
27

Applied Computer Science, vol. 14, no. 1, pp. 27–41
doi:10.23743/acs-2018-03

Submitted: 2018-01-06
Revised: 2018-03-05

Accepted: 2018-03-25

 blockchain, cloud, datacenter, cluster

Maciej NABOŻNY*

ASYNCHRONOUS INFORMATION

DISTRIBUTION AND CLUSTER STATE

SYNCHRONIZATION

Abstract

This article describes issues related to information distribution and cluster

state synchronization in decentralized environments with inconsistent net-

work topology. The main objective of this study was to create a set of rules

and functional requirements to build a fault-tolerant framework based on

Blockchain for creating applications in decentralized and distributed en-

vironments, regardless of the underlying cluster’s hardware.

1. INTRODUCTION

Proposed principles could be used as base for many systems, including IT sys-

tems, cluster management software, IoT systems and so on. Thus, this paper will

discuss only theoretical aspects of distributing information in safe, reliable way.

To define system distributing information across environment, one should define

at first basic, necessary components of such system. First, basic element is Node.

This should be an individual entity capable of making decisions and interacting

with other nodes in the environment. The way these nodes communicate with each

other is a Connection. One connection enables one-way communication between

two nodes. To provide bidirectional communication between two Nodes, it is

required to provide double Connections.

All the above components together are called Clusters. A cluster is a set of

connected Nodes and Connections between them, that form a partial or full mesh.

This grid can be described using an oriented graph, in which each graph node

is able to reach any other node on the cluster. A divided cluster (also described

as a split-brain configuration) is a situation in which at least one node is unable

to reach at least one other node in the cluster.

* cloudover.io ltd, 590 Kingston Road SW20–8DN London, United Kingdom,

+48 511 912 775, maciej.nabozny@cloudover.io

28

Notification is full information about the change of state of one Node in

a Cluster. Notifications are generated by a node that changes its state and broad-

casted to all other nodes in the cluster. Nodes can also forward received from

neighbors notifications to other nodes, to provide notification routing and thus,

redundant communication channels.

By state of the Node we can define the internal state of the resources driven

by the Node’s logic. Information can be understood as a description of such

a state known by local and remote Nodes. Thus, the information about the Node

is strongly related to its state, but at some point it may be contradictory.

2. PROBLEM FORMULATION

To create a solution for the described problem of distributing information

and synchronizing state of nodes in entire cluster, without a centralized point,

it is necessary to build a system that solves the following problems:

 How to handle the “split-brain” of cluster?

 How to handle rejoin of cluster?

 How to authenticate notifications?

 How to limit access to resources?

 How to trust newly attached nodes or objects to cluster?

 How to handle joining two existing clusters?

 How to handle conflicting updates of data after rejoin?

 How to avoid any additional communication channels to use only notifi-

cations for communication?

 How to track history of database and all changes over time?

The implementation, which covers all of the above issues, will define a fully

functional, event-driven platform for creating distributed systems on the verge

of Blockchain, public key infrastructure, and agent technology.

3. SOLUTION

3.1. Information schema

In most distributed systems the database is the central point of application

cluster (Fernstrom, Narfelt & Ohlsson, 1992). Proposed approach assumes to keep

local copy of database at each node and store information locally. Such organization

of information may cause that each node may have different version of infor-

mation, according to the state of cluster, time and its location among other

nodes. Thus, by data synchronization we will define striving for make data sets

the same on all nodes. In some cases it will be necessary to accept information

inconsistency in different parts of cluster.

29

To organize the information into logical structures, in programming languages

we could define classes and store information as objects (Lippman, 1996). The same

idea was proposed here, to group information into objects inside database.

Within this article we could redefine an object in context of described system.

The object will be a set of named properties related to one logical kind, assigned

to the one node. To store one property we should store:

 entity type,

 entity identifier,

 field name,

 field value.

In opposition to classes, proposed solution does not guarantee the schema

of information. Once defined entity could have different fields at different nodes,

dependently of its version or state. Such approach makes possible to upgrade

whole system and change its information organization.

