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Abstract 

This paper presents a method of identifying the width of backlash zone in 

an electromechanical system generating noises. The system load is a series  

of rectangular pulses of constant amplitude, generated at equal intervals. 

The need for identification of the backlash zone is associated with a gradual 

increase of its width during the drive operation. The study uses wavelet 

analysis of signals and analysis of neural network weights obtained from 

the processing without supervised learning. The time-frequency signal 

representations of accelerations of the mechanical load components were 

investigated.  
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1. INTRODUCTION 

The diagnostics of electromechanical processes deals with the recognition  

of undesired changes of their states. The states are presented in the form of  

a sequence of intentional actions conducted in the assumed time by a specific set 

of machines and devices at a determined amount of available resources. Faults 

and other destructive events resulting from the wear and tear as well as increased 

exploitation time can be reasons for changes in these states. If such a change of 

state exceeds specific value it should be detected by a diagnostic system, recog-

nized as fault, and identified as quickly as possible, in its early phase of for-

mation (Korbicz, Kościelny & Kowalczuk, 2002). 

Some information carried by signals appearing in electromechanical systems 

are essential for diagnostic reasoning, and particular attention should be paid to 

their extraction and application (Zhang, Zhu, Yang, Yao & Lu, 2007). 

Measuring signals generated by sensors or converters using the measuring 

path are subjected to analysis. However, they often contain irrelevant content, i.e. 

trends or fast-changing components whose character resembles noise. The attempts 

to limit such unnecessary characteristics and using digital-to-analogue converters  

to guarantee appropriate value of signal-to-noise relation can result in side effects 

having negative impact on the analysis, e.g. frequency masking or stroboscopic 

effect. Therefore, sampling frequency must be appropriate to the components of 

the signal that contain relevant information (Zhang, Zhu, Yang, Yao & Lu, 2007). 

In mechanical systems containing backlash zones, non-linear elastic-absorbing 

elements or faulted bearings, diagnostic signals pertaining to time and frequency 

can be generated using transformation methods that enable simultaneous testing 

of the spectral properties in both of these fields (Duda, 2007). 

 One of the increasingly popular and applied methods of time-frequency 

analysis is wavelet transformation based on multistage signal decomposition  

at changeable resolution (Duda, 2007; Zając, 2009).  

In contrast with Fourier analysis in which analysed functions are expressed 

by means of polynomials derived from harmonic functions, wavelet transformation 

describes them using special functions — wavelets derived from a dedicated 

function called mother wavelet. The created wavelet functions are subjected to 

repeated transformations. The set of base functions of transformation obtained in 

this way has a number important scalable properties related to the time and 

frequency; one can analyze the relationships between the particular function and 

its transformation coefficients (Doniec, 2010). 

Owing to the recent progress in signal processing technology, many diagnostic 

methods have been presented that concern engine diagnostics by means of wavelet 

analysis. These are, for instance: 

 discussion on the usefulness of wavelet analysis for the initial processing 

of diagnostic signals to train and test neural damage detectors of induction 

motors (Kowalski, 2003), 
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 detection of microcracks on the surface of bearing race (Zając, 2009),  

on its rolling element (Chebil, Noel, Mesbah & Derihe,2009), as well as in 

the bearing-connecting elements (Aktas & Turkmenoglu, 2010), 

 analysis of electro-energetic signals by means of the high-resolution methods 

of spectrum analysis (Łobos, Leonowicz, Rezmer & Schegner, 2006), 

 detection of rotor crack in induction cage motor by means of the frequency 

analysis using MCSA analysis as well as continuous wavelet transfor-

mation (Granda, Aguilar, Arcos-Aviles & Sotomayor, 2017). 

 

Recently, more and more studies focus on the application of neural networks 

like, e.g.:  

 using of single neural network to detect faults at the various stages of work 

of nuclear power plant (Wysogląd, 2003), 

 detection of faults in chemical plants by means of dynamic networks 

(Fuente & Saludes, 2000), 

 solving problems pertaining to modelling and classification in the object 

and system diagnostic processes using GMDH networks (Group Methods 

and Data Handling) (Duch, Korbicz, Rutkowski & Tadeusiewicz, 2000). 

This study contains a lot of neural architectures with dynamic properties 

characterized by their excellent efficiency during modelling of diagnosed 

processes.  

 identification of mechanical parameters in three-phase induction cage 

motor by means of model of neural network using gradient decrease method 

(Balara, Timko, Źilkova & Leśo, 2017). 

