example, where it is checked whether a simple

example written in C is true. In the last section includes a summary of this work.

2. THE CURRENT KNOWLEDGE

An order violation is caused by reversing the order of access to two (or more)

memory areas (i.e. A should always be invoked before B, but the order is not main-

tained during execution) (Lu et al., 2008). Thus, the application may be free of race

condition, deadlock and atomicity violations, and yet its operation may be affected
by irregularities.

This phenomenon has been classified to the group of phenomena of race

character, as well as race condition and atomicity violation (Chen, Jiang, Xu, Ma
& Lu, 2018; Torres, Marr, Gonzalez & Mössenböck, 2018; Lu et al., 2008). The

character of the race should be understood as including time as one of the most

important variables.
An example of such an application can be found in the order_violation_examples

repository on the GitHub portal* in the order_violation.c file. Running this code

several times may bring incorrect output in the console. This example is very

simple, but it shows the essence of the problem. In order to eliminate the phenome-
non of atomicity violation, 5 strategies have been proposed in the literature

(Lu et al., 2008): control instructions, changing the order of operations, changing

the source code structure, changing the position of operations assuming and
releasing locks, and other solutions that do not fit into any of the previous groups.

The order violation in this example can be removed in two ways. In the first

one, the whole loop should be placed in the critical section in function t1f. The

second solution is to run the second thread after the first thread has finished

* https://github.com/PKPhdDG/order_violation_examples

106

working, which will ensure that the operation is launched in the right order. This
example illustrates how complicated is the phenomenon of order violation.

The literature says that in one version of the Apache server code, the time

needed to restore a order violation took 22 hours of uninterrupted server operation

with an eight-core processor (Park et al., 2009). However, rarely does a single
restoration of the phenomenon allow to understand and eliminate it. This example

shows how much tools are needed to search for phenomena in real time.

One of solution is to use a different type of memory (Andrew, Mcpherson,
Nagarajan, Sarkar & Cintra, 2015). The research shows that even the use of software

transactional memory (STM) provided by Convoider software is not able to protect

against the phenomenon (Yu, Zuo & Xiong, 2019). The authors of Convoider

estimate that the use of transactional memories will allow to avoid order violation
with a probability equal to 0.5%.

The phenomenon of order violation is also mentioned in the research on

a testing technique called fuzzing. The ConFuzz tool, developed for the analysis
of multithreaded applications, has been classified as a static code analysis tool

(Vinesh & Sethumadhavan, 2020), because it reduces the application code to bitcode

using the llvm compiler tools. The bitcode is then analysed. The results of the work
do not contain any information about the location of conflicts causing the order

violation, but the innovative approach may prove to be effective.

In the presented literature, it was not possible to find any clues or conditions

allowing to locate resource conflicts causing order violation phenomena.

3. MODEL

In the following sections, Mozilla Firefox and MySQL source code fragments

are also presented in graphical form, according to the source code model repre-

sentation of a multithreaded application, which is as follows (Giebas & Wojszczyk,
2020b):

 𝐶𝑃 = (𝑇𝑃,𝑈𝑃, 𝑅𝑃,𝑂𝑃,𝑄𝑃, 𝐹𝑃, 𝐵𝑃) (1)

where: P – the program index,

𝑇𝑃 = {𝑡𝑖 |𝑖 = 0...𝛼}, (𝛼 ∈ N) – a set of all threads of 𝑡𝑖 application CP, where

𝑡0 is the main thread, |𝑇𝑃 | > 1,

𝑈𝑃 = (𝑢𝑏 |𝑏 = 1...𝛽), (𝛽 ∈ N+) – is the sequence of sets of 𝑢𝑏, which are

subsets of 𝑇𝑃 containing threads working in the same period of time in the

program CP, whereas |𝑈𝑃 | > 2, 𝑢1 = {𝑡0} and 𝑢𝛽 = {𝑡0},

𝑅𝑃 = {𝑟𝑐 |𝑐 = 1...𝛾}, 𝑟𝑐 = {𝑣1,𝑣2, ...,𝑣𝜂}, (𝛾,𝜂 ∈ N+) – a collection of shared

application resources CP, and the following elements are sets of variable
names referring to a single resource,