With such approach we could use key-value data store as the underlying

database and store information about all objects in database in form:

 Key: entityType:entityIdentifier:fieldName

 Value: the value of field

Such underlying data schema makes possible to synchronize data at field level

and manage privileges, on object level. Moreover, with above design one can

make inclusion of objects, without any additional requirements of schema. Each

included object gets a parent-object’s identifier as prefix of this object’s keys.

3.2. Split-brain and re-join of cluster

The split brain problem (Davidson, Garcia-Molina & Skeen, 1985) covers

situation, when communication between part of cluster or one node and rest

of the cluster is temporarily interrupted. Such situation causes the data on par-

ticular nodes is not synchronized properly. This leads to situation where node

or part of cluster is not up to date with its data, to the rest of cluster. Split brain

situations are hard to handle in systems, especially in case when logics running

in cluster has to take a decision based on its data.

Described in this chapter split brain is especially dedicated for handling

by systems based on blockchain like described here instead of standard archi-

tectures and databases, where split brain and rejoin should result the consistent

database. Also we won’t discuss here the consensus algorithms used by block-

chain, which were removed in proposed solution, what will be discussed later.

Most often, split-brain configuration could be caused by non-redundant

hardware connecting parts of cluster:

30

Fig. 1. A cluster with not fully redundant connections

It is possible to indicate four weak points shown in cluster described in Fig. 1.

(regardless of the directionality of connections):

 A to B connection,

 D to E connection,

 A notification exchange (routing) from D,E nodes to B,C nodes,

 D notification exchange (routing) from E to A,B,C nodes.

Failure of any point from above list will result split-brain configuration.

For example, failure of node A, shown in fig. 2 will split whole cluster to two,

sep-arate clusters shown in fig. 3.

Fig. 2. Failure of node A

Fig. 3. Cluster topology with outage of node A

Let’s assume, that all information related to the cluster state will be available

on all nodes till the split-brain, through local databases. In this way, notification

exchange between nodes is running till outage of Node A. Moreover, each node

after this failure will keep full copy of all information collected till split-brain.

Ongoing lifecycle of cluster could influe to the information stored on particular

nodes and generate new notifications related to changes in node’s state. For ex-

ample, changing the state of node B will create a change in local information.

B C

D

E

A

B

C

D

E

A

B C

D

E

31

This will create new notification. In cluster configuration shown in fig. 3, such

notification will be shared by node B only to node C. No other possible route for

updates is not available here.

Approach to store information locally, not in centralized database for cluster

will prevent disconnecting nodes from data source in case of cluster connectivity

failure. This could decrease performance of synchronization and propagation

at node level, and decrease capacity of overall cluster.. Also duplication of data

across all nodes could increase the costs of storing data and hardware in comparison

to centralized system.

Handling information by centralized database results that any nodes temporarily

detached from cluster make inconsistency quickly. This raises following questions:

 how should the online part of cluster react on changes on re-connected

nodes,

 how should re-connected nodes react on changes in online part of cluster,

 how to handle conflicting updates of common parts (i.e. one of online

node’s changes state of disconnected node during split).

Proposed architecture is oriented to be data driven and to handle any changes

of information by local Node’s logics. It means, that changes in in information

(broadcasted notifications) trigger logics. This is in opposite to: API > logics >

database model, which is known from common architectures, where exposed

API endpoint triggers execution of logics and then, logics updates central

database. Event/Data driven architecture focused on reacting on data updates

simplifies handling the rejoin. At the beginning of cluster’s lifetime one of nodes

should create the first notification about change in database. Each ongoing

notification will be marked as successor of the previous one, by marking this

fact on one of notification’s internal fields. Thus, when all nodes are online,

notifications are spreaded almost immediately. Such approach makes the chain

of notifications, ordered by internal notification’s fields. This idea was taken

from the Blockchain (Nakamoto, 2008) database. The difference is that in some

cases, chain could become a tree of notifications (or coexisting chains), when

two or more nodes are concurrently changing database in the same time. The simple

chain of notifications is shown in fig. 4. All notifications are ordered one, after

another, by pointer to previous notification.