2. METHODOLOGY AND ANALYSIS OF THE FAULT 

IDENTIFICATION DIAGNOSTIC ALGORITHM 

Simulation tests were conducted for the nominal conditions of the induction 

motor whose model was located in a stationary coordinate system related to the 

stator (model α, β, 0). The induction motor was loaded by a working machine 

similar in character to a dynamic mass-absorbing-elastic element.  

Model of induction motor has been created in the MATLAB/Simulink 

environment. The following parameters of induction motor have been assumed 

in the conducted tests (parameters of the substitute scheme are expressed in 

relative units): rS = 0.059, rw = 0.048, xS = 1.92, xR = 1.92, xM = 1.82, w = xS * xw +  

– xm * xm = 0.374, Tm = 0.86 [s]. 

Fig.1 presents a simplified diagram of connection of a working machine with 

the induction motor. The diagram includes backlash in the clutch connecting the 

induction motor drive with a working machine. It also includes the connection 

between the generator of normally distributed signals and generator of rectangular 

impulses and the dynamic mass-absorbing-elastic element and load moment. 
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Fig.1. Diagram of a dynamic mass-absorbing-elastic element connected  

to the induction motor used in the simulation tests. 

3.  METHODOLOGY OF TESTS DEDICATED TO IDENTIFY 

CHANGES OF WIDTH OF BACKLASH ZONE IN THE 

ELECTROMECHANICAL SYSTEM GENERATING NOISES 

(FRICTION MODEL DESCRIBED USING OSTWALD–WAELE 

RELATIONSHIP) 

Simulation tests of wavelet scalograms for coefficients of wavelet expansions 

of two physical quantities have been conducted: linear acceleration on the circuit 

of the drive wheel of motor’s rotor a1 and linear acceleration of lifted mass of 

dynamic mass–absorbing–elastic element a2. The results of simulation tests for 

each physical quantities were written in the matrix M1. 

Additionally, generator of rectangle impulses and generator of normally 

distributed signals were connected to the electromechanical system  

Sampling time of normally distributed random numbers generator was equal 

to 2*10-4 [s]. Sampling time of impulses in generator of rectangle impulses was 

equal 2*10-3 [s]. For both generators variance has been assumed equal 0.05 and 

mean value equal 0. 

Simulation tests have been executed in the following way. 

For all measurements of faults (in four groups of tests) the same values were 

provided: the elasticity coefficient k =100 [N/m], radius r = 0.15 [m], mass  

m = 10 [kg] and surface area of absorber’s cylinder S1 = 0.00311565 [m2].  

In the next groups of tests the following values of consistency coefficient 
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(apparent viscosity) was assumed: ƞk = 0.0125 [Pa.s 1
n ], ƞk = 0.025 [Pa.s 1

n ],  

ƞk = 0.0375 [Pa.s 1
n ] and ƞk = 0.05 [Pa.s 1

n ]. During the measurements in each 

group of simulation tests the creep index n1 for a pseudo-plastic liquid was 

assumed amounting to: 0.89, 0.91, 0.93, 0.95 and 0.97. The values of the creep 

index n1 in the tests were written in matrix K1 in the ascending order. 

In each test in which the value of the creep index n1 was changing, one 

conducted simulation tests, the width of backlash zone amounted to: 0.0025, 

0.00375, 0.005,0.0075, 0.009 and 0.01, in the above order.  

In matrix K2, widths of backlash zone applied in the conducted simulation 

tests were written in an ascending order.  

In all the executed simulation tests, the principle was followed according to 

which the process of testing the electromechanical system dynamics within the 

backlash zone begins in the moment when the expression in the left part of the 

following inequality (1) is smaller than the expression in its right part: 

   2..61
2

21
,=i;

r

K
αα

(i)
  (1) 

where: r – radius of the drive wheel of a working machine [m], 

K2 – value that has been taken sequentially from the matrix and 

corresponding to the assumed width of backlash zone in mechanical 

connection, 

i – an index number of matrix’s column K2. 

 

Values of angles have been calculated according to the following formulas: 

 α1 = ʃω1·dt             (2) 

 α2 = ʃω2·dt (3) 

After meeting the condition determined by inequality described by the for-

mula (1) load torque of the dynamic mass-absorbing-elastic element is zeroed.  

