
21

Applied Computer Science, vol. 15, no. 3, pp. 21–33
doi:10.23743/acs-2019-18

Submitted: 2019-08-30
Revised: 2019-09-14

Accepted: 2019-09-18

genetic algorithm, neural network, crossover, mutation

Wafaa Mustafa HAMEED
 [0000-0002-2454-6185]*, Asan Baker KANBAR*

USING GA FOR EVOLVING WEIGHTS

 IN NEURAL NETWORKS

 Abstract

This article aims at studying the behavior of different types of crossover operators

in the performance of Genetic Algorithm. We have also studied the effects of the

parameters and variables (crossover probability (Pc), mutation probability

(Pm), population size (popsize) and number of generation (NG) for controlling

the algorithm. This research accumulated most of the types of crossover operators

these types are implemented on evolving weights of Neural Network problem.

The article investigates the role of crossover in GAs with respect to this problem, by

using a comparative study between the iteration results obtained from changing

the parameters values (crossover probability, mutation rate, population size and

number of generation). From the experimental results, the best parameters

values for the Evolving Weights of XOR-NN problem are NG = 1000, popsize = 50,

Pm = 0.001, Pc = 0.5 and the best operator is Line Recombination crossover.

1. INTRODUCTION

 Genetic algorithms are a type of optimization algorithm, meaning they are

used to find the optimal solution(s) to a given computational problem that maximizes

or minimizes a particular function. Genetic algorithms represent one branch of the

field of study called evolutionary computation (Koza, 1992), in that they imitate

the biological processes of reproduction and natural selection to solve for the

‘fittest’ solutions (Mitchell, 1998). Like in evolution, many of a genetic algorithm’s

processes are random, however this optimization technique allows one to set the level

of randomization and the level of control (Mitchell, 1998). These algorithms are

far more powerful and efficient than random search and exhaustive search

algorithms (Koza, 1992; Hameed, 2016; Hameed & Kanbar, 2017), yet require

no extra information about the given problem. This feature allows them to find

* Assistant lecturer, Department of Computer Science, Cihan University – Slemani, Slemani, Iraq,

wafaa.mustafa@sulicihan.edu.krd, asan.baker@sulicihan.edu.krd

http://orcid.org/0000-0002-2454-6185
mailto:wafaa.mustafa@sulicihan.edu.krd
mailto:asan.baker@sulicihan.edu.krd

22

solutions to problems that other optimization methods cannot handle due to a lack

of continuity, derivatives, linearity, or other features. Genetic algorithm and neural

networks are both inspired by computation in biological genetically. Neural

networks and genetic algorithms are two techniques for optimization and learning,

each having its own strengths and weaknesses. The two have generally evolved

along separate paths. (Montana & Davis, 1989; Arjona, 1991; Whitley, 1995),

The article investigates the role of crossover in GAs with respect to this problem,

by using a comparative study between the iteration results obtained from changing

the parameters values (crossover probability, mutation rate, population size and

number of generation) system. A good deal of biological neural architecture is

determined.

 2. PROBLEM DEFINITION

Neural Networks (NN) are biologically motivated approaches to machine

learning, inspired by ideas from neuroscience. Recently, some efforts have been

made to use genetic algorithms to evolve aspects of NN. (Wright, 1991). A NN

consists of layers of processing units called nodes joined by directional links: one

input layer, one output layer, zero or more hidden layers in between, and finally,

the NN uses bias nodes (in some problems, NN needs no bias nodes) (see Fig. 1).

Fig. 1. A schematic diagram of a simple feed forward NN

(Montana & Davis, 1989) took the first approach of evolving the weights in

a fixed network. They were using the GA instead of Back-Propagation algorithm

and it is desirable to find alternative weight training scheme (Michalewicz, 1996).

The simplest Boolean function that is not linearly separable, therefore, this problem

cannot be solved by a neural net without the hidden neurons. Table 1 shows the

desired relationships between input and output units for this function.

input layer hidden layer output layer

23

 Tab. 1. Training pattern for Exclusive-OR (XOR)

Input Desired

Output x1 x2

0 0 0

0 1 1

1 0 1

1 1 0

3. PROBLEM REPRESENTATION

Each chromosome was a list or vector of 14 weights. Fig. 2 shows how the

encoding was done: the weights were read off the network in a fixed order (from

left to right and from top to bottom) and placed in a list. Notice that each “gene”

in the chromosome is a real number rather than a bit.

