
27

Applied Computer Science, vol. 15, no. 4, pp. 27–36
doi:10.23743/acs-2019-27

Submitted: 2019-09-17
Revised: 2019-11-06

Accepted: 2019-12-06

audio fade, fade-down, fade-up, real-time processing

Lucian LUPŞA-TĂTARU [0000-0002-3320-9850]*

CUSTOMIZING AUDIO FADES

WITH A VIEW TO REAL-TIME PROCESSING

Abstract

To a large extent, an audio fade is distinctly acknowledged as a strict increase

(fade-up) or decrease (fade-down) of the volume of an audio content.

In this broad context, the widely used fade-in and fade-out sound effects,

applied to receive smooth transitions from and down to silence, respectively,

appear to be restrictive. Taking into account the increasing demand for

multimedia techniques adapted for real-time computing, the present inves-

tigation advances straightforward procedures intended for customizing the

audio fade-up and fade-down profiles, having at hand well-proven tech-

niques of shaping the fade-in and fade-out audio effects, suitable for fast

computing.

1. INTRODUCTION

In audio production, both fade-in and fade-out sound effects are extensively

employed not only to smooth the beginning and the ending parts of the audio

recordings but also to cross-fade various audio sections (Case, 2007; Langford,

2014; Reiss & McPherson, 2015). On the other hand, the applying of a fade-up

or a fade-down sound effect simply results in a strict increase or decrease of the

audio volume by a specified amount. Furthermore, the successive applications

of fade-up and fade-down effects enable one to control the amplitude envelope

of an audio content (Jackson, 2015; Langford, 2014; Schroder, 2011). However,

similar to the case of customizing the audio fade-in and fade-out shapes,

the adjustable audio fades i.e. the fade-up and fade-down sound effects are usually

implemented in the off-line mode, by making use of different transcendental

functions (exponential, logarithm, sine) to enforce the time-related evolution of

the audio volume between imposed amplitude levels.

* “Transilvania” University of Braşov, Faculty of Electrical Engineering and Computer Science,

Department of Electrical Engineering and Applied Physics, Bd. Eroilor No. 29, Braşov, Romania,

lupsa@programmer.net, lucian.lupsa@unitbv.ro

https://orcid.org/0000-0002-3320-9850
mailto:lupsa@programmer.net
mailto:lucian.lupsa@unitbv.ro

28

To boost the computational capabilities with a view to real-time processing,

which is actually required by numerous interactive products, the present approach

to customizing the audio fades puts forward persuasive methods based on

efficient techniques of shaping the audio fade-out and fade-in profiles, which

have previously been validated for effectiveness by means of plain JavaScript

implementations (Lupsa-Tataru, 2018, 2019).

2. THE AUDIO FADE-DOWN CUSTOMIZING

Assuming that the audio level decreases from the initial value 𝑣𝐷,0, occurring

at the fade initiation, down to the final value 𝑣𝐷,𝑓, showing at the fade ending,

we consider that the evolution of the audio volume during fading-down is given

by the output of the following function:

𝑣𝐷(𝜏𝐷) = 𝑣𝐷,𝑓 + 𝛿𝐷(𝜏𝐷), 𝜏𝐷 ∈ [0, 𝜏𝐷,𝑓], (1)

wherein the variable

𝜏𝐷 = 𝑡𝐷 − 𝑡𝐷,𝑟𝑒𝑓 (2)

is yielded by the difference of the current playback time and the chosen instant

of fade-down initiation, whilst 𝜏𝐷,𝑓 stands for the fade-down length. Since quantity

𝑣𝐷,𝑓 in (1), as the final audio volume, is a constant term, it follows that the rate

of change of audio level during fading-down is identical to the rate of change of

𝛿𝐷 in (1).

