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Abstract 

This study presents research on the development of an intelligent controller 

that allows optimal selection of rubber granules, as an admixture recycling 

component for polymer-gypsy mortars. Based on the results of actual meas-

urements, neural networks capable of predicting the setting time of gypsum 

mortar, as well as determining the bending and compressive strength coef-

ficients were trained. A number of simulation experiments were carried out, 

thanks to which the characteristics of setting times and strength of mortars 

containing different compositions of recycling additives were determined. 

Thanks to the obtained results, it was possible to select the rubber admixtures 

optimally both in terms of the percentage share as well as in relation to the 

diameter of the granules. 

 

 

1.  INTRODUCTION 

 

This paper presents the original method of selecting the amount of admixture 

of rubber granulate and the diameter of granules for the gypsum mixture. Thanks 

to the use of artificial neural networks, a neural controller has been developed that 

allows optimal selection of gypsum mixture parameters. Three output variables 

were optimized: setting time [min], bending strength coefficient (BSC) and com-

pressive strength coefficient (CSC). 
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 Calcium sulphates in semi-aquatic form have been used for a long time as 

building binding materials, so-called gypsum binders (Osiecka, 2005). These 

binders are ecological materials, obtained from natural raw materials, which allow 

building elements of various sizes and shapes to be quickly and easily 

(Chłądzyński, 2008). Modern binders are increasingly being created by adding 

ingredients in the form of fillers from various materials (Hooton, 2015). Due to 

the size of production and the possibility of processing into valuable building 

materials, materials originating from waste are becoming more and more 

important as binder additives, among which the ones of polymer materials are  

of the greatest importance (Di Mundo, Petrella & Notarnicola, 2018). The basic 

advantage which should have a new gypsum binder containing a semi-hydrate, 

deciding its usefulness in construction, is the short setting time and obtaining 

a good hardness (Serna, del Rio, Palomo & González, 2012). The binder can thus 

be a polymer-mineral mixture (polymer-cement or gypsum and polymer-lime)  

as well as a mortar with the addition of only polymer fillers (Aslani, Ma, Wan  

& Muselin, 2018). 

In construction mobile connections, which include expansion joints and larger 

assembly gaps, the joint material must provide adjacent structures with the 

possibility of mutual movement in a specific plane, with a clearly defined range 

of changes (Claudiu, 2013). The vibrations of load-bearing elements, caused by 

external loads, e.g. shocks, uneven settlement of objects, dynamic loads from 

vehicle traffic, as well as dimensional changes caused by temperature changes 

must also be compensated. The sealing materials must therefore have appropriate 

physical and chemical properties as well as resistance to bending, compressive 

and shearing forces (Pedro, De Brito & Veiga, 2012). Gypsum-polymer mortars 

suitable as a binder can work well with virtually all other building materials.  

Nowadays, the most pursued route to enhanced elastic properties is the for-

mation of C-S-H organic hybrids on the nanoscale by incorporating soft matter 

into and/or in between the C-S-H nanoplates (Bergström, 2015; Seto 2012).  

The two necessary main features for achieving strong specific C-S-H/polymer 

interactions are negatively charged groups for Ca2+ mediated electrostatic 

interactions and hydrophilic residues preferentially with alcohol or amide groups 

for hydrogen bond interactions (Picker, 2017). The bond between the C-S-H 

nanoplates and polymers can be obtained by mixing a resin with aggregate (Kou 

& Poon, 2013). The most commonly used resins for PC are unsaturated polyester 

resin, epoxy resin, furan resin, polyurethane resin, and urea formaldehyde resin 

(Gorninski, 2017). The matrix is given by the polymer which acts as binder of the 

components, that can be different types of natural aggregates, powders, fibers, 

nano-materials, etc. (Sosoi & Barbuta, 2018). Polymers, such as styrene-butadiene 

rubber (SBR) latex and polyvinyl acetate (PVA) emulsion have been commonly 

used as admixtures in concrete practice (Konar, Das, Gupta & Saha, 2011). This 

polymer admixtures are known to not only increase the workability but also modify 

the physical properties of cement pastes by reducing macro voids and improving 
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the bond strength of the polymer cement mortars to aggregates (Al Menhosh, 

Wang, Wang, & Augusthus-Nelson, 2018). Recent studies on recycled tire 

polymer fibers (RTPF) have shown that the addition of this type of fibers in fresh 

concrete mixes has a positive effect on volume deformations at an early age and 

mitigates the explosive spalling at high temperatures without affecting the residual 

mechanical properties of concrete (Baricevic, Jelcic, Rukavina & Pezer, 2018). 

