
5

Applied Computer Science, vol. 15, no. 2, pp. 5–18
doi:10.23743/acs-2019-09

Submitted: 2019-04-02
Revised: 2019-04-23

Accepted: 2019-04-25

audio effects, audio fade-in, real-time processing, HTML5, web apps

Lucian LUPŞA-TĂTARU [0000-0002-3320-9850]*

IMPLEMENTING THE FADE-IN AUDIO

EFFECT FOR REAL-TIME COMPUTING

Abstract

Audio fading is performed in order to smoothly modify over time the level

of an audio signal. In particular, the fade-in audio effect designates a grad-

ually increase in the audio volume, starting from silence. In practice,

audio fading is mostly carried out within audio editors i.e. in off-line mode

by employing various transcendental functions to enforce the fade profile.

Taking into account the increasing demand for interactive media services

requiring real-time audio processing, the present approach advances

an effective method of constructing the audio fade-in shape with a view to

real-time computing. The paper encompasses plain and straightforward

implementations in pure JavaScript, prepared precisely to validate the

method of audio volume processing proposed here.

1. INTRODUCTION

The nature of interactive computing, which is essential for a two-way effec-

tive communication between machine and user, implies fast computing and em-

ployment of event-driven programming style. On the other hand, with the recent

release of the fifth version (HTML5) of HTML standard, which natively allows

the control of multimedia content, complex web applications have arisen

to complement the traditional native applications on the various low-powered

devices. Also, the functionality of the new set of rules characteristic of HTML5

appears to be very convenient to enhance by event-driven programming carried

out in JavaScript (Devlin, 2012; Jacobs, Jaffe & Le Hegaret, 2012; Powers,

2011; HTML 5.2. W3C Recommendation, 2017).

* Transilvania University of Braşov, Faculty of Electrical Engineering and Computer Science,

Department of Electrical Engineering and Applied Physics, Bd. Eroilor No. 29, Braşov,

RO-500036, Romania, lupsa@programmer.net, lucian.lupsa@unitbv.ro

https://orcid.org/0000-0002-3320-9850
mailto:lupsa@programmer.net
mailto:lucian.lupsa@unitbv.ro

6

 In this context, having in view that designing of media development soft-

ware, simulation software as well as entertainment applications often asks for

real-time/fast audio processing, the present investigation puts forward an effective

solution for constructing the profile of the fade-in audio effect. Although widely

used in order to receive a smooth lead in to an audio content, the fade-in sound

effect is usually applied within audio editors that is in off-line mode, by employ-

ing linear and transcendental functions to impose the time-related evolution

of the audio volume, starting from a level of 0 (silence) (Case, 2007; Jackson,

2015; Langford, 2014; Reiss & McPherson, 2015).

Fig. 1. An exponential fade-in audio effect, received in Audacity editor

for the final audio level of 1 and the fade length of 1 s

Fig. 2. A linear fade-in audio effect, received in Audacity editor

for the final audio level of 1 and the fade length of 1 s

Fig. 3. A logarithmic fade-in audio effect, received in Audacity editor

for the final audio level of 1 and the fade length of 1 s

7

 Fig. 1, Fig. 2 and Fig. 3 highlight a set of 1 s length fade-ins of exponential,

linear, and logarithmic curve shape, carried out in Audacity editor (Jackson,

2015; Schroder, 2011). It has to be emphasized that both fade-in length and shape

should be correlated with the appropriate music genre (Corey, 2017; Panagakis,

Kotropoulos & Arce, 2014; Potter, 2002).

By adopting the exponential fade-in, depicted in Fig. 1, one receives an ex-

tremely smooth transition from silence, characterized by a low instantaneous rate

of change of audio level in the beginning of fading-in. As the opposite of the

exponential fade-in shape, the fade-in of logarithmic type, illustrated in Fig. 3,

determines a quick increase of the audio volume in the beginning of the fade

effect, followed by a decrease in the rate of change of audio volume towards the

end of fading-in. Hence, a logarithmic fade-in brings a soft increase in the audio

level within the ending region of the effect. On the other hand, as Fig. 2 indicates,

the linear fade-in effect is performed at a constant rate of change of audio level

and, obviously, in this case, any attempt of smoothing the transition from silence

would lead to an increasing of the fade-in length (Case, 2007; Langford, 2014;

Reiss & McPherson, 2015).