Thus, customizing the profile of the fade-down effect, provided by the output

of (1), is equivalent to shaping the output of function 𝛿𝐷(𝜏𝐷) that, from the

technical point of view, has to portray a fade-out audio effect. With the purpose

of real-time implementation, we plainly consider (Lupsa-Tataru, 2018)

𝛿𝐷(𝜏𝐷) =
𝜏𝐷−𝛼𝐷

𝛽𝐷𝜏𝐷−𝛾𝐷
, 𝜏𝐷 ∈ [0, 𝜏𝐷,𝑓]. (3)

In order for rational function (3) to describe a fade-out audio effect and,

implicitly, in order for (1) to depict a fade-down audio effect, the coefficients

of algebraic fraction defining (3) receive the appropriate expressions in terms of

imposed maximum (initial) and minimum (final) audio volumes, denoted here

by 𝑣𝐷,0 and 𝑣𝐷,𝑓, respectively. Hence, one gets (Lupsa-Tataru, 2018)

29

𝛼𝐷 = 𝜏𝐷,𝑓 ,

𝛽𝐷 =
2𝜌𝐷−1

𝜌𝐷𝛿𝐷,0
= (2 −

1

𝜌𝐷
) (𝑣𝐷,0 − 𝑣𝐷,𝑓)⁄ ,

𝛾𝐷 = 𝜏𝐷,𝑓 𝛿𝐷,0⁄ = 𝜏𝐷,𝑓 (𝑣𝐷,0 − 𝑣𝐷,𝑓)⁄ ,

 (4)

wherein

𝜌𝐷 =
𝛿𝐷(𝜏𝐷,𝑓 2⁄)

𝛿𝐷(0)
=

𝛿𝐷,ℎ

𝛿𝐷,0
;

0 < 𝜌𝐷 < 1
 (5)

or, having in view (1),

𝜌𝐷 =
𝑣𝐷(𝜏𝐷,𝑓 2⁄)−𝑣𝐷,𝑓

𝑣𝐷(0)−𝑣𝐷,𝑓
=

𝑣𝐷,ℎ−𝑣𝐷,𝑓

𝑣𝐷,0−𝑣𝐷,𝑓
 . (6)

One can easily observe that, within (4)–(6), we have employed the following

auxiliary notations:

𝛿𝐷,0 = 𝛿𝐷(0), 𝑣𝐷,0 = 𝑣𝐷(0),

𝛿𝐷,ℎ = 𝛿𝐷(𝜏𝐷,𝑓 2⁄), 𝑣𝐷,ℎ = 𝑣𝐷(𝜏𝐷,𝑓 2⁄).

The technique of customizing the audio fade-out profile by means of rational

function (3), which serves as groundwork for the suggested method of shaping

the fade-down audio effect, has been validated by a previously advanced

implementation in plain (“vanilla”) JavaScript (Lupsa-Tataru, 2018). In the present

context, it comes to be obvious that implementing the fade-down audio effect

by valuating function (1) to generate the fade profile in real-time is structurally

similar to implementing a fade-out audio effect that requires the computation

of the output of rational function (3). Generically, a JavaScript implementation

of the proposed method of fade-down shaping should include the construction

given next.

30

Listing 1. The function designed for audio fading-down.

/* global scope: var ae, alphaD, betaD, gammaD;

var fadeDown = false; */

function setVolD(tDref, tauDf, vDf, rhoD) {

var tauD = ae.currentTime – tDref;

var vD0 = ae.volume;

if (fadeDown) {

var deltaD = (tauD – alphaD) / (betaD * tauD – gammaD);

var vD = vDf + deltaD;

if (vD > vDf) { ae.volume = vD; }

else { ae.volume = vDf; fadeDown = false; }

}

else if (tauD >= 0.0 && vD0 > vDf) {

var deltaD0 = vD0 – vDf;

alphaD = tauDf;

betaD = (2.0 – 1.0 / rhoD) / deltaD0;

gammaD = tauDf / deltaD0;

fadeDown = true;

}

}

Since global variable “ae” of the provided code is created to refer the audio

element (object), the invocation of function “setVolD()” will result in an audio

volume updating whenever the playback position within the audio content is

greater than the (expected) instant 𝑡𝐷,𝑟𝑒𝑓 of fade-down initiation and the output

of function (1), denoted within the code by variable “vD”, is greater than the

imposed final volume 𝑣𝐷,𝑓, designated here by means of parameter “vDf” of

function “setVolD()”. One perceives that when the value of (1), i.e. the value of

local variable “vD”, is found less than or equal to the imposed final level that is

the value of parameter “vDf”, the audio volume is set up just to the imposed

final level and the fading-down process is stopped.