Fig. 4. Chain of notifications

In case of outage of node(s), new updates are not present in its chain. After

rejoin, such node will receive only last new update.

Update
A

(first)

Update
B

(previou
s: A)

Update
C

(previou
s: B)

Update
D

(previou
s: C)

32

Fig. 5. Incomplete chain of updates, known by node disconnected after receiving update B

Shown in fig. 5 sample chain, represents notifications known by disconnected

and then reconnected node. Latest received before outage notification, is noti-

fication B. After rejoin, this node will receive ongoing notification D, which

points to notification C as its predecessor. Such notification is not known for

rejoined node, so it should broadcast request for retransmission of notification

C to all its neighbourship. In this way, rejoined node could track all changes

made during its outage. Also, in case of new notifications of changes made

during outage, this node could retransmit this changes to the rest of cluster.

Proposed approach makes greater overhead in comparison to the central

database, but makes easy to handle rejoin of any nodes and track historical state

of database.

3.3. Handling join of new nodes and joining clusters

Described above way of handling rejoin of particular nodes after split brains

applies to the joining new nodes and joining two or more clusters together too.

Once new notification appears in node, or new cluster, all previous notifications

should be fetched from older part of cluster as the notification’s predecessors.

There is no additional notification of join for existing cluster, thus all existing

nodes could know notifications from new node or newly attached cluster

immediately, after first change of information

3.4. Notification broadcasting

To provide better redundancy and failure tolerant cluster of nodes, it is rec-

ommended to use physical connections in redundant configuration. Additionally,

algorithm responsible to broadcasting new notifications should use all possible

connections to broadcast notification. Such approach makes cluster highly

available and resistant for failure of particular connections between nodes. This

approach could be optimized for better performance, but the it could guarantee

lower availability level. Such approach is acceptable, until we need to handle

connection failures as the primary functionality.

Update
A

(first)

Update
B

(previou
s: A)

Update
D

(previou
s: C)

33

3.5. Handling conflicting notifications

Due to proposed architecture specification, many nodes could modify simul-

taneously one information in cluster. Most popular approach suggests to use locks

and mutexes (Courtois, Heymans & Parnas, 1971) to avoid concurrency. Proposed

solution shifts responsibility of handling such conflicts from database to the logics

and notification ordering. Once order of notifications is known, there is no need

to deal with concurrent modifications. Each node will process this notification,

which is first in chain and modify information respectively to this order.

Fig. 6. Two conflicting updates, C and D

In situation of simultaneous notifications, with the same predecessor (fig. 6),

logics on each node receives information about conflict. It is certain, that one

of two notifications will arrive to node faster, so another will be marked as con-

flicting. The decision what to do should remain only to the logics at particular

node, however simultaneous modification of one resource (i.e. setting value

of single variable) is only fraction of such notifications. Most of split brains should

produce branches in notification chain, without conflicts. Thus, the information

schema in cluster should be designed in way to minimize risk of concurrent

modification of the same resources.

The only problematic scenario is when two nodes modify the same resource

in database. It is not possible to make decision in advance, so it is necessary

to leave this decision to the logics.

3.6. Security of cluster and its data

In order to ensure a fully functional system design, it is necessary to solve

the security problems. The proposed system will be an open database, like

Blockchain (Nakamoto, 2008), with cryptography-based security. Thus, the per-

mission to read any part of the information will be granted to each node

connected to the cluster.

Update A

set var1=’x’

Update B

set
var1=’y’

Update C

set var1=’z’
Update D

set var1=’w’

34

To secure write access to objects, one should use the asymmetric keys to provide

signature-based authentication of each notification. Thus, to each object in cluster

should be associated with its public and private key. Private key should be

known only for the node, which creates object. Public key should be shared with

all nodes in cluster with first notification, related to this object creation. This will

allow each node in cluster to verify all ongoing notifications related to certain

object. By storing list of authorized public keys related to object, we could also

grant and revoke permissions to modify this object. Authorized objects changing

information related to another object shall sign such notification with own private

key, authorized in modified object.

