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Abstract 

This paper presents an overview of some Deep Learning (DL) techniques 

applicable to forecasting electricity consumptions, especially in the short-

term horizon. The paper introduced key parts of four DL architectures 

including the RNN, LSTM, CNN and SAE, which are recently adopted in 

implementing Short-term (electricity) Load Forecasting problems. It further 

presented a model approach for solving such problems. The eventual 

implication of the study is to present an insightful direction about concepts 

of the DL methods for forecasting electricity loads in the short-term period, 

especially to a potential researcher in quest of solving similar problems. 
 

 

1.  INTRODUCTION  
 

The power systems structure is characterised by complex infrastructures that 

are necessary for the sourcing and delivery of electricity to end-users. In order  

to deliver electricity to end-users, the power Generation Company (GenCo) will 

transport power through networks of power transmission lines, which is controlled 

by the Transmission Companies (TransCo). The Distribution Companies (DisCo), 

also known as the Utilities, receive power from the TranCo and ensure its safe 

delivery to consumers. 
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The utilities have the responsibility to meet the electricity demand of their 

customers. Electricity demand is the load on the electrical system which the 

system must satisfactorily bear and service for customers. This load or demand 

increases as population increases. To manage this, Utilities need to carry out load 

forecasts of electricity ahead of need. Electricity load forecasting is germane  

to the GenCo, DisCo, and TransCo stakeholders, especially in a deregulated 

economy. The electricity market deregulation and unbundling of the power 

industry has engendered this even more. Each of the resulting companies that is, 

the GenCo, TransCo and DisCo have responsibilities to meet the demand of her 

customers ahead of electricity supply. Therefore, electricity load forecasting is 

their essential routine. 

Load forecasting in power systems is the prediction of users’ demands on the 

grid prior to actual consumption. Load forecasting will, therefore, help the power 

players across classes to manage the power system’s load effectively and efficiently. 

With load forecasting, the Utilities will especially make essential decisions critical 

to its operation and planning. This includes purchasing decision and power 

generation decision. Also, the decisions can be one of the following: Load 

switching; infrastructure development; capacity planning; maintenance schedules; 

energy demand; production adjustment; and contract evaluation (Ghullam & Angelos, 

2017; Kuo & Huang, 2018; Seunghoung, Hongseok & Jaekoo, 2017).  

 Therefore, tackling the problem of electricity consumption forecasting using 

deep learning techniques involve simplifying it based on Fig. 1. Fig. 1 shows that load 

forecasting problem can be simplified based on five categories: Model, Horizon, 

Aim, Variables and Area (Luis et. al., 2012, 2013, 2014). Load forecasting is 

simplified based on the type of the model to develop, which results in linear  

or non-linear model categorisation. Fig. 1 further classifies the problem into four 

categories based on the horizon (Feinberg & Genethliou, 2005; Luis et. al., 2012).  

This includes Very Short Term Load Forecasting (VSTLF) which falls within 

seconds or minutes, Short Term Load Forecasting (STLF); spanning a week from 

an hour, Medium-Term Load Forecasting (MTLF); which covers a period from  

a week up to a few months and Long Term Load Forecasting (LTLF); which is 

usually more than a year (Luis et. al., 2012, 2013, 2014). Furthermore, the 

electricity load forecasting is simplified based on the aim of the forecast that is, 

the values to be predicted, which can be a single value or multiple values (Luis et. 

al., 2014). When considering certain factors influencing load consumption, which 

are ingredients of forecast estimation, it is essential to include time, weather and 

customer class (Feinberg & Genethliou, 2005; Swalin, 2019). These factors are 

classified as variables in Fig. 1. They, therefore, include variables such as load 

data and calendar data; or a combination of load data, calendar data and weather 

parameters; or another combination of load data, calendar data and other data 

variables which may be demographic, economic and social in nature, usually 

prevalent in the residential class of electricity end-users’ class.  
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The Fig. 1 also categorises area of forecast estimation as including country, 

region/city and community/microgrids. In any situations, load forecasting can be 

implemented for one of these identified categories.  