Based on non-destructive tests (NDT), it was found that increasing the coarse 

aggregate size and polymer ratio reduced the porosity of specimens. This is 

attributed to the decreased surface area to volume ratio with increasing particle 

size, which allowed the polymer to completely coat the surface of aggregates 

(Jafari, Tabatabaeian & Joshaghani, 2018). However, prior to their utilization  

in construction products, such materials require characterization which will 

demonstrate their properties and assure positive long-term behavior, especially 

when exposed to aggressive environmental conditions (Serdar, 2015).  

Such environmental factors could lead to a decrease in performance, thus 

decrease the durability of concrete. Exposure to high temperatures is one of these 

physical factors that have an impact on concrete (Sahmaran, 2009). Recent studies 

shown that structures exposed to high temperature can be used the polymer-

phosphazene concrete. The filling of the voids with the polymer was ensured  

so that the physical binding of polymer molecules and strong adhesion of these 

molecules to each other was obtained (Tanyildizi & Asilturk, 2018). This strategy 

could greatly benefit future construction processes because fracture toughness and 

elasticity of brittle cementitious materials can be largely enhanced on the nanoscale. 

Gypsum-polymer mortars can be used to supplement cavities, leveling walls 

and floors by increasing the elasticity of the mixture (Forrest, 2014). Thanks  

to this, after solidifying, the weld section made is resistant to deformation that occurs 

during the period of operation of the analyzed object (Benosman et al., 2017). 

Gypsum-polymer mortar can be products with good functional properties, easy  

to use. Proper selection of the additive, e.g. regranulate, will allow to obtain  

an improved flexible mortar, which can be evaluated on the basis of tests of bending 

strength or compressive strength, etc. (Jarosiński, Żelazny & Nowak, 2007; 

Herrero, Mayor & Hernández-Olivares, 2013). 

The aim of the research was to develop an intelligent controller that would 

allow optimal selection of rubber granulate parameters as an admixture for 

gypsum-polymer mortar with addition of hydrated lime and admixtures in various 

amounts from rubber regranulate. Parameters such as: time of setting components 

of the gypsum mixture (minimization of time) and mechanical properties of the 

obtained mortar (maximization of strength) were optimized. 
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2. MATERIALS AND METHODS 
 

During the research it was found that due to the complex, non-linear 

dependence of 2 independent variables (input): 

1.  Diameter of granules, 

2.  Percent of admixture, 

regressive neural networks can be an appropriate tool to train the controller 

(Lorrentz, 2015). Based on 120 real measurements, 3 separate neural networks 

were trained. Each of the networks had at the entry 2 of the above-mentioned 

values. The network outputs were: setting time [min], bending strength factor 

(BSC) and compressive strength index (CSC). Both strength coefficients are 

expressed in Newton [N]. 

In order to collect training data for the neural network, research was conducted 

on polymer-gypsum mortars. The tests were based on samples similar in shape 

and size to welds used in real conditions. Characteristic indicators that determined 

the weld's usefulness are the time of binding of the gypsum-polymer mixture  

as well as the bending and compression strength factors. 

CaSO4·½H2O construction gypsum was used for the developed material 

composition. The gypsum bond fulfilled the requirements of EN 13279-1-A1.  

The content of calcium sulphate (CaSO4) was above 50%, the graining of the material 

was covered by a 1.0 mm sieve residue, no more than 0.5% and a 0.2 mm sieve, 

which was equal to or lower than 15%. Hydrated lime was added to the mixture, 

its share in mixtures with gypsum did not exceed 2%. Rubber granulate derived 

from the recycling of tires with several grain diameters from ø 0.1 mm to ø 0.63 mm 

was used as an additive to increase flexibility. 