Fig. 2. 2-party XOR (2 – 3 – 1) NN

3.1. Initial Population

The genetic algorithm must create the initial population, which is comprised

of multiple chromosome or solutions. An initial population of 13 weight vectors

was chosen randomly, with each value based on the proper way to choose the

weight Wij in the range of [−1,1] or [−
3

√𝑘𝑖
,
3

√𝑘𝑖
], where ki is the number of connec-

tion of j to that feed forward to i (the number of input links to i) (Whitley,

Starkweather & Fuquay, 1989).

input layer hidden layer output layer

24

3.2. Evaluation Function

To calculate the fitness of a given chromosome, the weights in the chromosome

were assigned to the links in the corresponding network, the network was run on

the training set, and the sum of the squares of the errors (collected over all the

training cycles) was returned. Here, an “error” was the activation value. The error

here is the Mean Squared Error (MSE) which represents the square of the

difference between the desired output (di) activation and actual output (ai), where

1 i n, n is the number of all possible output values.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑑𝑖 − 𝑎𝑖)

2

𝑛

𝑖=1

,

(1)

For the particular problem, n = 4.

 Low MSE meant a high fitness. In another word, we can obtain the maximum

fitness as follows:

𝐹𝑖𝑡. = 1 −𝑀𝑆𝐸 (2)

4. GENETIC OPERATORS

During the alteration phase of the algorithm, we will use the operators described

below (Hameed, 2016; Hameed & Kanbar, 2017; Goldberg, 1989).

4.1. Selection Operator

The selection of individuals for crossover and mutation is based toward good

individuals. In the classical fitness based roulette-wheel, the chance of an individual.

The selected is based on its relative fitness in the population.

4.2. Crossover Operator

Crossover is the operator that creates new candidate solution, in this problem;

we can say the One-Point crossover was used. A position is randomly chosen on

the string and the two parents are crossed over at this point crossover is mapped,

where this occurs at two points along the string.

25

4.3. Mutation Operator

The mutation operator used in this problem selects n-non input units and for

each incoming link to those units, adds a random value between (–1.0) and (+1.0)

to the weight on the link.

4. GENETIC PARAMETERS

For this particular problem, (Weisman & Pollack, 2002; Al-Inazy, 2005) used

the following parameters: population size popsize = 20, probability of crossover

Pc = 0.7, probability of mutation Pm = 0.001.

6. EXPERIMENTAL RESULTS

 In table 2 we provide the generation number for which we noted improvement

in the evaluation function, together with the value of the function. The best chro-

mosome after 1000 generations was:

vmax = 2.1433; –2.6102; –0.2982; 4.4594; 4.5946; –0.1168; –4.0; –4.7712;

–0.3300; 2.5095; –5.7542; 6.1160; 0.2693. Which is slightly less than 0.0111.

 Tab. 2. Results of 1000 generations for evolving weights in NN

Generation

number

Evolution

function
Fitness

0

34

177

289

402

498

576

622

695

734

867

0.2610

0.2457

0.2195

0.1883

0.1325

0.0861

0.0364

0.0262

0.0159

0.0121

0.0111

0.7390

0.7543

0.7895

0.8117

0.8675

0.9139

0.9636

0.9738

0.9841

0.9879

0.9889

For this problem, a simulation has been constructed in order to apply the GA,

using the crossover parameters mentioned above, the vmin value has many different

sets of weights give MSE = 0.010, then the fit. value is 0.99.

26

7. THE EFFECT OF DIFFERENT TYPES OF CROSSOVER

ON EVOLVING WEIGHTS OF XOR-NN PROBLEM

In this part, we will try to study the effect of applying different types of crossover

on the reported algorithms, on their performance, speed, and ability to find the

solution.

To see the effect of using different types of crossover operators on this problem,

Weisman (Weisman & Pollack, 2002; Al-Inazy, 2005) used the Guaranteed Average

crossover depending on the following parameters: Pc = 0.7, Pm = 0.001,

popsize = 20, NG = 1500. Table 3 describes the comparison study of the iterations

results between the above crossover and the other kinds which are implemented

on this problem. In addition, the table shows the average of iterations results for

10 runs.