 With a view to real-time computing, one has to consider that the instant

of fade-in initiation is associated with an event occurrence, and that the valuation

of the outputs of transcendental functions, suitable for shaping the fade-in profile

in the off-line mode, comes to be very time consuming.

2. CUSTOMIZING THE FADE-IN PROFILE

To improve the computational capabilities with the purpose of real-time

processing, we consider that the evolution of audio volume during fading-in

is given here by the output of the following rational function of time variable:

 {
𝑣(𝑡) =

𝛼𝑡𝑘

𝑡+𝛽
, 𝑡 ∈ [0, 𝑡𝑓]

𝑘 ∈ {1,2,3}
 (1)

where: 𝑡𝑓 – designates the fade-in length.

In contrast to valuating the outputs of different transcendental functions,

which proved to be suitable for customizing the audio fade-in shape in the off-

line mode, e.g. within various audio editors, the implementation of (1) does not

require for auxiliary functions or methods to be called, regardless of the adopted

programming language. It has to be noticed that the approach corresponding

precisely to 𝑘 = 2 in (1) has already been considered in order to construct fade-

ins that act, in real-time, similar to the fade-in audio effect of exponential curve

shape (Lupsa-Tataru, 2017). Nevertheless, it will be shown that the fade-ins

8

received by computing the more comprehensive expression (1) can act either

as the fade-in audio effect of exponential type or as the fade-in audio effect of loga-

rithmic curve shape.

 With the time-related audio level provided by (1), the instantaneous rate of

change of the audio volume during fading-in comes to be:

𝑣′(𝑡) ≡

𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
(
𝛼𝑡𝑘

𝑡+𝛽
)

= 𝛼[(𝑘 − 1)𝑡 + 𝑘𝛽]
𝑡𝑘−1

(𝑡+𝛽)2

 . (2)

Since the fade-in audio effect is represented by a strict increasing in the signal

level, it plainly follows that function (1) has to be strictly increasing (Langford,

2014; Reiss & McPherson, 2015). Having in view (2), this implies:

 𝛼[(𝑘 − 1)𝑡 + 𝑘𝛽] > 0. (3)

 On the other hand, if we denote the fade-in halfway point i.e. the fade-in

midpoint by means of variable

 𝑡ℎ = 𝑡𝑓 2⁄ , (4)

then, in order to receive a strict increasing in the level of the audio signal,

starting from silence, the following conditions come to be essential:

 𝑣(𝑡ℎ) = 𝑣ℎ = 𝜌ℎ𝑣𝑓 , (5)

 𝑣(𝑡𝑓) = 𝑣𝑓 , (6)

wherein, we have

 𝑣(0) = 0 < 𝑣ℎ < 𝑣𝑓 , (7)

 𝜌ℎ = 𝑣ℎ 𝑣𝑓⁄ . (8)

Within relations (5)–(8), variable 𝑣ℎ indicates the imposed audio level at the fade-in

midpoint (4) whilst variable 𝑣𝑓 designates the final volume i.e. the audio level

to be reached at the end of fading-in. In this context, taking now into account

merely (7) and (8), one obtains

 0 < 𝜌ℎ < 1. (9)

9

 Having in view that the function employed to construct the fade-in profile

is given by (1), conditions (5) and (6) lead to the following system of algebraic

equations:

{

𝛼𝑡𝑓

𝑘

𝑡𝑓+2𝛽
= 2𝑘−1𝜌ℎ𝑣𝑓

𝛼𝑡𝑓
𝑘

𝑡𝑓+𝛽
= 𝑣𝑓

 . (10)