The components of the mixtures were introduced in various proportions to the 

binder when mixing with water. They consisted of gypsum, hydrated lime  

and polymer regranules. When choosing the right regranulate for the tests, the amount 

of polymer incorporated into the mixture was also significant, the appropriate 

amount being determined based on the adopted research program. 

Fig. 1 presents molds for the preparation of gypsum-polymer mortar beams. 

Fig. 2 presents a sample of a set plaster mortar containing 20% of a rubber 

granulate with a granule diameter of 0.1 mm. 

 

 

Fig. 1. Molds for the preparation of mortar beams 
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Fig. 2. Gypsum mix with 20% rubber granulate with a grain diameter of ø 0.1 mm 
 

To determine the bending and compressive strength of the samples, a hydraulic 

press with a 16 cm2 jaw area was used, compressing at the standard speed, with  

a jaw pressure from 0–200 kN. The studies of setting time of gypsum mixtures 

were made using the Vicat apparatus. 

Fig. 3 shows a schematic of a neural network. The input vector consists of  

2 elements. It is a multi-layer perceptron with one hidden layer containing  

10 neurons (Thomas & Thomas, 2011). The hidden layer transition function has 

a sigmoidal waveform. One neuron is located in the output layer. The transition 

function has a linear course here. The output is a real number, so we are dealing 

with a regression model. 

 

 

Fig. 3. Diagram of neural network used in research 
 

Table 1 shows the results of training the neural network. The historical data set 

consisted of 120 cases, divided into 3 sets: training set, validation set and testing 

set, in the ratio of 70:15:15. The main measures of network quality are mean 

squared error (MSE) and regression (R). 
 

    Tab. 1. Results of neural network training for individual sets 

Sets Samples MSE R 

Training 84 6.51330·10-4 0.997353 

Validation 18 1.66109·10-3 0.994454 

Testing 18 5.97817·10-4 0.998574 
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The formula based on which the MSE error is calculated is presented using the 

dependence (1). 
 

𝑀𝑆𝐸 =
1

𝑛
∙∑(𝑟𝑒𝑓𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1  

(1) 

 

where: n – number of cases in the set (training, validating or testing), 

   ref – reference values (patterns), 

   x – predicted values of a model. 
 

The high quality of the network is demonstrated by low MSE and high R. The best 

indicator reflecting the ability of the neural network for generalization is MSE for 

testing set. Testing set contains cases that did not participate in the network 

training process, hence MSE for testing set is usually higher than for training set. 

In the present case, the MSE values for testing set and training set are very similar. 

Both values are very low, which is a good sign of the quality of the trained neural 

network. Regression for testing set is 9.986 which is a high indicator and also 

confirms the effectiveness of the solution obtained. 
 

 

Fig. 4. Plot of neural network performance according to MSE 

 

Fig. 4 shows the course of training the neural network based on the MSE values 

in individual iterations (epochs). The shape of the curve resembles a bit of hyperbole.  
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Fig. 5. Error histogram of the neural network training process 
 

There are not many fluctuations on the chart. These features testify to the lack 

of network overtraining. On the line of the validation error, the place where the 

learning process ends was marked. It falls into epoch 4. Best validation 

performance (MSE) equals 0.0016611. The task of the validation set is to stop 

training the neural network, which occurs when after six successive iterations 

MSE does not fall. 

Fig. 5 shows a histogram of MSE errors for sets: training, validation and testing. 

The whole range of errors has been divided into 20 bins. The most errors had 

absolute values close to zero. The shape of the graph resembles a normal 

distribution curve, which also well shows the quality of the obtained neural 

network. 

Quantitatively, the most registered MSE errors concerned training set. This is 

due to the fact that all historical cases were divided in such a way that as many as 

70% of them fell on the test set. The remaining 30% were divided into validation 

and test sets. Fig. 5 reflects this division. 

Fig. 6 presents regression statistics of the obtained neural network. As you can 

see, regression is close to 1 for both the test set (left picture) and for all cases 

including training, validation and testing (right picture). 