The special case are object’s fields which should be available for everyone.

Then, the logics should accept notifications without matching signature or to recreate

own, signed notification with the same information. Such approach could be used to

allocate resources and leave verification to resource handler in cluster. If node’s

logics could accept such resource allocation, it could re-sign such notification

with own, authorized key and re-share with cluster. Otherwise, notification

won’t be re-signed and it will be ignored by all other participants of cluster.

Once each object has public-private key pair assigned, it is possible to secure

the access to object’s data. It could be done by encrypting particular fields

of object with provided public keys. By using mechanisms known from various

encryption systems (i.e. dmcrypt (“DM-Crypt project”, 2018) in Linux

or GnuGPG (“GNU Privacy Guard project”, 2018)), we could grant access

to data for multiple nodes in cluster in the same way.

Above two assumptions make access for reading and writing data into the

database complete. We could define how to grant access to modifying objects,

share data in secure way and handle unsigned notifications.

To prevent spoofing new objects we could make object’s ID related to its

public key. The relation could be done with one-way hashing function, like SHA

(Secure Hash Signature Standard (SHS)180-2, 2002) or other. Thus, once object

is created with public-private key pair, the ID is the hash of this public key.

With this assumption it is impossible to recreate the same object with the same

ID and other key pair in reasonable period of time.

3.7. Trusting new objects and nodes

To make possible to authorize all new objects and nodes in cluster, it is

necessary to provide some mechanisms against this problem. Thus, mechanisms

known from X509 (Cooper, Santesson, Farrel, Boeyen & Housley, 2002),

OpenPGP (Callas, Donnerhacke, Finney, Shaw & Thayer, 2007), or other standards

could be implemented. Once the object’s key is signed by some authority,

it could be trusted. There is no other way to automate this process with as-

sumption that in any moment of time, cluster’s infrastructure could be splitted.

35

Otherwise one should have centralized service, verifying the authenticity of objects

in database or doing it manually.

3.8. Tracking changes in database

Described assumptions of this system architecture makes tracking history of

whole cluster trivial task. Once each node has all notifications, at each point of time

we could recreate whole history of cluster’s state and information related to it.

3.9. Database as the communication channel

In most IT systems, database acts as the data store. In most cases dedicated

interface is responsible for communication with external services. Between

interface and database we have layer of logics, which validates requests

incoming from interfaces (API) and modifies the database.

Fig. 7. Architecture of system using notifications as the communication channel

In proposed architecture it is recommend to use fact of information change –

the notifications – as the communication channel (fig. 7). The mentioned

communication channel in fact is not a database, but the framework intermediating

communication with the data store. As mentioned in previous chapters, each

node has logics, responsible for validating incoming notifications and making

decisions about applying them to local information. From the other side, once

state is changed at one node, the notification is broadcasted to other ones. Thus,

database updates, together with described authorization mechanisms are an al-

ternative to creating interfaces for communications. For example, changing state

of one object in database will create notification of this fact broadcasted to all

neighbors. If implementation of this concept provides broadcasting such updates

Database

Framework

Logics

Database

Framework

Logics

sync

store store

API API

36

to all neighbors, and all neighbors will retransmit it to own neighbors, the very

strong redundancy will be provided. Moreover, using only proposed system

as communication channel for all purposes, creates redundant and fault tolerant

channel to communication. However still, it is highly independent on the cluster’s

physical networking. Handling updates in described in this paper way (chapter

3.A) also defines how to split-brains and re-joins of cluster will be handled.

4. EXISTING TECHNOLOGIES

4.1. IP network and ISO/OSI models

First technology, worth to compare with is the IP networking (in 4 or 6 versions).

Basic principle is to provide connectivity between hosts (in our case nodes)

and deliver messages in form of packets (notifications). With dynamic routing

we could provide redundant paths inside IP networks and make it highly

resistant for failures of single points.