One perceives that (10) is linear with respect to the encompassed coefficients

𝛼 and 𝛽. More precisely, one straightforwardly obtains that (10) is equivalent to:

 {
𝑡𝑓
𝑘 ∙ 𝛼 − 2𝑘𝜌ℎ𝑣𝑓 ∙ 𝛽 = 2

𝑘−1𝜌ℎ𝑡𝑓𝑣𝑓

𝑡𝑓
𝑘 ∙ 𝛼 − 𝑣𝑓 ∙ 𝛽 = 𝑡𝑓𝑣𝑓

. (11)

 For a specific value of 𝑘 in (1), the solution of (11) yields the coefficients of

(1) in terms of fade length 𝑡𝑓, the final volume 𝑣𝑓, and quantity (8) that depends

on the imposed audio level at the fade-in halfway point (4). One receives:

 𝛼 =
2𝑘−1𝜌ℎ𝑣𝑓

2𝑘𝜌ℎ−1
∙

1

𝑡𝑓
𝑘−1 , (12)

 𝛽 =
1−2𝑘−1𝜌ℎ

2𝑘𝜌ℎ−1
𝑡𝑓 . (13)

 In order to fulfill condition (3) of enforcing a positive rate of change of the

audio level, we plainly consider 𝛼 > 0 and 𝛽 > 0, respectively. In this context,

by inspecting expressions (12) and (13) of the two coefficients, the following

conditions arise:

 {
2𝑘𝜌ℎ − 1 > 0

1 − 2𝑘−1𝜌ℎ > 0
 (14)

or, what is just equivalent

1

2𝑘
< 𝜌ℎ <

1

2𝑘−1
 . (15)

Thus, based on (12), (13) and (15), one finds that the time-related expression

of the algebraic fraction (1), which shapes the audio fade-in profile, incorporates

the parameters:

10

𝑘 = {

3, 1 8⁄ < 𝜌ℎ < 1 4⁄

2, 1 4⁄ < 𝜌ℎ < 1 2,⁄

1, 1 2⁄ < 𝜌ℎ < 1
 (16)

𝛼 = 𝛼(𝜌ℎ) =

{

4𝜌ℎ𝑣𝑓

8𝜌ℎ − 1

1

𝑡𝑓
2 , 1 8⁄ < 𝜌ℎ < 1 4⁄

2𝜌ℎ𝑣𝑓

4𝜌ℎ − 1

1

𝑡𝑓
, 1 4⁄ < 𝜌ℎ < 1 2⁄

𝜌ℎ𝑣𝑓

2𝜌ℎ − 1
, 1 2⁄ < 𝜌ℎ < 1

, (17)

𝛽 = 𝛽(𝜌ℎ) =

{

1 − 4𝜌ℎ
8𝜌ℎ − 1

𝑡𝑓 , 1 8⁄ < 𝜌ℎ < 1 4⁄

1 − 2𝜌ℎ
4𝜌ℎ − 1

𝑡𝑓 , 1 4⁄ < 𝜌ℎ < 1 2⁄

1 − 𝜌ℎ
2𝜌ℎ − 1

𝑡𝑓 , 1 2⁄ < 𝜌ℎ < 1

, (18)

wherein one observes that the value of 𝑘 out of the set {1,2,3} as well as the

appropriate expressions of the coefficients are decided by the value of quantity

(8) that is the ratio between the imposed audio level at the fade-in midpoint and

the final audio level.

 Since both coefficients (17) and (18), interfering in (1), are positive and, also,

𝑘 ∈ {1,2,3}, it follows that condition (3) of receiving a gradual increasing in the

level of the audio content is now fulfilled. Hence, with (16)–(18), one obtains:

 𝑣′(𝑡) ≡
𝑑𝑣

𝑑𝑡
> 0, 𝑡 > 0 (19)

and, having in view (2),

 𝑣′(0) ≡
𝑑𝑣

𝑑𝑡
|
𝑡=0

= {

0, 1 8⁄ < 𝜌ℎ < 1 4⁄

0, 1 4⁄ < 𝜌ℎ < 1 2⁄

𝛼 𝛽⁄ , 1 2⁄ < 𝜌ℎ < 1
. (20)

 Considering (1), (2) and (16), then, for 1 8⁄ < 𝜌ℎ < 1 4⁄ , one explicitly gets

the appropriate expression of the rational function shaping the fade-in profile

along with the appropriate expression of the instantaneous rate of change of the

audio volume during fading-in i.e.