Matrix M1 contained 2048 sequentially chosen samples recorded after the oc-

currence of backlash zone in the tested model. This experiment has been carried 

out for every measurement of both tested physical quantities. Fig. 2 presents the 

example of collecting samples in backlash zone against the linear acceleration of 

the mass of the dynamic mass-absorbing-elastic element. 
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Fig. 2. Testing of dynamics in the backlash zone by means of the choice of time range  

Removal of noises from all the variables placed in matrix M1 has been 

executed by means of removal of relevant details of a given wavelet for the 

particular variable. Subsequently, the registered samples have been written in 

matrix M2. 

A signal obtained after the removal of details has been written sequentially 

for the appropriate value of the creep index n1 in matrix M2 whose dimension 

amounted to 6x2048. 

The wavelet type and order have been selected so that the shape of the basic 

wavelet would be approximately adequate to the character of the transient course 

of the physical quantity obrtained in the test for the smallest backlash value. 

After conducting the tests for the respective variables, the following wavelets 

were chosen: 

a) a1 – wavelet function symlet of the order 5, 

b) a2 – wavelet function symlet of the order 5. 

On the basis of calculations conducted for the generator of normally 

distributed random numbers, decomposition (number of detail) level has been 

determined amounting to 2 whereas for the generator of rectangle impulses 

decomposition level (number of detail) was equal to 6.  

After the tests of hard and soft elimination for the analyzing wave, the noises 

placed in matrix M1 were removed, which consisted, e.g. in the removal of details 

whose frequencies were similar to the frequencies of the disturbing impulses.  

By means of the calculated decomposition levels for both generators used in 

the simulation tests and as a result of observation of frequencies of disrupting 

impulses, the following numbers of details for variables a1 and a2 were deleted: 

1, 2, 3, 4, 5, 6.  
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4. DESCRIPTION OF PROCESSING OF TWO-LAYER NEURAL 

NETWORK OF TYPE COUNTER-PROPAGATION 

In the conducted simulation tests, two-layer neural network was learnt without 

the supervision for the values of matrix M2. 

The first layer of this network is named Kohonen’s layer and represents a set 

of exemplary pairs of input signals of neural network X1 and values of weights 

W1. In the second layer of this network, named Grossberg’s layer, X2 values 

represent input signals while W2 values represent the given set of the exemplary 

weights. 

The input signals of neural network in the first layer represent Kohonen’s 

layer were calculated in matrix X1 according to the formula: 

X1(j) = M2(p)(j); j = 1,2...2048; p ∈ <1,6>      (9) 

where: M2(p)(j) – values of matrix for the tested width of backlash zone and 

registered for the applied values of the creep index n1, 

 p – number of column in K1 matrix. 

 

 According to the assumptions typical of Counter-Propagation networks, 

values of input signals must be normalised to fulfill the condition (Tadeusiewicz, 

1993): 

 111  XX
T

 (11) 

Normalization of input signals X1 is conducted according to the formula: 
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Fig. 3. Diagram of the used neural network dedicated to identification of width of backlash 

zone in the electromechanical system generating noises with viscous and fluid friction 

described by means of Ostwald–de Waele power equation (the circles represent neurons  

in neural network; the red neuron in the Kohonen’s layer indicates a random ‘winner 

neuron’) 

The aim of normalization of input signals carried out in the simulation tests 

was to ensure the appropriate adaptation of values of weights W1 during the pro-

cessing of neural network. 

The selection of number of epochs in the discussed model of two-layer neural 

network was determined experimentally on the basis of observation of the obtained 

values of W2 weights. 

The initial values of weights in the first layer W1 were determined according 

to the formula: 

W1(i, j) = M3(i); i = 1,2...6; j = 1,2…2048      (13) 

where: M3 – calculated arithmetic means of matrix M2 rows for the value of the 

creep index n1 amounting to 0.89 for the group of simulation tests in 

which the consistency coefficient ƞk was equal to 0.025. 
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Arithmetic means of matrix M2 rows were calculated in matrix M3 according 

to the formula: 

 
 

 

1;6...2,1;
2048

2048

1

),(2

3 




pi

M

M
j

jip

i
    (14) 

where:  M2 – values of matrix recorded in the simulation tests at the value  

of the creep index n1 equal to 0.89 for the group of tests in which the 

consistency coefficient ƞk was equal to 0.025; p =1 stands for the 

number of column in the matrix K1. 