 
 

 
 

Fig. 1. Load forecasting problem categorisation 

 

 In this paper, the scope of the study is limited to four Deep Learning (DL) 

algorithms already established in the literature (Bengio, 2009; Brownlee, 2018; 

Chengdong, Zixiang, Dongbin, Jianqiang & Guiqing, 2017; Deng, 2013; Ghullam 

& Angelos, 2017; Hamedmoghadam, Joorabloo & Jalili,2018; Hussein & Hussein, 

2017, Kuo & Huang, 2018; Nor, Rahaini & Siti, 2018; Swalin, 2019) for modelling 

electricity load forecasting. The techniques are the standard Recurrent Neural 

Network (RNN), Long Short Term Memory (LSTM) network, Convolutional 

Neural Network (CNN), and Stacked Autoencoder (SAE). Also, the concepts of deep 

learning were introduced. These cover the motivating influences for the technology; 

its classification, as well as a few terminologies of deep architectures. Also, the 

problems with primitive methods for modelling sequential electricity load were 

highlighted. As a glimpse, we present a concise approach to developing load 

forecasting problems. This will be to define a robust or scalable model, preprocess 

data and carry out performance evaluation of the model.  

 The rest of the paper is arranged as follow. Section 2 presents background 

knowledge and an overview of modelling electricity load forecasting in the short-

term. Section 3 extends the discussion on deep architectures relevant for STLF 

problems. Here, the four DL techniques are discussed in detail. In Section 4, 

 an approach towards implementing the STLF problem is presented. Finally,  

in Section 5, conclusions from the work are drawn.  
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2.  BACKGROUND  
 

 In order to establish a background into the study of electricity load forecasting, 

there is a need to introduce the concept from the perspective of how a model can be 

developed for it. We categorized the approaches into two: the primitive or classical 

approach and the DL approach. These two are briefly discussed in the subsections 

that follow.  
 

2.1. Primitive approach  
 

 Classical approaches have been researched and discussed in academia and are 

applied in the industry with varying success. The techniques are well reported. 

Linear methods like Auto-Regressive Integrated Moving Average (ARIMA) model 

have been widely chosen because they are easily understood and well effective on 

some problems (Brownlee, 2018). This classical approach has three variants in-

cluding itself, ARIMA and two others namely: Auto-Regressive Moving Average 

(ARMA) and Autoregressive (AR) models (Nor, Rahaini & Siti, 2018). ARIMA 

models are regression type of models that adopt lagged values of the dependent 

variable and or random disturbance term as explanatory variable (Sarabjit & 

Rupinderjit, 2013). The explanatory variables have in-built dependence relationship 

(Sarabjit & Rupinderjit, 2013). The model is an integration of two autoregression 

and moving average models. A Seasonal ARIMA can be hybridised with a Back 

Propagation Algorithm Neural Network to achieve a more accurate load 

forecasting (Yi, Jie, Yanhua & Caihong, 2013). It will, however, be interesting to 

highlight that these traditional methods have suffered from various limitations: 

1. Complete data: This means it sees data as wholesome and cannot manage 

issues of missing or corrupt data automatically.  

2. Linear relationships: This implies that it addresses only linearities and leaves 

out complexities in the data distributions.  

3. Fixed temporal dependence: This implies that the relationship between 

observations at each time-step as well as the number of lagged features in 

the input must be scrutinised and explicitly stated.  

4. Univariate data: Usually, real-life problems are characterised by multiple varia-

bles as input, but classical approaches are mostly able to handle univariates.     

5. One-step forecast: Practical problems will require multiple-step forecasts 

than the single-step forecast characterized by primitive models. 
 