107

𝑂𝑃 = {𝑜𝑖,𝑗 |𝑖 = 1...𝛿, 𝑗 = 1...𝜖}, (𝛿,𝜖, ∈ N+) – is a set of all application

operations of CP, which at a certain level of abstraction are atomic
operations, i.e. they cannot be divided into smaller operations; an operation

is understood as an instruction or function defined in the programming

language; an index i and indicates the number of the thread in which the

operation is executed, and an index j is an order number of operations

working within the same thread,

𝑄𝑃 = {𝑞𝑠 |𝑠 = 1...𝜅}, 𝑞𝑠 = (𝑤𝑠,𝑥𝑠), (𝜅, ∈ N+) – a set of all mutexes available

in the program, defined as a pair variable, mutex type, where the type is
understood as one of the set values (PMN, PME, PMR, PMD), where

values correspond to the lock types in the library pthread,

𝐹𝑃 = {𝑓𝑛|𝑛 = 1...𝜄} and 𝐹 ⊆ (𝑂𝑃 × 𝑂𝑃) ∪ (𝑂𝑃 × 𝑅𝑃) ∪ (𝑅𝑃 × 𝑂𝑃) ∪ (𝑂𝑃 × 𝑄𝑃)
∪ (𝑄𝑃 × 𝑂𝑃), (𝜄 ∈ N+) – a set of edges including:

1. Transition edges – defining the order of operations. These edges

are pairs 𝑓𝑛 = (𝑜𝑖,𝑗,𝑜𝑖,𝑘), where the elements describe two

consecutive operations 𝑜𝑖,𝑗 ∈ 𝑂𝑃,
2. Usage edges – indicating resources that change during the

operation. These edges are pairs 𝑓𝑛 = (𝑜𝑖,𝑗,𝑟𝑐), in which one element

is operation 𝑜𝑖,𝑗 ∈ 𝑂𝑃, and the other is resource 𝑟𝑐 ∈ 𝑅𝑃,
3. Dependency edges – indicating operations depending on the current

value of one of the resources. These edges are pairs 𝑓𝑛 = (𝑟𝑐,𝑜𝑖,𝑗),

where the first element is the resource 𝑟𝑐 ∈ 𝑅𝑃, and the second is the

operation 𝑜𝑖,𝑗 ∈ 𝑂𝑃,

4. Locking edges – indicating the operation applying the selected lock.

These edges are pair 𝑓𝑛 = (𝑞𝑠,𝑜𝑖,𝑗), in which one element is the lock,

and the other is the locking operation.

5. Unlocking edge – indicating the operation releasing the selected

lock. These edges are pairs 𝑓𝑛 = (𝑜𝑖,𝑗,𝑞𝑠), in which one element is

the unlocking operation, and the other is the released lock.

𝐵𝑃 = (𝐵𝑃
𝐹𝑊𝐷 , 𝐵𝑃

𝐵𝑊𝐷 , 𝐵𝑃
𝑆𝑌𝑀) – set sequence:

𝐵𝑃
𝐹𝑊𝐷 – set of pairs of forward-relationship operations: 𝐵𝑃

𝐹𝑊𝐷 =

{(𝑜𝑖,𝑗,𝑜𝑎,𝑏);𝑜𝑖,𝑗,𝑜𝑎,𝑏 ∈𝑂𝑃 }; the first operation from the pair forces the second

operation, while the second operation does not force the first. In the

further part of the work it will be marked with the symbol 𝑜𝑖,𝑗 → 𝑜𝑎,𝑏,

𝐵𝑃
𝐵𝑊𝐷 – a set of pairs of backward operations: 𝐵𝑃

𝐵𝑊𝐷 = {(𝑜𝑖,𝑗,𝑜𝑎,𝑏);𝑜𝑖,𝑗,𝑜𝑎,𝑏

∈ 𝑂𝑃 }; the occurrence of the first operation from the pair does not force

the second operation, while the occurrence of the second operation
requires the first operation. In the further part of the work it will be marked