11

𝑣(𝑡) =
𝛼𝑡3

𝑡 + 𝛽
, 𝑡 ∈ [0, 𝑡𝑓], (21)

𝑣′(𝑡) ≡
𝑑𝑣

𝑑𝑡
= 𝛼(2𝑡 + 3𝛽)

𝑡2

(𝑡 + 𝛽)2
> 0, 𝑡 > 0. (22)

Similarly, for 1 4⁄ < 𝜌ℎ < 1 2⁄ , one explicitly receives

𝑣(𝑡) =
𝛼𝑡2

𝑡 + 𝛽
, 𝑡 ∈ [0, 𝑡𝑓], (23)

𝑣′(𝑡) ≡
𝑑𝑣

𝑑𝑡
= 𝛼(𝑡 + 2𝛽)

𝑡

(𝑡 + 𝛽)2
> 0, 𝑡 > 0. (24)

while for 1 2⁄ < 𝜌ℎ < 1, the rational function (1), modelling the fade-in profile,

and the corresponding rate of change of audio level, yielded by (2), come to be

𝑣(𝑡) =
𝛼𝑡

𝑡 + 𝛽
, 𝑡 ∈ [0, 𝑡𝑓], (25)

𝑣′(𝑡) ≡
𝑑𝑣

𝑑𝑡
=

𝛼𝛽

(𝑡 + 𝛽)2
> 0, 𝑡 ∈ [0, 𝑡𝑓]. (26)

3. THE FADE-IN CURVES

 Based on (1), (16)–(18), in Fig. 4, Fig. 5, and Fig. 6, we have illustrated the

fade-in profiles for fade length 𝑡𝑓 = 0.5 s, 𝑡𝑓 = 1 s and 𝑡𝑓 = 2 s, respectively,

with quantity (8) selected as parameter. Since the validation of the suggested

technique of real-time performing the fade-in audio effect is accomplished here

by means of plain JavaScript implementations, we have considered that the final

volume i.e. the volume to be reached at the end of fading-in has the value of 1

that is the default and, also, the highest volume adopted in HTML5 (Devlin,

2012; Powers, 2011; HTML 5.2. W3C Recommendation, 2017). In this context,

quantity (8) represents just the audio level imposed at the fades midpoint (4) i.e.

𝑡ℎ = 0.25 s for Fig. 4, 𝑡ℎ = 0.5 s for Fig. 5 and 𝑡ℎ = 1 s for Fig. 6, respectively.

 One observes that the fade-ins of Fig. 4, Fig. 5 and Fig. 6, respectively,

received for 𝜌ℎ = 0.15 and 𝜌ℎ = 0.3, will act similar to the fade-in audio effect

of exponential curve shape i.e. the audio level will increase smoothly till the

midpoint, starting from an initial rate of change of zero, as (20) indicates, and,

then, it will slope upwards with an increasing rate of change, according to (21)

12

and (23), respectively. At the opposite side, the fade-ins corresponding to 𝜌ℎ = 0.7

and 𝜌ℎ = 0.85 will act similar to the fade-in of logarithmic shape i.e. the audio

level will go up quickly till the halfway point, and, subsequently, it will increase

slowly towards the end of fading-in, in accordance with the time-related

evolution enforced by (25).