The problems highlighted, therefore, leave users with the requirement to hand-

engineer features which are expensive to create (Gamboa, 2017). At the wake of 

these issues, Deep learning (DL) techniques emerged. Their inventions have tremen-

dously advanced the sphere of artificial intelligence capabilities to solving vast 

human problems. In fact, DL has helped in providing dependable solutions to 

those problems sustained by primitive methods while handling more sophisticated 

problems.  
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2.2. Concept of deep learning  

 

 Deep learning is a machine learning technique that learns features and tasks 

directly from data (Brownlee, 2018). Data can be images, text, or sound. Any of these 

data types can be used as input to deep learning models for problem-solving. Deep 

learning also refers to a class of machine learning techniques, where many layers 

of information-processing stages in hierarchical architectures are exploited for 

pattern classification and representation or feature learning (Deng, 2013). Further 

to this, deep learning involves neural networks that are able to naturally learn 

arbitrary complex mappings from inputs to outputs. It also has support for multiple 

inputs and outputs. Interestingly, some of these features offer a great promise for 

electricity load forecasting (Brownlee, 2018), particularly on problems characterised 

by complex/nonlinear dependencies, or multivalent inputs, and multi-step 

forecasting. These features and other neural network capabilities offer great 

promises, such as the automatic feature learning characteristic of convolutional 

neural networks and the natural support for sequential data in recurrent neural 

networks (Brownlee, 2018). Sequential data are datasets whose features are 

constrained by time, making it a little difficult. Electricity load data is an example. 

Electricity load profile of a customer is measured as a function of time (per hour). 

This is evident in customers’ electricity bills, which is computed in terms of 

energy used. A unit of energy used is measured in Kilowatt Hour (kWh). 

Furthermore, electricity loads, unlike other machine learning problems solved by 

classification of labels or even regression analysis of quantities, add time 

complexity. This inherently makes them have certain temporal dependencies 

among data features (Brownlee, 2018). The temporal dependencies, therefore, 

introduce difficulties in handling data for the purpose of model’s fitting and 

evaluation. Conversely, the temporal structure characterising the electricity load 

can equally enhance modelling by providing added structures such as trends and 

seasonality, which when leveraged improve model performance on problems 

(Brownlee, 2018).  

 

2.2.1. Motivation for deep learning  

 

 Although deep learning techniques have been in use for some time, in recent 

times it gained a lot of popularity due to certain developments. These, according 

to (Deng, 2013) are: First, due to DL techniques’ increased accuracy at performing 

several human-related tasks. This is as a result of recent advances in machine 

learning and signal/image processing. Second, as a result of the increased chip 

processing ability, such as the Graphics Processing Units, engendered by a high 

reduction in the cost of computing hardware. Third, there are larger volumes of 

labelled data available.  
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 The above highlighted motivating points that are key to DL algorithms’ 

application on a particular problem. The same motivations are the reasons for 

applying DL techniques on electricity loads forecasting problems.  

 

2.2.2. Classifying deep learning architectures  

 

 Most deep learning architectures use neural network-based methods. This  

is why some deep learning techniques such as Deep Belief Networks (DBN) are 

interchangeably referred to as Deep Neural Network (DNN) in literature (Deng  

& Yu, 2013). The term deep in deep learning refers to the number of hidden layers 

in the neural network. The hidden layer count can be unlimited. In order to classify 

deep learning architecture, a three-way classification scheme is summarized from 

various work done by researchers and industry experts. These classification schemes 

are grouped into generative, discriminative, and hybrid algorithms (Deng, 2013; 

Deng & Yu, 2013).  

 The generative deep architectures are learning architectures intended to 

characterize high-order correlation properties of the observed or visible data for 

pattern analysis or synthesis purposes, and/or characterize the joint statistical 

distributions of the visible data and their associated classes. They are unsupervised 

learning algorithms. Examples include autoencoders, Boltzmann machine and 

sum-product network (Deng, 2013). In relation to this, we can assert that some 

electricity load forecasting problems belong to this category. This is because the 

problem has been tackled with a few DL algorithms, such as the auto-encoder, in 

this class. This is documented in (Hussein & Hussein, 2017).  

 The discriminative type of deep architecture focuses on direct provision of 

discriminative power for pattern classification instances, often achieved by 

characterising the posterior distribution of classes conditioned on the visible data. 

These architectures are supervised learning in nature (Deng & Yu, 2013). Examples 

of such models include some learning algorithms like stacked networks, recurrent 

neural network and convolutional neural network. We also found in (Hussein  

& Hussein, 2017) that electricity load forecasting problem is a member of this class.  