Multiplication of input signals X1 by values of weights W1 of the particular 

neurons of the first layer of neural network results in the calculation of signals 

E1 according to the formula: 

              6...2,1;*
2048

1

),(1)(1)(1 


iWXE
j

jiji
      (15) 

Signals E1 represent total stimulations of all neurons in the first layer from 

which the so-called “winner neuron” is selected having maximum value of the 

stimulation determined on basis of the following formula: 

E1(t) = max(E1(i)); i = 1,2...6; t ∈ <1,6>     (16) 

Therefore, only for the victorious neuron output signal Y1 has the value equal 

to 1 according to the equation: 

 







 6,1;6...2,1

0;

;1
)(1 ti

ti

ti
Y i

    (17) 

 

The correction of weights is a result of product of difference between the input 

value X1 and weight associated with: 

 input value W1, 

 experimentally selected learning coefficient of neural network l1 whose 

the range varies from 0 to 1. 

The correction of weights for the “winner neuron” in the first layer of neural 

network W1 was calculated by means of the well-known WTA (Winner Takes 

All) rule according to the formula (Osowski, 1996): 

W1(t, j) = W1(t, j) + l1·(X1(t, j) –W1(t, j)); j = 1,2...2048; t ∈ <1,6>   (18) 
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Input signals of the second layer of neural network representing Grossberg’s 

layer were calculated in matrix X2 according to the formula:                 

X2( j) = Y1(i); i = 1,2...6; j = 1,2...6;       (19) 

The applied initial values of matrix weights of the second layer in matrix W2 

were the same for the particular neurons placed in this layer and determined on 

the basis of the formula: 

 

W2(i, j) = m1; i = 1,2...6; j = 1,2...6;      (20) 

 

where: m1 – arithmetic mean of matrix M3 determined on the basis of the 

formula (14).    

The arithmetic mean m1 was calculated according to the formula: 

6

6

1

)(3

1


 i

iM

m          (21) 

The advantage of processing of this neural network is the possibility of setting 

relatively small number of epochs and therefore obtaining the values of weights 

W2 in the second layer appropriate for diagnostic purposes.  

The output signals of the second layer of neural network Y2 were calculated 

according to the formula: 

 6...2,1;*
6

1

),(2)(2)(2 


iWXY
j

jiji
    (22) 

Correction of weights results from the product of difference between: 

 output value Y2, 

 the set value Z1 associated with: Y2, input value X2, and experimentally 

selected learning coefficient of neural network l2 whose range varies from 

0 to 1. 

Correction weights in this layer of neural network W2 was calculated on the 

basis of well-known “outstar” rule (Osowski, 1996) according to the formula: 

W2(i, j) = W2(i, j) + l2·(Y2(i) –Z1(i)) · X2(j); i = 1,2...6; j = 1,2...6    (23) 

where:  Z1 – matrix of set values of neural network. 
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The applied set values Z1 were the same for all the neurons in Grossberg’s 

layer and calculated according to the formula: 

Z1(i) = m2; i = 1,2...6                    (24) 

where:  m2 – the arithmetic mean of values of matrix M2 for the tested width    

of backlash zone at the given value of creep index n1. 

The arithmetic mean m2 was calculated according to the formula:     

              
 






6,1;2048...2,1;
2048

2048

1

)(2

2 pj

M
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j

jp

         (25) 

To identify the width of backlash zone for all the tested physical quantities 

one had to create pattern vectors W5 as well as tested vectors W6. These vectors 

were registered during the simulation tests for the assumed value of creep index n1. 

Pattern vectors W5 were created for the group of simulation tests conducted at the 

consistency coefficient ƞk = 0.025. 

To determine both pattern vectors and tested vector, maximum value T2 was 

determined on the basis of all the weights placed in the Grossberg’s layer W2 

subjected to the following formula: 

 6...2,1;6...2,1);(max ),(22  jiWT ji
    (26) 

The decicion to select maximum value among all weights W2 instead of 

minimum weight, necessary in determining pattern vectors and tested vector, 

proved to be a correct strategy.  

On the basis of maximum value T2 matrix W3 was determined according to 

the formula:    

W3(j) = W2(d, j); T2 ∈ W2(d, j); d ∈ <1,6>; j = 1,2...6     (27) 

During the simulation tests dedicated to identify width of backlash zone at 

the changing value of consistency coefficient ƞk, different “winner neurons” in 

the Kohonen’s layer were selected. This fact resulted from the use of different 

values of input signals X1 for this same value of the creep index n1, which caused 

disruption of order of the obtained values weights W2 in the Grossberg’s layer.  