Fig. 4. Fade-in curves for the fade length of 0.5 s and the final volume of 1

(the default value in HTML5)

Fig. 5. Fade-in curves for the fade length of 1 s and the final volume of 1

(the default value in HTML5)

13

Fig. 6. Fade-in curves for the fade length of 2 s and the final volume of 1

(the default value in HTML5)

Thus, all the three figures, plotted for 𝜌ℎ ∈ {0.15, 0.3, 0.7, 0.85}, do highlight

that the received profiles are crucially decided by the value of quantity (8),

regardless of the fade-in length, what validates the generality of function (1),

employed for fade shaping.

4. JAVASCRIPT IMPLEMENTATIONS

 In order to verify the suggested method of fade-in profile customizing for the

suitability with real-time computing, we have developed straightforward imple-

mentations in plain (“vanilla”) JavaScript, with the discretization being achieved

by employing the “setInterval()” method of the “window” object. For the sake of

simplicity, the two applications advanced in the paper have been optimized

so that the only intervention of the user consists in providing the appropriate audio

content (sample) upon which the fade-in effect has to be applied.

The first application has been implemented by taking into account the more

complex relations (16)–(18). Therefore, although we have set the value of 0.15

for quantity (8) in order to receive a 2 s audio fade-in that acts similar to the

fade-in effect of exponential curve shape (see Fig. 6), a function is incorporated

just to compute the parameters of (1) for any value of ratio (8) that is located

within the open intervals of representations (16)–(18). One perceives that as a result

of linking the “play” media event to the audio element, the fade-in effect

is applied, from the beginning of the audio sample, whenever the audio has been

started. As aforementioned, the discrete-time processing is accomplished here by

means of the “setInterval()” method of the “window” object. More precisely,

as the code plainly indicates, once every 50 ms, the current position within the audio

14

content (sample) i.e. the audio object “currentTime” property is passed to a spe-

cialized function that returns the output of rational function (1), which, in turn,

is used to update the audio object “volume” property. The code of the described

application is put forward in what follows right away.

Listing 1. The code of the described application

<!DOCTYPE html>

<html>

<head>

<title>Fade-in</title>

</head>

<body>

<script>

var ae; // the audio element (object)

var k, alpha, beta; // parameters of the rational function, shaping

 // the fade-in

var timerId; // id value returned by setInterval() method

function compPrm(tF, vF, rhoH) {

/* computes the parameters of the algebraic fraction (1);

function arguments: fade length, final volume i.e. audio volume to be

reached, ratio (8) between the audio volume at fade-in midpoint and the

final volume */

var rhoH2 = rhoH + rhoH;

var rhoH4, rhoH8, auxVar;

 // auxiliary variables

if (0.5 < rhoH && rhoH < 1.0) {

k = 1;

auxVar = rhoH2 - 1.0;

alpha = rhoH * vF / auxVar;

 // based on representation (17), for 1/2 < rhoH < 1

beta = (1.0 - rhoH) * tF / auxVar;

 // based on representation (18), for 1/2 < rhoH < 1

}

else if (0.25 < rhoH && rhoH < 0.5) {

k = 2;

rhoH4 = rhoH2 + rhoH2;

auxVar = rhoH4 - 1.0;

alpha = rhoH2 * vF / auxVar / tF;

 // based on representation (17), for 1/4 < rhoH < 1/2

beta = (1.0 - rhoH2) * tF / auxVar;

 // based on representation (18), for 1/4 < rhoH < 1/2

}

else { // 0.125 < rhoH && rhoH < 0.25 (1/8 < rhoH < 1/4)

k = 3;

rhoH4 = rhoH2 + rhoH2; rhoH8 = rhoH4 + rhoH4;

auxVar = rhoH8 - 1.0;

alpha = rhoH4 * vF / auxVar / tF / tF;

 // based on representation (17), for 1/8 < rhoH < 1/4

beta = (1.0 - rhoH4) * tF / auxVar;

 // based on representation (18), for 1/8 < rhoH < 1/4

}

}

15

function v(t) {

/* returns the output of the rational function shaping the fade-in,

for a given instant of time */

var newVol = alpha * t / (t + beta);