To avoid unnecessary valuations of (1), the structure encompasses the global

variable “fadeDown”, which receives the value of “true” only when the playback

position comes to be greater than or equal to the requested instant of fade-down

initiation, denoted here by parameter “tDref”, and the detected audio volume,

returned by the “volume” property of the audio object “ae”, remains greater than

the value of parameter “vDf” that stores the imposed final volume.

31

Fig. 1. Fade-down curves for fade length of 5 s, and ratio (5) of 0.15.

Fig. 2. Fade-down curves for fade length of 5 s, and ratio (5) of 0.85.

Taking into account (1), where function 𝛿𝐷(𝜏𝐷) is now provided by relation

(3), in Fig. 1 and Fig. 2 we have plotted the fade-down profiles obtained for the

fade length of 5 s, the initial levels 𝑣𝐷,0 = 0.8 and 𝑣𝐷,0 = 1, the final levels

𝑣𝐷,𝑓 = 0.2 and 𝑣𝐷,𝑓 = 0.4, and ratio (5) of value 𝜌𝐷 = 0.15 and 𝜌𝐷 = 0.85,

respectively. One observes that, regardless of the imposed final level i.e. the value

of 𝑣𝐷,𝑓 in (1), the generated shapes of the fade-down sound effect are crucially

decided by the value of quantity (5) that is the ratio between the value of (3)

at the fade-down midpoint and the initial value of function (3), occurring at the

fade-down initiation.

32

3. THE AUDIO FADE-UP CUSTOMIZING

Similar to the case of customizing the fade-down shape, we take into account

that the evolution of the audio level during fading-up can be represented as the

summation of a constant quantity and a function of the playback time. More

precisely, we consider here that the function shaping the fade-up profile is brought

forth by the summation of the initial audio volume 𝑣𝑈,0 and a function that

technically describes a fade-in audio effect, i.e.

𝑣𝑈(𝜏𝑈) = 𝑣𝑈,0 + 𝛿𝑈(𝜏𝑈), 𝜏𝑈 ∈ [0, 𝜏𝑈,𝑓], (7)

where 𝜏𝑈,𝑓 is the length of fade-up audio effect, while the relationship defining

the independent variable

𝜏𝑈 = 𝑡𝑈 − 𝑡𝑈,𝑟𝑒𝑓 (8)

plainly indicates that, with a view to software implementation, the instant of

fade-up initiation has to be subtracted from the current playback time within the

audio content (Lupsa-Tataru, 2019).

Since function 𝛿𝑈(𝜏𝑈) in (7) has to designate a fade-in audio effect i.e.

a strict increasing of the audio level, starting from silence, we straightforwardly

employ a rational function that proved to be suitable for real-time implementing.

Thus, we deal with the following relation (Lupsa-Tataru, 2019)

𝛿𝑈(𝜏𝑈) =
𝛼𝑈𝜏𝑈

𝑘

𝜏𝑈+𝛽𝑈
, 𝜏𝑈 ∈ [0, 𝜏𝑈,𝑓], (9)

with 𝑘 ∈ {1,2,3}.
To customize the shape of the fade-up effect, we account here for the ratio

between the value of (9) at the fade midpoint and the value of (9) at the end of

fading-up i.e.