Tab. 3. Comparison study of Guaranteed

Average crossover and other kinds

Crossover NG Fitness

GUA 748 0.9900

ARITH 851 0.9881

DR 870 0.0868

HU 838 0.9900

EX 845 0.9882

IR 762 0.9900

LR 793 0.9900

From table 3, the average iterations results shows that the Guaranteed Average

(followed by Intermediate Recombination and Line Recombination) is the best

because when a = 0.5 this will makes approximate balance between the vectors x1

and x2. The Discrete Recombination is the worst because it generates corners of

the hyper cube defined by the parents this may effect on the fitness value.

8. THE EFFECT OF DIFFERENT PARAMETERS ON CROSSOVER

The crossover is an extremely important component of a genetic algorithm.

Many GA practitioners believe that if we delete the crossover operators from

a GA the result is no longer a GA. In fact; many GA practitioners believe that

the use of a crossover operator distinguishes GA from all other optimization

algorithms. In this section we will try to study the effect of different genetic

parameters on the performance of the proposed algorithms.

27

9. STUDYING THE EFFECT OF THE PROBABILITY

OF CROSSOVER ON EVOLVING WEIGHTS OF XOR-NN

PROBLEM

This operator owns a major role in GA, so specifying the probability of crossover,

that should not be done randomly, but it must depend on many runs of the simu-

lation to this problem, in order to tune this operator to obtain the fine probability

of crossover. We will apply this operator with different values and so other operators.

This problem, table 4 shows that the population size, the number of generation

and the mutation rate are all fixed, while the crossover probability takes the values

0.0, 0.3, 0.5 and 0.8.

Tab. 4. Crossover probability effect when NG = 1000, popsize = 50, Pm = 0.001.

Crossover Pc Iteration Max. Fit. Min. Error

GUA

0.0 967 0.99 0.0

0.5 800 0.99 0.0

0.8 820 0.99 0.0

ARITH

0.0 980 0.99 0.0

0.5 725 0.99 0.0

0.8 646 0.99 0.0

DR

0.0 947 0.99 0.0

0.5 836 0.99 0.0

0.8 814 0.99 0.0

HU

0.0 988 0.99 0.0

0.5 728 0.99 0.0

0.8 706 0.99 0.0

EX

0.0 904 0.99 0.0

0.5 911 0.99 0.0

0.8 837 0.99 0.0

LR

0.0 955 0.99 0.0

0.5 696 0.99 0.0

0.8 835 0.99 0.0

IR

0.0 923 0.99 0.0

0.5 887 0.99 0.0

0.8 821 0.99 0.0

28

From table 4 we note the following analytic aspects:

1. The worst iteration results (high iteration levels) are be obtained when the

effect of the crossover probability is eliminated (when Pc = 0.0).

2. In the most kinds of the used crossovers, including the Guaranteed Average

crossover, the iteration results is be improved when using Pc = 0.5.

3. the results which appeared shows that the Guaranteed Average crossover,

which is used previously, is better than the other operators, which are used

to solve this problem.

10. STUDYING THE MUTATION RATE EFFECT ON CROSSOVER

FOR EVOLVING WEIGHTS OF XOR-NN PROBLEM

This operator plays a dual role in genetic algorithm, it provides and maintains

diversity in a population, so that other operators can continue to work and it can

work as a search operator in its own right. We will apply this operator with

different numbers of mutation rate and so other operators. In this problem, table 5

shows that the population size, the number of generation and the crossover

probability are all fixed, while the mutation rate takes the values 0.0, 0.001 and 0.003.

 Tab. 5. Mutation rate effect when NG = 1000, popsize = 50, Pc = 0.8.