 // algebraic fraction (25), corresponding to 1/2 < rhoH < 1

if (k == 2) { newVol = newVol * t; }

 // algebraic fraction (23), corresponding to 1/4 < rhoH < 1/2

else if (k == 3) { newVol = newVol * t * t; }

 // algebraic fraction (21), corresponding to 1/8 < rhoH < 1/4

return newVol;

}

function setVol(vF) {

/* sets the audio volume during fading-in;

argument: final volume i.e. the audio volume to be reached */

var timeVar = ae.currentTime;

 // the current position within the audio content, in second

var currentVol = v(timeVar);

 // calls v(t), with parameter t receiving the current

 // playback time

if (currentVol < vF) { ae.volume = currentVol; }

else {

ae.volume = vF; // volume supressing

window.clearInterval(timerId); // clears the timer

}

}

function fadeIn() {

/* performs the audio fading-in by means of

setInterval() method of the window object */

ae.currentTime = 0.0; ae.volume = 0.0;

 // audio object properties initialization;

 // the fade-in effect is initiated just at the beginning of audio

 // content

timerId = window.setInterval(setVol, 50, 1.0);

 // the setInterval() method calls setVol() function once every 50 ms;

 // the setInterval() method passes the value of 1 to parameter vF

}

compPrm(2.0, 1.0, 0.15);

 // arguments: fade length of 2 s, final volume of 1, ratio (8)

 // of 0.15

ae = document.createElement(“AUDIO”);

 // creates the audio element (object)

ae.controls = true; // displays audio controls

ae.src = “sample.mp3”; // indicates an audio/mpeg file; provided by user

ae.addEventListener(“play”, fadeIn);

 // associates the play event swith the audio element

document.body.appendChild(ae);

 // appends the created audio element to the document

</script>

</body>

</html>

16

 The implementation given next has been reduced to a straightforward and short

structure in order to highlight a significant benefit that comes from associating

the “play” media event with the audio element (Lupsa-Tataru, 2017).

Listing 2. Reduced structure of developed code

<!DOCTYPE html>

<html>

<head>

<title>Fade-in</title>

</head>

<body>

<script>

var ae;

var alpha, beta;

var refTime;

// holds the playback position when the audio has started to play

var timerId;

function compPrm(tF, vF, rhoH) {

// for the case of 1/8 < rhoH < 1/4 only

var rhoH4 = rhoH + rhoH; rhoH4 = rhoH4 + rhoH4;

var rhoH8 = rhoH4 + rhoH4;

var auxVar = rhoH8 - 1.0;

alpha = rhoH4 * vF / auxVar / tF / tF;

beta = (1.0 - rhoH4) * tF / auxVar;

}

function v(t) {

var newVol = alpha * t * t * t / (t + beta);

return newVol;

}

function setVol(vF) {

var tau = ae.currentTime - refTime;

var currentVol = v(tau);

if (currentVol < vF) { ae.volume = currentVol; }

else {

ae.volume = vF;

window.clearInterval(timerId);

}

}

function fadeIn() {

refTime = ae.currentTime; ae.volume = 0.0;

timerId = window.setInterval(setVol, 50, 1.0);

}

compPrm(2.0, 1.0, 0.15);

ae = document.createElement(“AUDIO”);

ae.controls = true;

ae.src = “sample.mp3”;

ae.addEventListener(“play”, fadeIn);

document.body.appendChild(ae);

</script>

</body>

</html>

17

One observes that, although this second implementation has been designed

to work merely for the case of 1 8⁄ < 𝜌ℎ < 1 4⁄ , it comes with the plus of allowing

the initiation of the fade-in effect not only at the beginning of the audio content

but also whenever the audio is no more paused. This obviously will smooth the

listening experience for long audio contents on audio/video sharing platforms,

when the user alternatively accesses the “play” and “pause” standard media

controls. To gain benefit, in addition to the first application, we have introduced

the “refTime” variable of global scope in order to hold the playback position

within the audio content whenever the user accesses the “play” audio control.