𝜌𝑈 =
𝛿𝑈(𝜏𝑈,𝑓 2⁄)

𝛿𝑈(𝜏𝑈,𝑓)
=

𝛿𝑈,ℎ

𝛿𝑈,𝑓
;

0 < 𝜌𝑈 < 1
 (10)

or, considering relation (7),

𝜌𝑈 =
𝑣𝑈(𝜏𝑈,𝑓 2⁄)−𝑣𝑈,0

𝑣𝑈(𝜏𝑈,𝑓)−𝑣𝑈,0
=

𝑣𝑈,ℎ−𝑣𝑈,0

𝑣𝑈,𝑓−𝑣𝑈,0
 . (11)

33

In order for rational function (9) and, implicitly, function (7) to be strictly

increasing, the encompassed parameters get the specific expressions in terms of ratio

(10) and the initial and final audio levels 𝑣𝑈,0 and 𝑣𝑈,𝑓, where 𝑣𝑈,0 < 𝑣𝑈,𝑓 (Lupsa-

Tataru, 2019):

𝑘 = {

3, 1 8⁄ < 𝜌𝑈 < 1 4⁄ ;

2, 1 4⁄ < 𝜌𝑈 < 1 2⁄ ;

1, 1 2⁄ < 𝜌𝑈 < 1;
 (12)

𝛼𝑈(𝜌𝑈) =

{

4𝜌𝑈

8𝜌𝑈−1

𝑣𝑈,𝑓−𝑣𝑈,0

𝜏𝑈,𝑓
2 , 1 8⁄ < 𝜌𝑈 < 1 4⁄ ;

2𝜌𝑈

4𝜌𝑈−1

𝑣𝑈,𝑓−𝑣𝑈,0

𝜏𝑈,𝑓
, 1 4⁄ < 𝜌𝑈 < 1 2⁄ ;

𝜌𝑈

2𝜌𝑈−1
(𝑣𝑈,𝑓 − 𝑣𝑈,0), 1 2⁄ < 𝜌𝑈 < 1;

 (13)

𝛽𝑈(𝜌𝑈) =

{

1−4𝜌𝑈

8𝜌𝑈−1
𝜏𝑈,𝑓 , 1 8⁄ < 𝜌𝑈 < 1 4⁄ ;

1−2𝜌𝑈

4𝜌𝑈−1
𝜏𝑈,𝑓 , 1 4⁄ < 𝜌𝑈 < 1 2⁄ ;

1−𝜌𝑈

2𝜌𝑈−1
𝜏𝑈,𝑓 , 1 2⁄ < 𝜌𝑈 < 1.

 (14)

It can be observed that, similar to the case of customizing the fade-down

audio effect, we have performed several auxiliary notations i.e.

𝛿𝑈,ℎ = 𝛿𝑈(𝜏𝑈,𝑓 2⁄), 𝑣𝑈,ℎ = 𝑣𝑈(𝜏𝑈,𝑓 2⁄),

𝛿𝑈,𝑓 = 𝛿𝑈(𝜏𝑈,𝑓), 𝑣𝑈,𝑓 = 𝑣𝑈(𝜏𝑈,𝑓).

To facilitate the understanding, in Fig. 3 we have illustrated the fade-up

curves received for the fade length of 5 s, the initial audio levels 𝑣𝑈,0 = 0.2 and

𝑣𝑈,0 = 0.4, respectively, the final audio levels 𝑣𝑈,𝑓 = 0.8 and 𝑣𝑈,𝑓 = 1,

respectively, and ratio (11) of value 𝜌𝑈 = 0.85.

34

Fig. 3. Fade-up curves for fade length of 5 s, and ratio (11) of 0.85.

Structurally, the implementation of the fade-up audio effect by valuating the

output of (7) is analogous to implementing the fade-in audio effect by employing

the rational function (9), which proved to be suitable for fast processing in real-

time (Lupsa-Tataru, 2019). Nevertheless, in the present case, the audio volume

has to be updated each time the playback position of the audio content is greater

than the instant 𝑡𝑈,𝑟𝑒𝑓 of fade-up initiation and the value of function (7) is less

than the imposed final audio level 𝑣𝑈,𝑓. As soon as the output of (7) comes to be

greater than or equal to the final audio level 𝑣𝑈,𝑓, the audio volume has to be set

precisely to 𝑣𝑈,𝑓, and the fading-up process has to be stopped in order to avoid

subsequent evaluations of function (7).