 The hybrid deep architectures are either comprising or making use of both 

generative and discriminative model components. This architecture type has the 

goal of discrimination, assisted at times by the outcomes of generative deep 

networks. This can be accomplished by better optimization and or regularization 

of the deep networks in discriminative models. The goal can also be accomplished 

when discriminative criteria for supervised learning are used to estimate the 

parameters in any of the deep generative or unsupervised deep networks in 

generative models (Deng, 2013; Deng & Yu, 2013). Examples of such architectures 

include DNN-DBN model, DNN-Conditional Random Field (CRF) among 

several others. Similarly, electricity load data have also been solved by hybridised 

algorithms. The work of (Hussein & Hussein, 2017) is good case. The study 

combined DNN with SAEs and CNN with LSTM. 
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2.2.3. Application of deep learning techniques to STLF problem 

 

 Deep learning architectures have been applied to acoustics, images and signal 

processing studies, with tremendous successes (Merkel, Povinelli & Brown, 

2017). For this reason, its applicability to electricity load forecasting problems is 

also a possibility because load profiles are characterised by some non-linear 

factors. For instance, in (Hussein & Hussein, 2017), some deep learning 

techniques were analysed. The DL architecture analysed include the Feed Forward 

Neural Network (FFNN), that is characterised by influx of input signal from the 

input layer to the output layer, one layer at a time, without looping back. Other 

model architectures also analysed in (Hussein & Hussein, 2017) are the Recurrent 

Neural Network (RNN), which allows data to flow in any direction, and the 

Convolutional Neural Network (CNN), which is applied to computer vision 

problems and acoustic modelling as well. Similarly, the other architectures are the 

Stacked Autoencoders (SAE) and Long Short Term Memory (LSTM). 

Seunghyoung et al. (2017), the need to investigate important aspect of Demand-

Side Management (DMS) was studied on forecasting electricity loads. The study 

forecasts individual customer’s daily load using deep neural network based 

approach. Ghullam and Angelos (2017), developed Feed-Forward DNN and 

Recurrent DNN models to predict short term electricity loads. The study analysed 

time and frequency as features influencing electricity load demand. Wan (2014), 

presented Restricted Boltmann Machine (RBM) as deep learning pre-training 

method for STLF problem. Kuo and Huang (2018), studied an introduction of 

accurate deep neural network algorithm for short-term load forecasting (STLF). 

Rahul et al. (2018), developed a novel approach for long-term load forecasting; 

although, this was with the aim to forecasting electricity loads at hourly horizon. 

In Hussein (2018), an investigation into application of DNN to forecasting 

electricity loads was done for a DisCo. The study also proposed a multi-layered 

DNN's system for the problem. The next section discusses more in perspective 

some of these deep learning techniques used for predicting electricity loads 

especially in the short term horizon.  

 

3.  SPECIFIC TECHNIQUES AND METHODS FOR ELECTRICITY 

 LOAD FORECASTING  

 

 In this section we introduce four of the deep learning techniques with their 

structures, which have been adopted in the literature for solving short term 

electricity load forecasting problems.  
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3.1. Recurrent neural network  

 

 Recurrent Neural Network (RNN) is a deep learning technique with a long 

history, but only become popular as result today is traceable to the work published 

by Schmidhuber and Sepp (1997) and a few other researchers. An RNN can be 

understood as copies of a single network but each one transferring its signal to 

another as in Fig. 2. So, to recognise the need for an RNN, patterns in signals must 

be observed to change with time, just as in a typical electricity loads data. In such 

scenarios the best model is an RNN or its advanced variant, the LSTM.  

 This deep learning model has a simple structure with a built-in feedback loop, 

see Fig. 2; which allows the network to transfer electricity loads from previous 

time-step to next time-step. This capability thereby results in a situation referred 

to as persistent flow of information, recognised as RNNs’ memory capabilities. 