However at this point our similarities are end. Of course we could extend IP

networking with additional layers, protocols and tools to provide more similar

way of communication, but, without implementing application layer of ISO/OSI

we cannot do:

 security and authentication – exception is the IPSec protocol, but requires

a lot of preconfiguration, what is in opposite to next point,

 autodiscovery and autoconfiguration,

 data store,

 data recreation/database history tracking,

 no default redundancy – configuring redundant connections requires

additional routing configuration in whole network.

Thus, for purposes of the discussed architecture, IP network was insufficient

solution, however it was used as the backing technology for connectivity. Main

difficulty is total lack of data store, combined with cryptographic security layer,

which is required in such systems. However some ideas known from IP networks

was implemented in proposed architecture.

4.2. Blockchain (including Ethereum, Bitcoin network and other)

Most similar solution to proposed, which has the most common points

with described here system is the general Blockchain technology (Nakamoto, 2008).

It covers most requirements, mentioned in introduction, but has one, major

difference. Blockchain was designed as the base for cryptocurrencies, so its main

purpose is to securely make transactions between participants without any cen-

tralized point. One of most unique features of blockchain technology is the way

37

how this database confirms the transactions across the network, known as con-

sensus algorithm. This mechanism is used to create one, final version of database

each ten minutes (approx.) by voting. Nodes across network (known as “miners”)

are used to calculate hashe of block of transactions and thus make cryptographic

confirmation of transactions in time. In Bitcoin’s network such hash should start

with certain amount of zeros at beginning, by calculating SHA of block joined

concatenated with random data, resulting proper hash. In Bitcoin this is called

proof of work, due to generating hash requires a lot of computational work.

In other decentralized systems other mechanisms are used (i.e. proof of stake).

This mechanism is most important part of Blockchain and other decentralized

systems, what makes it hard to forge.

Ethereum (Eyal, 2017; Tschorsch & Scheuermann, 2016; Wood, 2014) has

the similar approach to the verification of smart contracts as the Bitcoin network.

The difference is that miners in Ethereum network validate small programs

(called smart contracts), instead of validating transactions. Thus, implementing

Ethereum as the consistent, asynchronous information distribution system is not

possible without large modifications of protocol. Additionally, both technologies

(Ethereum and Bitcoin) are based on the same principles of underlying Blockchain.

Moreover, the Blockchain’s architecture has multiple levels (participants, ledger

services, miners). Discussed here clusters should be simple, with flat architecture

of nodes with the same privileges.

Above approach makes the Blockchain a great solution for currency purposes.

In distributed environment nobody can undo the transaction. Also nobody can forge

recent transactions. In context of described system, Blockchain’s certainty is a pro-

blem. In case of split brains and rejoins we want to deal both parts of cluster,

with all changes created by them. Finally, in proposed solution each node

decides what part of data and updates is trustworth and which part should be

ignored.

4.3. Agent systems

Agent systems, in traditional, scientific approach implement the agents, which

are something more than objects. Agents have logics (Zhang & Zhang, 2004)

and are able to take decisions based on incoming data, which could be incomplete

or incorrect. Most agent systems could take decisions with a certain margin of

error.

Thus, described in this paper system is most familiar with the agent systems,

but extends it by adding some principles dedicated to drive clusters of nodes

and handles various problems not present in agent systems.

38

5. RESULTS

Described functional requirements and ideas were implemented as stand-

alone framework for creating distributed applications in form of library. The library

could be found at the project’s website (“Dinemic project”, 2017) and Github

repository (“Dinemic code repositories”, 2017). Developed project is in the beta

version at the moment of writing this article and is being tested to provide best

stability and security, using all described in this paper ideas.

Created framework is designed to hide all complexity of technology, crypto-

graphy and networking from developer and provides Event Driven Development

approach to creating distributed applications. Except the described functional

assumptions, the features of solutions are:

 proxy to the underlying database and full ORM for C++ language –

objects created through framework could store data in local data store

automatically,

 automatic broadcasting notifications of changes in database over network –

all updates on local database are sent to all neighbors over network,

 digital signatures of notifications, data encryption and control of incoming

notifications by event handlers – before notifications are received and

processed by framework, application can define its own event listeners,

to take own actions before or after creating, updating or deleting objects.