with the symbol 𝑜𝑖,𝑗 ← 𝑜𝑎,𝑏,

𝐵𝑃
𝑆𝑌𝑀 – a set of pairs of symmetric relationship operations: 𝐵𝑃

𝑆𝑌𝑀 =

{(𝑜𝑖,𝑗,𝑜𝑎,𝑏);𝑜𝑖,𝑗,𝑜𝑎,𝑏 ∈ 𝑂𝑃 }; the occurrence of the first operation from the pair

108

forces the second one and conversely, the occurrence of the second
operation from the pair requires the first one to occur. In the further part

of this work it will be marked with the symbol 𝑜𝑖,𝑗 ↔ 𝑜𝑎,𝑏.

An extension was introduced to the model consisting in changing the definition
of a symmetrical relation. All symmetrical relations are a set of pairs of operations,

because both operations must be performed in a given order, however, these

operations can occur in two different threads. As a result, a two-element set
consisting of operations of two different threads does not have information which

of the operations should logically be performed first.

4. STUDIES ON THE ORDER VIOLATION

The review of the literature on the phenomenon of order violation did not bring
the expected results in the form of conditions that the source code must meet in

order for a resource conflict resulting in order violation to occur. The development

of such conditions has already made it possible to locate the phenomena of race
condition, deadlock and atomicity violation (Giebas & Wojszczyk, 2020a, 2020b,

2020c). The resource conflicts causing the order violation phenomenon should

also have a number of common characteristics, which will enable locating them.

In order to find these characteristics, it is necessary to analyse several fragments
of the source code, the activation of which results in the phenomenon of order

violation. Therefore, based on the literature, Mozilla Firefox and MySQL source

code fragments will be reviewed, in which the resource conflicts bringing order
violation will be analysed. All of these code fragments have been discussed in a

paper (Lu et al., 2008), which generally discusses multithreaded application errors.

The file figure_2_mozilla_firefox.c, which is located in the

order_violation_examples repository, contains an extract from Mozilla Firefox,
the execution of which will result in the order violation. The application allows

for this to happen when a thread using the mMain function will be run first and

perform a dereference operation on the mThread resource, resulting in an
unexpected termination of the application as a result of the order violation.

109

Fig. 1. File code figure_2_mozilla_firefox.c. as a graph

Thus, it will be true to say that there is a backward relationship (Giebas
& Wojszczyk, 2020b) between the dereferencing operation and the initialization

operation. This example shows that in Firefox application there are backward

relationships between two operations of two different threads, and the reversed
order of these operations with shared resource results in the phenomenon of order

violation.

Another file from the order_violation_examples repository named

figure_4_mozilla_firefox.c similarly to the previous one contains a piece of Mozilla
Firefox browser code. The comment in the code shows that the second thread

(and thus the DoneWaiting function) is launched at the end of the PBReadAsync

function. As a result, one of the operations of the first thread is the reason for
starting the second thread, with both operations changing the content of the

io_pending resource in the same interval.

Fig. 2. File code figure_4_mozilla_firefox.c as a graph

110

From the description of the function contained in the article (Lu et al., 2008)
it follows that first the resource should store the TRUE value and then FALSE.

Therefore, it can be concluded that both value assignment operations are bound

by a symmetric relation (Giebas & Wojszczyk, 2020b). The conflict has been

resolved by moving the operation of assigning TRUE value to the resource
io_pending over PBReadAsync operation. In the context of the proposed source

code model of multithreaded applications, the repair was made by moving the

operation to the previous time frame, so that it is certain that the TRUE value
assignment operation will always be performed before the FALSE value assignment

operation. Thus, as in the previous case, the resource conflict causing the order

violation was the reversed order of execution of a pair of operations on a shared

resource.