The architecture of an RNN consists of units interacting in discrete time via 

weighted and directed connections with weights 𝑤𝑖𝑗, linking unit 𝑗 to 𝑖, with 𝑖 
being the first unit and 𝑗 the last unit of the network (Hussein & Hussein, 2017).   

 
 

Fig. 2. Standard RNN structure 

 

Furthermore, every unit has an activation function �̂�(𝑡) which is adjusted at every 

time-step, 𝑡 = (1,2,3, . . ) for each electricity load exposed to it. An activation, �̂�𝑖 

of unit 𝑖 is updated by computing its network input sum 𝑁𝑖 where:  

 

𝑁𝑖 =  ∑ 𝑤𝑖𝑗�̂�(𝑡 − 1) 𝑗                                     (1) 

 

and squashing it with a differentiable function like sigmoid function 𝜎 results in:  

 

              �̂�(𝑡) = σ(𝑁𝑖(t))                           (2) 
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3.2. Convolutional neural network  

 

 A Convolutional Neural Network (CNN) is one of the most popular algorithms 

for deep learning with images and videos. Like other algorithms, a CNN is com-

posed of an input layer, an output layer, and many hidden layers sandwiched.  

The CNN provides better accuracy in highly non-linear problems. The CNN uses 

the idea of weight sharing whose sets are treated as kernels (Merkel, Povinelli,  

& Brown, 2017).  Fig. 3. is a one dimensional convolution and pooling layer. After 

the convolution process, the inputs 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 (in this case are the 

electricity load consumed by power users) are transformed to the feature maps 

𝑐1, 𝑐2, 𝑐3, 𝑐4.  

 Pooling follows, wherein the feature map of convolution layer is sampled and 

dimension is reduced. The feature dimension before pooling is 4 but after the 

process the dimension is reduced to 2, as shown in Fig. 3. 

 
 

 
 

Fig. 3. One dimensional convolution and pooling 

 

 The pooling process is a vital procedure of the CNN architecture, for extraction 

of essential convolution features. A feature map is derived by repeated use of a 

function across sub-regions of the entire image, that is, by convolution of the input 

image with a linear filter adding a bias term and then applying a non-linear 

function. So by denoting the 𝑚𝑡ℎ feature map at a given layer as ℎ𝑚, for which 

filters are determined by the weights 𝑊𝑚 and bias 𝑏𝑚, the feature map ℎ𝑚 is 

derived as in Eq. (3), for hyperbolic non-linearities:  

 

ℎ𝑖𝑗
𝑚 = tanh (𝑊𝑚 ∗ 𝑥)𝑖𝑗 + 𝑏𝑚                  (3) 

 

In order to obtain a richer representation of the electricity load data, the hidden 

layer can be stacked, that is structured to compose multiple feature maps as in 

(Hussein & Hussein, 2017). 
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3.3. Stacked autoencoders  

 

Stacked Autoencoders (SAEs) are autoencoders characterised by some multiple 

building blocks to construct its deep structure (Chengdong et al., 2017). The SAEs 

utilise stacked architecture, with an autoencoder in each layer (Hussein and 

Hussein, 2018). Autoencoders are neural networks that have the power to encode 

its input data, such as electricity loads consumption, into a new representation 

using unsupervised type of learning. They are hidden layer of neurons that are 

trained to encode raw input data into a new representation and decode them  

to reconstruct the original input with minimal deformation possible 

(Hamedmoghadam, Joorabloo & Jalili, 2018). The target, that is the output, is 

equal to the input of the model (Chengdong et al., 2017; Hussein, 2018).  

 The following are, therefore, three important things to take note about 

autoencoder: 

1. Autoencoders are data-specific: This means that the load forecasting deep 

learning technique will only be able to encode those data similar to what 

had seen before.  

2. Autoencoders are lossy: This will mean that the decoded outputs that is, the 

electricity load reconstruction, in this case, will be degraded and compared 

to its original inputs.  

3. Autoencoders are learned automatically from data examples: This means it 

is easy to train specialised instances of the algorithm that will perform well 

on specific type of input. Therefore, no new data feature engineering is 

required, but data training.  