Crossover Pm Iteration Max. Fit. Min. Error

GUA

0.0 888 0.99 0.0

0.001 820 0.99 0.0

0.003 1000 0.789 0.25

ARITH

0.0 798 0.99 0.0

0.001 646 0.99 0.0

0.003 1000 0.739 0.75

DR

0.0 815 0.99 0.0

0.001 814 0.99 0.0

0.003 1000 0.745 0.5

HU

0.0 824 0.99 0.0

0.001 806 0.99 0.0

0.003 1000 0.99 0.0

EX

0.0 807 0.99 0.0

0.001 737 0.99 0.0

0.003 1000 0.831 0.25

LR

0.0 745 0.99 0.0

0.001 535 0.99 0.0

0.003 1000 0.745 5.0

IR

0.0 878 0.99 0.0

0.001 821 0.99 0.0

0.003 1000 0.728 1.0

0.003 1000 0.728 1.0

29

From table 5 we note the following analytic aspects:

1. When increasing the value of Pm, no positive results are gotten.

2. When using Pm = 0.001, the Line Recombination and Extended crossovers

will give good results.

11. STUDYING THE EFFECT POPULATION SIZE ON CROSSOVER

FOR EVOLVING WEIGHTS OF XOR-NN PROBLEM:

The operation which determines the population size is depending on the nature

of the problem, that we require solving it. When increasing the complexity of search

space, then it needs to a large population. In general, we cannot estimate the real

size, but we can give the domain of it. In this operator we use different populations

with other operators

In this problem, table 6 shows that the number of generation, the mutation rate

and the crossover probability are all fixed, while the population size takes the

values 20, 50 and 100.

 Tab. 6. Population size effect when NG = 1000, Pm = 0.001, Pc = 0.8.

Crossover popsize Iteration Max. Fit. Min. Error

GUA

20 738 0.99 0.0

50 520 0.99 0.0

100 793 0.99 0.0

ARITH

20 877 0.99 0.0

50 646 0.99 0.0

100 1000 0.759 0.25

DR

20 810 0.99 0.0

50 814 0.99 0.0

100 1000 0.896 0.0

HU

20 881 0.99 0.0

50 706 0.99 0.0

100 851 0.738 0.75

EX

20 909 0.99 0.0

50 737 0.99 0.0

100 957 0.99 0.0

LR

20 772 0.99 0.0

50 635 0.99 0.0

100 850 0.944 0.0

IR

20 846 0.99 0.0

50 821 0.99 0.0

100 1000 0.897 0.0

30

From table 6 we note the following analytic aspects:

1. For most kinds of the used crossovers, the best results obtained when popsize

parameter equals 50.

2. The best two crossover operators from all kinds of the used crossovers are

the Guaranteed Average and Line Recombination crossovers.

12. STUDUING THE EFFECT OF NUMBER OF GENERATION ON

CROSSOVER FOR EVOLVING WEIGHTS OF XOR-NN PROBLEM

In this problem, table 7 shows that the population size, the mutation rate and

the crossover probability are all fixed, while the number of generation takes the

values 500, 1000 and 1500.

 Tab. 8. Number of generation effect when popsize = 50, Pm = 0.001, Pc = 0.8.

Crossover NG Iteration Max. Fit. Min. Error

GUA

500 500 0.90 0.0

1000 820 0.99 0.0

1500 752 0.99 0.0

ARITH

500 500 0. 738 0.75

1000 646 0.99 0.0

1500 776 0.99 0.0

DR

500 500 0.739 0.75

1000 814 0.99 0.0

1500 756 0.99 0.0

HU

500 500 0.824 0.25

1000 806 0.99 0.0

1500 824 0.99 0.0

EX

500 500 0.743 0.5

1000 737 0.99 0.0

1500 764 0.99 0.0

LR

500 500 0.879 0.0

1000 535 0.99 0,0

1500 699 0.99 0.0

IR

500 500 0.803 0.25

1000 821 0.99 0.0

1500 803 0.99 0.0

31

From tables 6, 7 and 8 we note the following analytic aspects:

1. It is important to mention that, there is a relation between the execution time

and the control parameters (number of generation and population size).

2. In XOR Problem by NN, there is no solution to be obtained, when the low

 levels of generation (NG = 500) are to be chosen.

13. PARAMETRIC STUDY FOR ALL CROSSOVER OPERATORS

From our experiences and experimental results, the best parameters values for all

crossover kinds are chosen to make a comparative study for each kind of crossover,

for Evolving Weights of Xor-Nn problem and for several runs. The minimum

iteration results are shown in tables with statistical diagram to illustrate these results.