Obviously, the computation of parameters (12)–(14), expressed now in terms

of ratio (11), and the initial and final audio levels, has to be carried out only once

that is the first time the playback position is found greater than or equal to the

assumed instant of fade-up initiation. For instance, the JavaScript construction

given next has been designed for the case of 1 2⁄ < 𝜌𝑈 < 1 in representations

(12)–(14). Anyhow, one easily perceives that the calling of function “setVolU()”

leads to the computation of coefficients (13), (14), denoted by global variables

“alphaU” and “betaU”, respectively, only if the fading process is not yet started

and the playback position, returned by the audio object “currentTime” property,

comes to be greater than or equal to the requested instant of fade-up initiation.

35

Listing 2. The function designed for audio fading-up.

/* global scope: var ae, alphaU, betaU;

var fadeUp = false; */

function setVolU(tUref, tauUf, vUf, rhoU) {

var tauU = ae.currentTime – tUref;

var vU0 = ae.volume;

if (fadeUp) {

var deltaU = alphaU * tauU / (tauU + betaU);

var vU = vU0 + deltaU;

if (vU < vUf) { ae.volume = vU; }

else { ae.volume = vUf; fadeUp = false; }

}

else if (tauU >= 0.0 && vU0 < vUf) {

var deltaUf = vUf – vU0;

var auxVar = rhoU + rhoU – 1.0;

alphaU = rhoU / auxVar * deltaUf;

betaU = (1.0 – rhoU) / auxVar * tauUf;

fadeUp = true;

}

}

4. CONCLUSIONS

The present investigation emphasizes the feasibility of customizing and imple-

menting in real-time the fade-down and fade-up audio effects, having at hand

techniques of shaping the fade-out and fade-in audio effects, which have been

verified for the suitability with real-time computing (Lupsa-Tataru, 2018, 2019).

The audio fades customization is carried out here by taking into account that

the evolution of the audio volume during a fading process can straightforwardly

be described by the output of a function of the type:

𝑣(𝜏) = 𝑉 + 𝛿(𝜏) (15)

where: 𝜏 – the difference of the playback time and the instant of fade initiation,

 𝑉 – constant term,

 𝛿(𝜏) – rational function that depicts a fade-out or a fade-in audio effect.

It is pointed out that, by employing a relation of type (15) in order to shape

the fade profile with the purpose of real-time processing, the implementation of

the fade-down audio effect is similar to implementing the fade-out audio effect

whilst the implementation of the fade-up audio effect becomes analogous to

implementing the fade-in audio effect. In this context, the essential tasks

required by the appropriate real-time implementations are highlighted in the

course of presentation.

36

REFERENCES

Case, A. U. (2007). Sound FX: Unlocking the Creative Potential of Recording Studio Effects.

Burlington, MA, USA: Focal Press.

Jackson, W. (2015). Digital Audio Editing Fundamentals: Get started with digital audio development

and distribution. Berkeley, CA, USA: Apress Media. doi:10.1007/978-1-4842-1648-4

Langford, S. (2014). Digital Audio Editing: Correcting and Enhancing Audio in Pro Tools, Logic

Pro, Cubase, and Studio One. Burlington, MA, USA: Focal Press.

Lupsa-Tataru, L. (2018). Novel technique of customizing the audio fade-out shape. Applied

Computer Science, 14(3), 5–14. doi:10.23743/acs-2018-17

Lupsa-Tataru, L. (2019). Implementing the fade-in audio effect for real-time computing. Applied

Computer Science, 15(2), 5–18. doi:10.23743/acs-2019-09

Reiss, J. D., & McPherson, A. (2015). Audio Effects: Theory, Implementation and Application.

Boca Raton, FL, USA: CRC Press.

Schroder, C. (2011). The Book of Audacity: Record, Edit, Mix, and Master with the Free Audio

Editor. San Francisco, CA, USA: No Starch Press.