Fig. 3. Graph of the source code from the file figure_4_mozilla_firefox.c after taking into

account modifications eliminating the resource conflict

Fig. 4. Source code from the file figure_5_mozilla_firefox.c as a graph

111

The next piece of Mozilla Firefox browser code is in the file
figure_5_mozilla_firefox.c of the aforementioned repository. In this case, it is the

second thread operation that must be performed first. Every time

js_DestroyContext is called, operations are performed on the shared atoms

resource. The last time this function is executed by the first thread, the
js_UnpinPinnedAtom function is performed, which executes the operation of

freeing resources of the atoms variable. The result of this operation is unexpected

termination of the browser operation, because in the second thread the
js_MarkAtom function is called, whose parameter is the atoms variable with the

value nullptr. This example is very similar to the previous two. The phenomenon

of order violation occurs when the order of operations on the shared resource is

reversed, which is the atoms variable. In this situation calling the
js_UnpinPinnedAtom function cannot precede the js_MarkAtom function, so there

is a backward relationship between them. The last piece of code comes from the

MySQL database system and is in the figure_7_mysql.c file. In the first thread,
the dynamicId variable is initialized, which is a shared resource. The handle for

this resource is stored in the dynamicId variable of the m_state component of the

node structural variable. Thus, if the second thread is run faster than the first
thread, the uninitialized variable will be attempted to dereferencing, which in this

case will lead to indefinite application behavior. As in the first example from

Mozilla Firefox, there is a backward relationship between the two operations.

The operations are performed in reverse order, with the result that a dereference
is performed on an indicator variable for which memory has not been allocated,

resulting in the order violation phenomenon.

The analysis of four resource conflicts resulting in the order violation, coming
from large applications such as undoubtedly Mozilla Firefox browser and MySQL

database system, has led to the following conclusions. The pairs of operations to

which the definition of a violation of order refers should, according to the
programmer’s assumptions, be performed in the order specified by a certain

algorithm. It is from the algorithm that a logical order is derived, on the basis of

which one of the three types of relations that may occur between the operations

(Giebas & Wojszczyk, 2020b) is determined. The algorithm assumes that these
operations will be performed in a specific order, so the relation connecting the two

operations is a sequence relation and performing the operations contrary to this

order results in a violation of the order.

112

Fig. 5. Source code from the file figure_7_mysql.c as a graph

According to the current knowledge about resource conflicts causing the order

violation phenomenon, the definition of this phenomenon is:
Definition 1. An order violation is a phenomenon where, between two operations

of two different threads (or groups of operations), there is a sequential relationship

whose reversal causes the algorithm to malfunction and an undefined state of the

shared resources that have been used by the algorithm.

5. PROBLEM FORMULATING

The source code of the multithread application P is given, written in C using

the pthread library. In this application there are sequential relations between

operations of two threads and at least one pair of operations connected with the
sequential relation is executed in the same time interval. This application is also

free of race condition, deadlock and atomicity violation.

Therefore, is it possible to locate conflicts causing the phenomenon of order

violation?

6. SUFFICIENT CONDITION

The source code model for multithreaded applications presented in section 3

will be used to develop a sufficient condition. Based on the examples presented in

section 4, the statement of order violation is as follows:
Theorem 1. Let P be a multithreaded application free of race condition, deadlock

and atomicity violation. So let 𝐵𝑃 = (𝐵𝑃
𝐹𝑊𝐷 , 𝐵𝑃

𝐵𝑊𝐷 , 𝐵𝑃
𝑆𝑌𝑀) will be a set of pairs

of operations which are in sequential relationship with each other, and 𝐵𝑃
𝜉

⊆ 𝐵𝑃
𝜉

𝑖,𝑗

will be a subset containing such pairs of operations (𝑜𝑖,𝛼,𝑜𝑗,𝛽), the first of which is

done in a thread 𝑡𝑖 and the second in the thread 𝑡𝑗.