For this problem, the best values are: when NG = 1000, popsize = 50,

Pm = 0.001 and Pc = 0.5. Table 9 shows the comparison between iterations results

for 10 runs and Fig. 3 Illustrates the statistical diagram of the comparison study results.

Tab. 9. Comparison study of crossover iterations results for

 evolving weights of XOR-NN problem

Crossover NG Fitness

GUA 816 0.9900

ARITH 871 0.9868

DR 882 0.0881

HU 850 0.9900

EX 872 0.9880

IR 879 0.9882

LR 775 0.9900

Fig. 3. Statistical diagram of the comparison study results

for evolving weights of XOR-NN problem

32

In this particular problem, from table 9 and Fig. 3, we notes that the operator

is the Line Recombination because its selects only one value of the alpha that is

generates any point on the line define by the parents and keep the values of

chromosome closed to each other.

14. CONCLUSIONS

This research concludes the following points. For evolving weights of XOR-NN

problem, the Line Recombination was the best to be applied. For the parametric

study, the research concludes: The worst iteration results (high iteration levels)

are obtained when the effect of the crossover probability is eliminated (when

Pc = 0.0), since the search in this state is closed to the random search. For the pop-

ulation size parameters, the result reveals that due to the founder effect, the GA’s

cannot always locate the peaks of the fitness landscape, even with higher

crossover rate. Although, the mutation rate parameter preferred to be chosen as

minimum as possible (Pm ≤ 0.01), but it is still related to the problem which is

discussed. It’s natural that, there is a relation between the number of generation

and population size. This parameter specification is related to the problem which

is discussed.

REFERENCES

Al-Inazy, Q. A. (2005). A Comparison between Lamarckian Evolution and Behavior Evolution of

Neural Network (Unpublished M.Sc. Thesis). Al- Mustansriyah University, Baghdad, Iraq.

Arjona, D. (1996). A hybrid artificial neural network/genetic algorithm approach to on-line

operations for the optimization of electrical power systems. In IECEC 96. Proceedings of

the 31st Intersociety Energy Conversion Engineering Conference (pp. 2286–2290 vol. 4).

Washington, DC, USA. doi:10.1109/IECEC.1996.561174

Goldberg, D. E. (1989). Genetic Algorithms in search, Optimization, and Machine Learning.

Boston, MA, USA: Addison–Wesley Longman Publishing Co., Inc.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural

selection. Cambridge, MA, USA: MIT Press.

Michalewicz, Z. (1996). Genetic Algorithm + Data Structure = Evolution Programs, 3rd Revised

Extended Edition. New York, USA: Springer – Verlag Berlin Heidelberg.

Mitchell, M. (1998). An Introduction of Genetic Algorithms. Cambridge, MA, USA: MIT Press.

Montana, D., & Davis, L. (1989). Training Feed Forward neural networks using Genetic Algorithms,

In IJCAI'89 Proceedings of the 11th international joint conference on Artificial intelligence

(pp. 762–767). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Hameed, W. M., & Kanbar, A. B. (2017). A Comparative Study of Crossover Operators for Genetic

Algorithms to Solve Travelling Salesman Problem. International Journal of Research –

Granthaalayah, 5(2), 284–291. doi:10.5281/zenodo.345734

Hameed, W. M. (2016). The Role of Crossover on Optimization of a Function Problem Using Genetic

Algorithms. International Journal of Computer Science and Mobile Computing, 5(7), 425–429.

Weisman, O., & Pollack, Z. (2002). Neural Networks Using Genetic Algorithm. Retrieved from

http://www.cs.bgu.ac.il/NNUGA.

33

Whitley, D., Starkweather, T., & Fuquay, D. A. (1989). Scheduling Problems and Traveling Salesman:

The Genetic Edge Recombination Operator. ICGA.

Whitley, D. (1995). Genetic Algorithms and Neural Networks. In J. Periaux & G. Winter (Eds.),

Genetic Algorithms in Engineering and Computer Science (pp. 191-201). John Wiley & Son

Corp.

Wright, A. H. (1991). Genetic Algorithms for Real Parameters Optimization. Foundation of Genetic

Algorithms, 1, 205-218. doi:10.1016/B978-0-08-050684-5.50016-1