Event handlers also can prevent unauthorized changes in whole database,

objects or particular fields of objects. All behavior could be defined by

each application in cluster, what can result in very different database

contents on various network nodes.

For applications using dinemic framework there is dedicated application

skeleton, which guides developer to use it in proper way. This way allows to easily

design applications as event driven. The base class for application – DApp class

can be used to create basic models of applications and define necessary models

within. Methods of this class (launch and oneshot) are dedicated to handle

application installation, short actions (i.e. read or update database contents)

and to remove objects when application is removed from node. Models created

within the dinemic framework should use inheritance of DModel and DField

classes to handle database readings and modifications. Additional class DAction

is the interface to creating own handlers of changes in database across whole

network. All updates incoming to node can trigger execution of DAction

instances defined by user. In this way, application is able to define how to act

when database changed fields of certain object at other node. Due to complexity

of overall system, usage of al above classes in accordance with documentation

is highly recommended. A wider description of framework API remains in

documentation.

39

Implementation of whole framework is done in C++11 language. Beyond

the ORM and described event handling mechanisms, the additional two types

of configurable drivers were used. First one is the storage driver, which is used

to store data in local node’s data store. This allows to use on each node different

database or key-value store to keep data. Available at this moment storages are:

MemoryDriver, which stores data in node’s RAM and RedisDriver, which uses

Redis server and its key-value store. This driver guarantees more data safety

in comparison with MemoryDriver. Second configurable driver is synchronization

driver, which should used by each node in the cluster to communicate changes

in local database. Synchronization driver monitors all changes in database made

by local application and listens for updates generated by other nodes. Its role

is also to handle all cryptography aspects - validation of digital signatures, chain

verification and notification generation.

Beyond the development of framework itself, strong emphasis were put

on aspects of security. During development, a lot of tests were made to confirm

framework assumptions and cover all described in this paper functional

requirements. Tests are designed to cover all units of framework and also to test

its behavior in various network configurations. Additionally, performance tests

were made, however publication of them is purposeless, due to the size of cluster,

logical design, used hardware and driver set has very high impact on results.

Author was not able to find any referral method to compare it with existing

system.

6. CONCLUSIONS

Described in this paper assumptions of asynchronous, consistent information

distribution for decentralized systems could be treated as the extended idea

of agent system combined with the Public Key Infrastructure ideas and crypto-

graphy. However mentioned here problems and solutions will allow to create

fully functional systems, without any single point of failure known from large

scale systems. Described solutions could be applied to the particular applications

in Computer Science context, to create the IoT-like systems, or to the whole com-

puting clusters to provide consistent communication between them. The appli-

ance of this solutions depends on needs and shown here assumptions are main

guidelines to create decentralized, safe solutions.

In the comparison to the most popular in recent time decentralized system –

Blockchain (and similar), this solution abandons one of it principles – the

confirmation of transactions by proof of work mechanisms (“Proof of work

explanation, Bitcoin project documentation”, 2008). In described solution, most

important principle was to authenticate origin of changes in whole cluster

and trusting them absolutely. Main purpose of that was to trust modifications

made by own applications in cluster and prevent unauthorized changes.

40

Purpose of creating this concept is to provide tool for creating distributed

computing clouds, without any centralized point, but still with all basic func-

tionality: storage, networking and virtualization. The main disadvantage of proposed

solution and approach to handling management of cluster state is the large overhead

of computations on each of cluster nodes. For systems handling up to thousands

of virtual machines the amount of changes in central database is not so high

to be problematic for described system. However for applications generating large

volumes of data and changing data very frequently, this approach might be too

slow and complex. In such cases, more appropriate might be using standard

architectures, like microservices with strong emphasis on hardware redundancy

(Balalaie, Heydarnoori & Jamshidi, 2016; Viennot, Lecuyer, Bell, Geambasu

& Nieh, 2015).