113

If {𝑡𝑖,𝑡𝑗 } ⊆ 𝑢𝑏 then there will be a violation of order in the implementation of

the operation (𝑜𝑖,𝛼,𝑜𝑗,𝛽).
Proof. Proof is a direct consequence of the definition of a violation of order.

If the threads {𝑡𝑖,𝑡𝑗 } are performed in a common interval of time, i.e. {𝑡𝑖,𝑡𝑗 } ⊆ 𝑢𝑏

it is therefore acceptable to implement the concurrent operation (𝑜𝑖,𝛼,𝑜𝑗,𝛽). This
means at the same time that any order of execution of the operation is possible,

i.e.: 𝑜𝑖,𝛼 →𝑜𝑗,𝛽, 𝑜𝑖,𝛼 ← 𝑜𝑗,𝛽, 𝑜𝑖,𝛼 ↔𝑜𝑗,𝛽. It is therefore permissible to violate the set

order of operations (𝑜𝑖,𝛼,𝑜𝑗,𝛽).

7. DISCUSSION

The definition of order violation from section no. 2 did not give any premises

as to how to search for resource conflicts causing the discussed phenomenon in

the source code of the application. Only the analysis of fragments of applications

containing resource conflicts causing the phenomenon of order violation, taking
into account the relations described in the paper (Giebas & Wojszczyk, 2020b),

allowed for redefinition of the phenomenon and development of conditions

allowing for detection of these conflicts, using the source code model of multi-
threaded applications.

It can be stated with certainty that the detection of conflicts causing the

phenomenon of order violation will be excessive, similarly as it is the case with
the detection of conflicts causing race condition and atomicity violations (Giebas

& Wojszczyk, 2020a, 2020b). In other words, the results will include the so-called

false-positive error. It can also be stated that, despite the redundancy, it will be

possible to ignore some conflicts with poorly defined relationships between the
two operations.

It is also worthwhile to verify in the future the no. 1 definition based on source

code of applications other than Mozilla Firefox and MySQL, and in which there
is also a violation. The applications under study do not necessarily have to be

written in C language. As soon as the application code manages to determine

whether functions (or methods for languages supporting only object-oriented
paradigm) are in one of the three developed relationships (Giebas & Wojszczyk,

2020b), and any shared resource is involved in the whole process, an attempt can

be made to confirm this definition.

The statement of order violation from section 6 allows to locate the violation
in all four cases described in section 4. In each of the described examples this

phenomenon occurs because the structure allows to perform the operation

contrary to the programmer’s assumptions. According to the source code model
of multithreaded applications, for two operations to be performed in a given order,

the operations must belong to one thread. In a situation where both operations are

in different threads, the order of execution can be forced only by placing

114

operations in two different intervals. This type of solution has been used to
eliminate the conflict causing atomicity violation in the second of the discussed

examples in section no. 4. The graph presenting this solution can be found in

figure no. 3.

8. LEADING EXAMPLE

Half of the examples described in sec. 4 concern the execution of an action on

a resource before any memory resources are allocated to that resource. A common

mistake in applications written in C by inexperienced programmers is to use

indicator variables without checking the state of such variable first. In
multithreaded applications it is additionally necessary to synchronize threads, so

that the thread using indicator variable does not cause application failure. Such

synchronization does not occur in OV1 application code located in
motivation_example.c file in order_violation_examples repository. The first

thread of this application is responsible for allocating space on the heap and

returning the indicator to the indicator variable, and the second thread is
responsible for copying to the address indicated by this indicator variable. The

result of incorrect order of execution of the operation is unexpected termination

of the application.

A common practice in writing multithreaded applications is to allocate
memory in a different thread than other operations performed on it. In the t2f

function of the leading example, just checking if the indicator variable does not

indicate the NULL value and taking action only if this value is correct and it does
not solve the problem. The programmer should ensure that the memcpy function

receives an indicator to the allocated memory. This problem can be solved in

several ways. The first way belongs to the group of naive solutions, i.e. the thread
waits for the indicator to change its state by cyclic checking it in a loop, which

can lead to waiting indefinitely. The second naive solution seems to be to sleep

the thread for a given time by using the sleep function. In practice, this solution is

worse than the previous one, because the time operation of the first thread is
unknown, so the waiting time can be either overestimated or underestimated, and

whether this value is overestimated or underestimated is strongly dependent on

the hardware configuration on which the application will run. The only correct
solution to this type of problem is to move the memory allocation operation with

the thread to the previous time interval, as Mozilla developers have done by fixing

one of the errors in Firefox.