Sorting the values of matrix W3 instead of assuming different numbers of 

input signals X1 is a factor responsible for a significant versatility of the 

presented diagnostic method due to the possibility of using this procedure in the 

case of more physical quantities to test.  
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In the presented diagnostic method matrix W3 was sorted in the descending 

order. After sorting, the value of this matrix was written in matrix W4 according 

to the following formula: 

  
(28)

 

Pattern vectors W5 as well as tested vector W6, used in identification of width 

of backlash zone, were determined, respectively, according to the formula: 

W5(i, j) = W4(i, j); i = 1,2...6; j = 1,2...6       (29) 

W6( j) = W4( j); j = 1,2...6        (30) 

Identification of the assumed width of backlash zone at the assumed value of 

the creep index n1 is possible owing to the calculation of values of matrix B 

according to the formula: 

 



6

1

),(5)(6)( 6...2,1;
j

jiji iWWB       (31) 

Determination of minimal value of matrix B causes determination of index 

nr1 according to the following formula: 

    6,1;6...2,1;min 1)()( 1
nrdBB dnr

     (32) 

Calculations concerning the value of index nr1 are necessary for the correct 

identification of width of backlash zone determined on the basis of the particular 

number of column K2 referring to this index according to the formula: 

 i = nr1             (33) 

where:  i – number of column im matrix K2. 

5.  RESULTS OF SIMULATION FOR DIAGNOSTIC ALGORHYTHM 

DEDIASTED TO IDENTIFICATION OF WIDTH OF BACKLASH 

ZONE IN ELECTROMECHANICAL SYSTEM GENERATING 

NOISES 

In the tables below, the column labeled Test parameters contains widths of 

backlash zone identified in the tests. However, the column Results comprises the 

bolded final results of calculations of values of matrix B.  
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Tab. 1.  Selected values of matrix B for linear acceleration of the induction motor a1 in electro-

mechanical system containing friction described by means of Ostwald – de Waele 

power equation 

Test parameters Results Test parameters Results 

backlash zone = 0.009, 

consistency coefficient 

ƞk = 0.0125, 

creep index n1 = 0.91, 

epochs = 30, 

learning coefficient of  

neural network l1 = 0.1, 

learning coefficient of 

 neural network l2 = 0.09 

 1.5895 

0.9248 

0.2620 

0.4710 

0.0025 
0.8902 

backlash zone = 0.009, 

consistency coefficient 

ƞk = 0.0125, 

creep index n1 = 0.91, 

epochs = 30, 

learning coefficient of 

neural network l1 = 0.1, 

learning coefficient of  

neural network l2 = 0.01 

0.0859     

0.0500 

0.0142 

0.0255 

0.0001 

0.0481 

backlash zone = 0.0025, 

consistency coefficient 

ƞk = 0.05, 

creep index n1 = 0.95, 

epochs = 30, 

learning coefficient of neural 

network l1 = 0.1, 

learning coefficient of neural 

network l2 = 0.09 

0.2949 

0.9600 

1.6225 

2.3551 

1.8860 

0.9922 

 

backlash zone = 0.0025, 

consistency coefficient 

ƞk = 0.05, 

creep index n1 = 0.95, 

epochs = 30, 

learning coefficient of 

neural network l1 = 0.9, 

learning coefficient of 

neural network l2 = 0.01 

0.0165 

0.0538 

0.0910 

0.1321 

0.1058 

0.0557 

backlash zone = 0.005, 

consistency coefficient 

ƞk = 0.0375, 

creep index n1 = 0.97, 

epochs = 20, 

learning coefficient of neural 

network l1 = 0.1, 

learning coefficient of neural 

network l2 = 0.09 

0.5442 

0.2718 

0.0003 
0.2998 

0.1076 

0.2585 

backlash zone = 0.005, 

consistency coefficient 

ƞk = 0.0375, 

creep index n1 = 0.97, 

epochs = 40, 

learning coefficient of 

neural network l1 = 0.1, 

learning coefficient of 

neural network l2 = 0.09 

3.18481

0.5904 

0.0019 
1.7545 

0.6297 

1.5130 
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Tab. 2.  Selected calculated values of matrix B for linear acceleration of a mass a2 in electro-