 As an illustration however, Fig. 4. is a simple autoencoder with 𝐻 hidden layer 

nodes. As a matter of fact, autoencoder has two main parts, the encoder and 

decoder. The encoding process seeks to exploit and then reveal a hidden 

representation σ1(x), of typical electricity load profiles, which can be computed 

as:  

 

         σ1(x) = f(𝑤1𝑥+𝑏1)          (4) 

 

where:  𝑤1 − is an encoding matrix,  

        𝑏1 − is an encoding bias vector, 

    𝑓(∙) − is the activation function. 
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Fig. 4. A simple autoencoder 

 

 As a matter of fact, autoencoder has two main parts, the encoder and decoder. 

The encoding process seeks to exploit and then reveal a hidden representation 

σ1(x), of typical electricity load profiles, which can be computed as:  

 

         σ1(x) = f(𝑤1𝑥+𝑏1)          (4) 

 

where, 𝑤1 is an encoding matrix, 𝑏1 is an encoding bias vector, and 𝑓(∙) is the 

activation function. The activation function can be any of the sigmoid, Rectified 

Linear unit (ReLu) or tanh functions. Conversely, the decoding process requires 

that a decoding matrix be determined in order to recover the reconstructed hidden 

representation σ1(x), back into its original form that is, σ2(x). This therefore leads 

to the computation of the decoded output as in Eq. (5):  

 

         σ2(x) = g(𝑤2σ1(x) + 𝑏2)        (5) 

 

where: 𝑤2 − is the decoding matrix, 

     𝑏2 − is the decoding bias vector, 

     g(∙) − is the encoding activation function. 

 

 It is expected that the error between the input 𝑥 and the reconstruction σ2(𝑥) is 

as minimal as possible. To ascertain this, it is imperative to minimise the loss 

function Eq. (6) below: 

  

𝐿(σ2(𝑥) ) =  
1

2
∑ ‖𝑥(𝑚) − 𝑥2(𝑥(𝑚))‖

2𝑁
𝑚=1             (6) 

  

 Moreover, the optimal parameter set of the autoencoder can as well be known 

by solving the following optimization problem:  
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 Ψ =  {𝑤1, 𝑤2} =   min 𝐿𝑤1,𝑤2

𝑎𝑟𝑔
(𝑥, σ2(𝑥) )      (7) 

 

where: 𝑤1 − is the encoding, 

   𝑤2 − is the decoding matrices, 

   𝐿(𝑥, 𝜎2(𝑥)) − is loss function, minimised for optimisation purposes, 

       Ψ − is a notation defined for the optimisation problem.  

 

 In the autoencoder, this optimization problem, 𝛹 is often solved using one of 

the variants of the backpropagation algorithms, such as the conjugate gradient 

method or the steepest descent method (Chengdong et al., 2017).  

 In summary, the technique affords extraction of useful features essential to 

forecasting electricity loads.    

 

3.4. Long Short-Term Memory  

 

 This is a special kind of RNN. It was developed to overcome the lingering 

problem of long-term dependency suffered by the standard RNN architecture. 

This, therefore, provides dependable solutions to a lot of sequence problems.  

The LSTM networks structure consist of many connected LSTM cells as simply 

depicted in Fig. 5. The Fig. 5 is a single cell of an LSTM network showing arrows 

pointing towards the structure and another exiting from it. These will mean that 

there exists connected LSTM cells before and after it.  

 

 
 

Fig. 5. LSTM Structure (Kuo & Huang, 2018) 

 

 The LSTM internal structure is characterised by four interacting neural network 

layers, also known as the repeating modules. The main idea about the LSTM 

network operating mechanism is its cell state and the gates layers. The cell state 

can be termed as a conveyor belt and runs straight down the modules, with only 

minor interactions, making data to flow seamlessly and uncorrupted down  

the chain. The LSTM is capable to remove or add information to the cell state. 
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This is carefully regulated by the gates. The gates are a way to optionally let data 

input, such as an electricity load features, through the cell state. They are composed 

of a sigmoid neural net layer and a pointwise multiplication operation as in Fig. 5. 