Hence, the fade-in audio effect is applied here with respect to the current value

of “refTime” global variable i.e. according to (21), wherein the following

replacement is to be performed

𝑡 ← 𝜏;
𝜏 = 𝑡 − 𝑡𝑟𝑒𝑓

with 𝑡𝑟𝑒𝑓 standing for the value of “refTime” variable of the implementation,

which comes now to be the instant of fade-in initiation.

5. CONCLUSIONS

Audio fade-ins are widely used to smooth the transition from silence of audio

signals (Case, 2007; Jackson, 2015; Langford, 2014; Reiss & McPherson, 2015;

Schroder, 2011). They are usually applied within audio editors, i.e. in off-line

mode, by employing different transcendental functions of time variable to impose

the evolution of audio level. However, the design of various interactive products,

like simulation software and entertainment applications, frequently calls for fast

audio processing techniques. By adopting a rational function to enforce the time-

related evolution of the audio volume, the present investigation advances an

efficient method of constructing the audio fade-in profile, suitable for real-time

computing. It is shown that the resulted fade-ins, straightforwardly obtained by

valuating the output of the selected rational function for numerous values of the

encompassed parameters, can act either as the audio fade-in of exponential type

or as the audio fade-in of logarithmic shape.

With the audio content/sample as the preference of the reader, the optimized

implementations in pure JavaScript, put forward in the present paper, plainly

emphasize the effectiveness of the proposed solution to constructing the audio

fade-in profile.

 Further developments could be geared towards real-time audio cross-fading

techniques, by employing the method of audio fading-in suggested here along

with a technique of audio fading-out suitable for fast computing (Lupsa-Tataru,

2018).

18

REFERENCES

Case, A. U. (2007). Sound FX: Unlocking the Creative Potential of Recording Studio Effects.

Burlington, MA, USA: Focal Press.

Corey, J. (2017). Audio Production and Critical Listening: Technical Ear Training. New York,

NY, USA: Routledge.

Devlin, I. (2012). HTML5 Multimedia: Develop and Design. Berkeley, CA, USA: Peachpit Press.

Jackson, W. (2015). Digital Audio Editing Fundamentals: Get started with digital audio development

and distribution. Berkeley, CA, USA: Apress Media. doi:10.1007/978-1-4842-1648-4

Jacobs, I., Jaffe, J., & Le Hegaret, P. (2012). How the open web platform is transforming industry.

IEEE Internet Computing, 16(6), 82-86. doi:10.1109/MIC.2012.134

Langford, S. (2014). Digital Audio Editing: Correcting and Enhancing Audio in Pro Tools, Logic

Pro, Cubase, and Studio One. Burlington, MA, USA: Focal Press.

Lupsa-Tataru, L. (2017). Shaping the fade-in audio effect with a view to JavaScript implementation.

Journal of Computations & Modelling, 7(4), 111–126.

Lupsa-Tataru, L. (2018). Novel technique of customizing the audio fade-out shape. Applied

Computer Science, 14(3), 5–14. doi:10.23743/acs-2018-17

Panagakis, Y., Kotropoulos, C. L., & Arce, G. R. (2014). Music genre classification via joint sparse

low-rank representation of audio features. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 22(12), 1905–1917. doi:10.1109/TASLP.2014.2355774

Potter, K. (2002). Four Musical Minimalists: La Monte Young, Terry Riley, Steve Reich, Philip

Glass (Series: Music in the Twentieth Century). Cambridge, UK: Cambridge University

Press.

Powers, S. (2011). HTML5 Media. Sebastopol, CA, USA: O’Reilly Media.

Reiss, J. D., & McPherson, A. (2015). Audio Effects: Theory, Implementation and Application.

Boca Raton, FL, USA: CRC Press.

Schroder, C. (2011). The Book of Audacity: Record, Edit, Mix, and Master with the Free Audio

Editor. San Francisco, CA, USA: No Starch Press.

WebPlat WG (Web Platform Working Group). (2017). HTML 5.2. W3C Recommendation. W3C

technical reports index: https://www.w3.org/TR/2017/REC-html52-20171214