ACKNOWLEDGEMENTS

All research and related work were funded and supported by cloudover.io

ltd. company. Intellectual property for tools and libraries developed during

research remain with cloudover.io ltd. company. The author would like to thank

to Roman Krzanowski and Krzysztof Boryczko for theirs help, the Polish Linux

Users Group (“Polish Linux Users Group”, 2000) for promoting the project and

research and the Crypto@Cracow Meetup (“Meetup Group Crypto@Cracow”,

2016) group for help.

REFERENCES

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices Architecture Enables

DevOps: Migration to a Cloud-Native Architecture. In IEEE Software (33(3), pp. 42–52).

USA: IEEE. doi:10.1109/MS.2016.64

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., & Thayer, R. (2007, November). OpenPGP

Message Format. Retrieved from https://tools.ietf.org/pdf/rfc4880.pdf

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk, W. (2008, May). Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

Retrieved from https://www.rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf

Courtois, P. J., Heymans, F., & Parnas, D. L. (1971). Concurrent control with readers and writers.

Communications of the ACM, 14(10), 667-668. doi:10.1145/362759.362813

Davidson, S., Garcia-Molina, H., & Skeen, D. (1985). Consistency In A Partitioned Network:

A Survey. ACM Computing Surveys, 17(3), 341–370. doi:10.1145/5505.5508

Dinemic code repositories, (n.d.). Retrieved February 1, 2018, from https://github.com/cloudOver/

libdinemic

Dinemic project, (n.d.). Retrieved February 1, 2018, from https://dinemic.io

DM-Crypt project, (n.d.). Retrieved February 1, 2018, from http://www.saout.de/misc/dm-crypt

Eyal, I. (2017). Blockchain Technology: Transforming Libertarian Cryptocurrency Dreams

to Finance and Banking Realities. In Computer (50(9), pp. 38–49). USA: IEEE.

doi:10.1109/MC.2017.3571042

41

Federal Information Processing Standards. (2002). Secure Hash Signature Standard (SHS) (FIPS

PUB 180-2).

Fernstrom, C., Narfelt, K.-H., & Ohlsson, L. (1992). Software factory principles, architecture,

and experiments. In IEEE Software (9(2), 36–44). USA: IEEE. doi: 10.1109/52.120600

GNU Privacy Guard project, (n.d.). Retrieved February 1, 2018, from https://www.gnupg.org/

Lippman, S. B. (1996). Inside the C++ Object Model, 1st edition. USA: Addison-Wesley Professional.

Meetup group Crypto@Cracow. (2016). Retrieved February 1, 2018, from https://www.meetup.com/pl-

PL/Crypto-Cracow/

Nakamoto, S. (2008, October). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from

https://bitcoin.org/bitcoin.pdf

Polish Linux Users Group. (2000). Retrieved February 1, 2018, from https://linux.org.pl

Proof of work explanation, Bitcoin project documentation. (2008). Retrieved February 1, 2018,

from https://en.bitcoin.it/wiki/Proof_of_work

Tschorsch, F., & Scheuermann, B. (2016). Bitcoin and Beyond: A Technical Survey on Decentralized

Digital Currencies. In IEEE Communications Surveys & Tutorials IEEE. (18(3), pp. 2084–

2123). USA: IEEE. doi: 10.1109/COMST.2016.2535718

Viennot, N., Lecuyer, M., Bell, J., Geambasu, R., & Nieh, J. (2015). Synapse: a microservices

architecture for heterogeneous-database web applications. In EuroSys’15, Proceedings of

the Tenth European Conference on Computer Systems, Article No. 21. USA, New York:

ACM. doi:10.1145/2741948.2741975

Wood, G. (2014). Ethereum: a secure decentralised generalised transaction ledger. Retrieved from

http://gavwood.com/Paper.pdf

Zhang, Z., & Zhang, Ch. (2004). Basics of Agents and Multi-agent Systems. In Agent-Based Hybrid

Intelligent Systems. Lecture Notes in Computer Science (pp. 29–33). Berlin: Springer.