The sigmoid layer output is binary, describing how much of each component 

should pass through the gate or not. A ‘0’ means “let nothing through,” while  

a ‘1’ will mean “let everything through!” An LSTM has three of these (forget, 

input and output) gates, to protect and control the cell state.  

 The following are the system of equations that were established in the literature 

as responsible for the satisfactorily operating performance of the deep learning 

LSTM technique. 

  
        𝑓𝑡 = σ(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)         (8) 

   

        𝑖𝑡 =σ(𝑊𝑖. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖)         (9) 

  

          𝐶�̂� = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑐)                   (10) 

 

        𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶�̂�                          (11) 

                                                 

        𝑜𝑡 =σ(𝑊𝑜 ∙ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑜)                    (12) 

  

            ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡)              (13) 

 

Eq. (8) decides which of the previous information to be discarded of the cell state. 

This decision is made via the sigmoid layer called forget gate layer. In Eq. (9) and 

Eq. (10), decision on new information to be included to the cell state is made. 

There are two parts. The first is the sigmoid layer termed input gate layer, which 

decides which value is to be updated and the second is the hyperbolic tangent 

layer, which creates vector of new candidate values that could be added to the cell 

to the state. Eq. (11) updates the old cell state, 𝐶𝑡−1 into the new cell state, 𝐶𝑡. 

Notice that the previous steps already decided what to do, so update is only done 

here. Eq. (12) and Eq. (13) decide what is to be generated from the network, which 

is the prediction outcome. The output is based on the cell state, in filtered state. 

First, a sigmoid layer is run, which decides what parts of the cell state is to be 

output. Then, the cell state is passed through a tanh layer and is multiplied by the 

output of the sigmoid gate, so that only the decided parts are predicted. This is the 

final stage of the LSTM operating mechanism.  

 From Eqs. (8) to (13), the notations used are defined as follows: 𝑥𝑡, is the load 

features input at time 𝑡; 𝑥𝑡−1, is the previous hidden layer computations. The 𝑤𝑓, 

𝑤𝑖, 𝑤𝑐, and 𝑤𝑜 are respective weight matrices of the forget, input, cell state and 

output gate layers of the structure, that are regulating data input inflow. The 𝑏𝑓, 

𝑏𝑖, 𝑏𝑐, and 𝑏𝑜, are the respective bias vector for each gate layer and  𝑐𝑡−1, is the 
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previous cell state while 𝑐𝑡, is the new cell state. Furthermore, whereas �̂�𝑡, is  

a vector of new candidate values for the cell state; 𝜎 and 𝑡𝑎𝑛ℎ, are respectively 

sigmoid and hyperbolic tangent activation functions. The notation 𝑜𝑡, is the output 

of the sigmoid gate and 𝑜ℎ, is the output of the current hidden layer.  

 In summary, LSTM is an exciting model for forecasting power loads because 

of its ability to effectively handle datasets characterised by an order of time such 

as the electricity consumption data. 

 

3.5. Modelling Approach  

 

 In order to forecasting electricity loads in the short- term horizon, there is need 

to synthesise the problem into its constituents. These implies the defining, compiling, 

fitting, evaluating and predicting the model. These technical constituents of model 

development are adoptable by adapting the Fig. 6.  

 The subsections that follow further detail a typical roadmap for applying 

electricity load data on any of the deep learning techniques discussed so far, in 

order to forecast the next hour or day-ahead consumption profile.  

 

 
 

Fig. 6. A simple flowchart for load forecasting 
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3.5.1. Model training data source  

 

 Data is an important aspect of STLF forecasting problem. Therefore, in order 

to tackle the problem, it is imperative to known the source of the model training 

dataset. The model data source is how an electricity forecast engine obtains its 

training set, for the network prediction goal. So, a two-way classification was 

developed and is delineated in Fig. 7. This is the engineering approach and 

Artificial Intelligence (AI) or data-driven approach. The engineering method 

obtains model training data from the context features of the building structure.  