The source code of the leading example in the model is as follows:

𝑇OV1 = (𝑡0, t1, t2)
𝑈OV1 = ({𝑡0}, {t1, t2}, {𝑡0})
𝑅OV1 = {(𝑠𝑡𝑟𝑖𝑛𝑔)}

115

𝑂OV1 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o1,1, o1,2, o1,3, o1,4, o2,1, o2,2, o2,3, o2,4, o2,5, o2,6}
𝑄OV1 = {(𝑛, 𝑃𝑀𝐷)}
𝐹OV1 = {(o0,1, o0,2), (o0,2, o0,3), (o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (q1, o1,1), (o1,1, o1,2),
(o1,2, r1), (o1,2, o1,3), (o1,3, q1), (o1,3, o1,4), (o2,1, o2,2), (o2,2, o2,3), (q1, o2,3), (o2,3, o2,4),
(o2,4, r1), (o2,4, o2,5), (o2,5, q1), (o2,4, o2,6)}
BOV1

SYM = {(o1,2, o0,5)}

BOV1
BWD = {(o1,2, o2,4)}

Therefore, in order to locate the order violation phenomenon in the OV1

application, we must follow the theorem in section 6. Which means that the OV1

application includes a pair of operations (o1,2, o2,4), which is connected by
a backward relationship and these operations belong to two different threads

performed in the same time interval u2. Both operations use a shared resource

which is a string indicator variable. This means that the theorem is fulfilled, so
there is a resource conflict in the application, which consists in reversing the order

relationship resulting in the phenomenon of order violation.

9. SUMMARY

Based on actual errors and the current state of knowledge, a criterion has been
developed in this work that can be implemented as an algorithm to locate resource

conflicts in the process of static code analysis. However, the developed criterion

is imprecise and may not include all real cases. On the other hand, the results

obtained may be redundant, i.e. they may contain the so-called false-positive
error. To a large extent, the location of resource conflicts that cause order

violation is influenced by the correct definition of relations that may occur

between operations.
Despite the disadvantages of static code analysis. it is worth to develop it,

because its biggest advantage is speed. This process should not take more time

than the process of compiling the program, which makes it very attractive
compared to the 22 hours mentioned in the literature (Park et al., 2009). As

a result, it can be used as one of the functionalities of the IDE (e.g. real-time

monitoring), because in a very short period of time the programmer will receive

information about, for example, the phenomenon of order violation.
As mentioned in section 7, in order to reduce the amount of false-positive

error, further research should be conducted into the relationships between

operations. Another branch of research that can be conducted is the use of the
criterion developed in this work, allowing to locate the phenomenon of the

violation of order, together with the source code model of multithreaded

applications to develop a method based on artificial neural networks.

116

REFERENCES

Abbaspour Asadollah, S., Sundmark, D., Eldh, S., & Hansson, H. (2017). Concurrency bugs in open
source software: a case study. Journal of Internet Services and Applications, 8, 4.
https://doi.org/10.1186/s13174-017-0055-2

Abdulhamid, M., & Kinyua, N. (2020). Software for recognition of car number plate. Applied

Computer Science, 16(1), 73–84. https://doi.org/10.23743/acs-2020-06
Andrew, J., Mcpherson, A. J., Nagarajan, V., Sarkar, S., & Cintra, M. (2015). Fence Placement for

Legacy Data-Race-Free Programs via Synchronization Read Detection. ACM Trans. Archit.
Code Optim., 12(4), 46. https://doi.org/10.1145/2835179

Bishop, M., & Dilger, M. (1996). Checking for Race Conditions in File Accesses. Computing
Systems, 9(2), 131–152.