mechanical system containing friction described by means of Ostwald-de Waele 

power equation 

Test parameters Results Test parameters Results 

backlash zone = 0.009, 

consistency coefficient 

 ƞk = 0.0125, 

creep index n1 = 0.93, 

number of epochs = 30, 

learning coefficient of 

neural network l1 = 0.1, 

learning coefficient of 

neural network l2 = 0.09 

0.6245 

0.4992 

0.3698 

0.1376 

0.0002 
0.0868 

backlash zone = 0.009, 

consistency coefficient  

ƞk = 0.0125, 

creep index n1 = 0.93, 

number of epochs = 30, 

learning coefficient of neural 

network l1 = 0.1, 

learning coefficient of neural 

network l2 = 0.01 

0.0517 

0.0413 

0.0306 

0.0114 

1.5565.10-5 
0.0072 

backlash zone = 0.00375, 

consistency coefficient 

ƞk = 0.05, 

creep index n1 = 0.89, 

number of epochs = 30, 

learning coefficient of 

neural network l1 = 0.1, 

learning coefficient of 

neural network l2 = 0.09 

0.1256 

0.0003 

0.1292 

0.3613 

0.4988 

0.5857 

backlash zone = 0.00375, 

consistency coefficient 

ƞk = 0.05, 

creep index n1 = 0.89, 

number of epochs = 30, 

learning coefficient of neural 

network l1 = 0.9, 

learning coefficient of neural 

network l2 = 0.01 

0.2931 

0.0006 
0.3016 

0.8434 

1.1643 

1.3672 

backlash zone = 0.0025, 

consistency coefficient 

ƞk = 0.0375, 

creep index n1 = 0.91, 

number of epochs = 20, 

learning coefficient of 

neural network l1 = 0.1, 

learning coefficient of 

neural network l2 = 0.09 

0.0001 

0.0761 

0.1550 

0.2963 

0.3800 

0.4330 

backlash zone = 0.0025, 

consistency coefficient 

ƞk = 0.0375, 

creep index n1 = 0.91, 

number of epochs= 40, 

learning coefficient of neural 

network l1 = 0.1, 

learning coefficient of neural 

network l2 = 0.09 

0.0003 

0.1799 

0.3663 

0.7003 

0.8980 

1.0231 

 
Bolded values of matrix B in the presented tables are correct results obtained 

finally in the process of identification of the fault number.  

Pattern vectors W5 were registered in the simulation tests in which one 

applied the learning coefficient of Kohonen’s layer l1, the learning coefficient of 

Grossberg’s layer l2, and the number of epochs of processing of neural network 

consistent to the assumed values of these variables placed in the above presented 

tables.  

For both tested physical quantities pattern vectors W5 were created in the 

group of simulation tests for which value of the assumed consistency coefficient 

ƞk was 0.025. 
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 In the conclusion, the number of epochs of processing of neural network was 

fixed to 30 because it ensured the greatest selection of values of elements of 

matrix B in comparison with the results of calculations for the number of epochs 

between 20 and 40. 

On the basis of the presented results, one can notice that for both tested 

physical quantities, in the experiment consting in linear acceleration of the 

induction motor a1 and also linear acceleration of mass a2, values of matrix B 

gradually deteriorate for the learning coefficient of Kohonen’s layer l1  decresing 

in the range from 0.1 to 0.9 and for the learning coefficient of Grossberg’s layer 

l2 increasing in the range from 0.09 to 0.01.  

6.  CONCLUSIONS 

Using of time-frequency methods with multistage signal decomposition and 

also two-layer neural network processed without supervised learning was applied to 

monitor electromechanical system being in the backlash zone that included 

mass-absorbing-elastic load and where noises generated by means of generator 

of Gauss and generator of rectangle impulses (at the sampling frequency 50 

kHz) brought disturbances to the received signals.  

Distributions of coefficients of wavelet expansion of state variables that 

describe the tested physical quantities and the obtained values of weights of the 

second layer of the processed neural network – used for the linear acceleration 

on circuit of the drive wheel of motor A1 and linear acceleration A2 dynamic mass-

absorbing element – enable obtaining of the correct results of identification of width 

of backlash zone. The simulation tests proved that the blur of spectrum, difficulties 

in obtaining small deviations from the state considered as correct and its nonlinear 

deformation may result from the inappropriate selection of the base wavelet.  

It should be carefully chosen taking into accunt the character of the tested 

course on the basis of the: 

 selection of the central frequency of signal associated with fault, 

 frequency determined on the basis of sampling time of the generator of 

normally distributed random numbers, 

 sampling time of generator of rectangle impulses. 

The obtainment of better shapes of de-noised signals and consequent 

obtainment of correct final results of identification of width of backlash zone for 

the model of complex electromechanical system (usually described by nonlinear 

characteristics of elements) was possible owing to: 

 the additional removal of some physical quantities of the tested 

electromechanical system apart from the calculated decomposition levels 

(details) of the assumed wavelet,  

 determination of variance and mean value of random signals introduced 

by means of Gaussian generator and generator of rectangle impulses.  
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