It also gets the data via the system information of the Heating, Ventilating, and Air 

Conditioning (HVAC) appliances of that structure and other home appliances, 

which load forecasting task is estimated. Conversely, the AI or data-driven approach 

gets training data from the historic electricity consumption data of the study area. 

So, depending on the load forecasting task in view a researcher would have  

to make decisive choice regarding model training set.   

 
 

Fig. 7. How model obtains training data 

 

3.5.2. Data preprocessing  

 

 Having obtained the model’s training data, the next task will be to carry out 

appropriate preprocessing procedure on the electricity load forecasting problem. 

This approach will usually involve data cleansing and preparation. Data cleansing 

would mean that the data be devoid of any incompleteness or missing value, noise, 

and inconsistency. Data cleaning routines work to "clean" the data by filling in 

missing values, smoothing noisy data, identifying or removing outliers, and resolving 

inconsistencies. A typical framework for handling missing data is presented  

in (Swalin, 2019). Preparing data would require that it is preprocessed by scaling 

numeric data and transforming categorical data. Numeric data scaling will improve 
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network stability and modelling performance. This can be achieved through 

normalization and standardization methods. Similarly, data transformation is 

converting labels data to quantities, this is achieved in two standard steps namely: 

integer encoding and one-hot encoding (Brownlee, 2018).  

 

 

4.  EVALUATION METRICS  

 

The evaluation of model’s performance of load forecasting model can be 

assessed by obeying the objective function of the model. The applicability and 

suitability of a deep learning model on typical electricity load forecasting problem 

is measured by some evaluation metrics such as the root mean square error and 

mean absolute percentage error. In general, performance evaluation of a regression 

type of deep learning model, as in this case, can be measured by one of the following 

metrics, among others:  

 

4.1. Mean Square Error and Root Mean Square Error  

 

The Root Mean Square Error (RMSE) is a frequently used measure of the 

differences between samples predicted by a model and the values actually 

observed. RMSE is the standard deviation of the residuals (prediction errors). 

Residuals are a measure of how far from the regression line data points are. RMSE 

therefore measures how spread out these residuals are. In other words, it speaks 

about how concentrated the data is around the line of best fit. The RMSE for  

a training and test sets should be very similar if a good model is built. Formally, 

the RMSE is given as below:  

 

     𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑡𝑟𝑢𝑒)

2𝑁
𝑖=1                (14) 

  

Where: 𝑅𝑀𝑆𝐸 − is evaluation metric of interest,  

   𝑁 − is number of observations, 

   𝑌𝑝𝑟𝑒𝑑 − ordinates of the actual loads, 

   𝑌𝑡𝑟𝑢𝑒 − ordinates of the predicted loads.  

 

4.2. Mean Absolute Error  

 

Mean Absolute Error (MAE) is a term used in determining absolute difference 

between two variables. Assume, 𝑌𝑝𝑟𝑒𝑑  and 𝑌𝑡𝑟𝑢𝑒 are variables of paired 

observations expressing the same conditions, the MAE is defined as:  

 

      𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑡𝑟𝑢𝑒|𝑁

𝑖=1                 (15) 
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4.3. Mean Absolute Percentage Error  

 

Mean Absolute Percentage Error (MAPE) is yet another approach to evaluating 

model prediction accuracy. It often expresses accuracy in terms of percentage. 

This is expressed mathematically as:  

 

      𝑀𝐴𝑃𝐸 =
100%

𝑁
|∑

𝑌𝑝𝑟𝑒𝑑−𝑌𝑡𝑟𝑢𝑒

𝑌𝑝𝑟𝑒𝑑

𝑁
𝑖=1 |              (16) 

 

 

5.  CONCLUSIONS  

 

The foregoing study discusses some of the deep learning techniques that have 

been applied to electricity load data when modeling typical load forecasting 

problem. Load forecasting was also categorised as including the type of model, 

aim of forecast, horizon of forecast, variables of interest in modeling load 

forecasting problem and the area where forecast is to cover. More so, the 

interested model data source is categorised as harvestable from an engineering 

source or AI source. Finally, the DL techniques for modeling a typical electricity 

load forecasting problem is discussed. 
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