Cai, Y., Wu, S., & Chan, W. K. (2014). ConLock: a constraint-based approach to dynamic checking on
deadlocks in multithreaded programs. In Proceedings of the 36th International Conference on
Software Engineering ICSE 2014 (pp. 491–502). https://doi.org/10.1145/2568225.2568312

Chen, D., Jiang, Y., Xu, C., Ma, C., & Lu, J. (2018). Testing multithreaded programs via thread
speed control. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018) (pp. 15–25). https://doi.org/10.1145/3236024.3236077

Chew, L., & Lie, D. (2010). Kivati: fast detection and prevention of atomicity violations. In Proceed-
ings of the 5th European conference on Computer systems (EuroSys '10) (pp. 307–320).
Association for Computing Machinery. https://doi.org/10.1145/1755913.1755945

Cygan, S., Borowik, B., & Borowik, B. (2018). Street lights intelligent system, based on the Internet of

Things koncept. Applied Computer Science, 14(1), 5–15. https://doi.org/10.23743/acs-2018-01
Giebas, D., & Wojszczyk, R. (2018). Graphical representations of multithreaded applications.

Applied Computer Science, 14(2), 20–37. https://doi.org/10.23743/acs-2018-10
Giebas, D., & Wojszczyk, R. (2020a). Multithreaded Application Model. Advances in Intelligent

Systems and Computing, 1004, 93–103. https://doi.org/10.1007/978-3-030-23946-6_11
Giebas, D., & Wojszczyk, R. (2020b). Atomicity Violation in Multithreaded Applications and Its

Detection in Static Code Analysis Process. Applied Sciences, 10(22), 8005.
https://doi.org/10.3390/app10228005

Giebas, D., & Wojszczyk, R. (2020c). Deadlocks Detection in Multithreaded Applications Based on
Source Code Analysis. Applied Sciences, 10(2), 532. https://doi.org/10.3390/app10020532

Jin, G., Song, L., Zhang, W., Lu, S., & Liblit, B. (2011). Automated atomicity-violation fixing. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '11) (pp. 389–400). https://doi.org/10.1145/1993498.1993544

Lu, S., Park, S., Seo, E., & Zhou, Y. (2008). Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In Proceedings of the 13th international conference
on Architectural support for programming languages and operating systems (ASPLOS XIII)

(pp. 329–339). https://doi.org/10.1145/1346281.1346323
Netzer, R., & Miller, B. P. (1992). What are race conditions? Some issues and formalizations. ACM

Letters on Programming Languages and Systems (LOPLAS), 1(1), 74–88.
https://doi.org/10.1145/130616.130623

Park, S., Vuduc, R. W., & Harrold, M. J. (2010). Falcon: fault localization in concurrent programs.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1 (pp. 245–254). https://doi.org/10.1145/1806799.1806838

Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K. H., & Lu, S. (2009). PRES: probabilistic
replay with execution sketching on multiprocessors. In Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles (SOSP '09) (pp. 177–192).
https://doi.org/10.1145/1629575.1629593

117

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., & Anderson, T. (1997). Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst., 15(4), 391–411.
https://doi.org/10.1145/265924.265927

Torres, L. C., Marr, S., Gonzalez, B. E., & Mössenböck, H. (2018). A Study of Concurrency Bugs
and Advanced Development Support for Actor-based Programs. Lecture Notes in Computer
Science, 10789, 155-185. https://doi.org/10.1007/978-3-030-00302-9

Vinesh, N., Sethumadhavan, M. (2020). ConFuzz—A Concurrency Fuzzer. Advances in Intelligent
Systems and Computing, 1045, 667-691. https://doi.org/10.1007/978-981-15-0029-9_53

Yu, Z., Zuo, Y., & Xiong, W. C. (2019). Concurrency Bug Avoiding Based on Optimized Software
Transactional Memory. Scientific Programming, 2019, 9404323.
https://doi.org/10.1155/2019/9404323.