Regression is a measure of matching the network response to patterns. If it is 

close to 1 even for test cases that do not participate in the network learning 

process, it means that the network has the ability to generalize responses. This is 

a key feature thanks to which the network deserves to be called intelligent. 
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Fig. 6. Regression statistics of the neural network training process 

 

Fig. 7 shows a simulation model of the system for the selection of recycled 

components in polymer-gypsy mortars. The configuration of the presented model 

assumes that the diameter of the rubber granulate is constant and amounts to  

ø 0.35 mm. The percentage of admixture varies in the given range. Several variants 

of simulation models were tested, in which the constant diameter of granules 

assumed the following values: ø 0.1, 0.2, 0.35 and 0.5 mm. For each given 

diameter of granules, the percentage of admixture was smoothly changed. 
 

 

Fig. 7. Simulation model including three separate neural networks 
 

Three separate neural networks were trained in which each had a different 

output. In the first network (ANN-1) the dependent variable was the binding time, 

in the second network (ANN-2) it was the bending strength factor (BSC) and in the 

third network (ANN-3) the bending strength index (CSC). In the case of ANN-1 

it was necessary to convert the real number to minutes, hence an additional module 

visible in Fig. 7 was placed to the right of ANN-1. 
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3. RESULTS 
 

Based on the designed neural models, a number of simulation experiments 

were carried out, including various variants of intelligent controller settings. 

Variants were tested in which the diameter of the granules was predetermined  

(ø 0.1 mm, ø 0.2 mm etc.), while the proportion of admixture of rubber granulate 

was smoothly variable. The results of the tests are shown in Fig. 8 and Fig. 9. 

The drawings are presented in pairs, in a system allowing to compare two cases 

together with different diameter of granules next to each other with a smooth change 

in the amount of additives. In Fig. 8, the diameters of granules ø 0.1 mm  

and ø 0.2 mm were compared. The first pair of graphs in Fig. 8 shows the duration 

of the binding time expressed in minutes. The next pairs of drawings show the 

waveforms of BSC and CSC values expressed in Newtons. The drawings in Fig. 9 

are presented in an analogous manner, but the analyzed cases concerned different 

granule diameters: ø 0.35 mm and ø 0.5 mm. 

 

Granules = ø 0.1 mm Granules = ø 0.2 mm 

  

  

  

Fig. 8. Prediction results with constant granule diameters (ø 0.1 mm and ø 0.5 mm) 
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Granules = ø 0.35 mm Granules = ø 0.5 mm 

  

  

  

Fig. 9. Prediction results with constant percentage inclusions (10% and 40%) 
 

 

4. CONCLUSIONS 

 

Analyzing the results of the experiments shown in Figs. 8 and 9, it can be seen 

that in order to select the optimal parameters of admixture of rubber granules, 

multiple graphs should be analyzed simultaneously. For example, some wave-

forms reach zero values, which might seem a mistake. However, it must be taken 

into account that ranges of input variables (predictors) exceed limits for some 

output parameters. Therefore, when analyzing the results, one should look for such 

values of the horizontal axis, for which the strength parameters (CSC and BSC) 

presented on the vertical axis are as high as possible. Most often, this kind  

of choice will be a kind of trade off. 

It can be concluded that the optimal level of admixture of rubber in CSC and BSC 

should not exceed 10%. In turn, the diameter of the granules should oscillate from 

ø 0.35 mm to ø 0.5 mm. With these parameters, the admixtures, CSC and BSC 
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values remain at relatively high levels. If we add to the target beam also 

minimizing the time of setting the gypsum mixture, the optimal mixture should 

contain 10% admixture with a granule diameter of ø 0.35 mm. 

To analyze the increase in load bearing capacity of joints filling expansion 

joints a different gypsum sample size would be used. In turn, to simulate the 

parameters of welds in smaller building gaps, it is likely that other cross-section 

shapes should be used. On the basis of the research results presented above, it can 

be concluded that addition of polymer admixtures with different percentage to the 

gypsum mixture increases both the flexibility of the mortar and load transfer 

without damaging the weld structure, which increases the range of use of ceramic 

and architectural elements with such admixtures.  

Further studies are required to evaluate and distinguish influence of crumb 

rubber inclusions from fibers' contribution, as recent studies have indicated 

a significant potential of recycled tire polymer fibers (RTPF) in the construction 

industry. 
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