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Abstract 
This paper presents the results of testing of a complex electromechanical 

system model. These results have been obtained for accepted in simu-

lations the method of identifying an inertia moment of reduced masses on shaft 

of induction motor drive during the changes of a backlash zone width.  

The effectiveness of correct diagnostic conclusions enables coefficients anal-

ysis of testing signals wavelet expansion as well as weights of a supervised 

learning neural network. The earlier fault detection of five important state 

variables, which describe physical quantities of chosen complex electro-

mechanical system has been verified for its correctness during the backlash 

zone width monitoring in the early stage of its gradual rise. The proposed 

here algorithm with mass inertia moment changes has proved to be an effective 

diagnostic method in the area of system changeable dynamic conditions 

and this has been shown in the resulting changes of backlash zone width. 

 

 

1. INTRODUCTION  
 

Diagnostics of electromechanical processes deals with the identification  

of changes in their states, what has been presented in the form of a sequence  

of intentional actions performed by means of the set of available machines  

and devices for a fixed period of time. After exceeding a certain value, the da-

mage must be detected and identified. A diagnostic algorithm must detect and identify 
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in a relatively short time a fault that occurs early in the development phase 

(Korbicz, 2002). In mechanical connections containing backlashes, non-linear 

resilient-absorbing elements or damaged bearings – it is necessary to classify 

signals simultaneously in the time domain and depending on frequencies using 

transformation methods, to be able to study its spectral properties (Duda, 2007). 

The adaptive, time-frequency distribution of signals waveform processing has  

a number of important, scalable properties, relating both to time and to frequency, 

analyzing the relationship between the function being studied and its trans-

formation coefficients (Doniec, 2010). 

During the period of the last several decades more and more scientific works 

have been appearing in the literature presenting methods of industrial structures 

damage diagnostics using a time-frequency analysis and neural networks. It is 

worthy to mention some of them: 
 presentation of diagnostics of various types of faults of induction motor 

by means of packet wavelet analysis (Kowalski, 2006), 

 presentation of a new detection technique and the method of classifying 

faults of induction motors by means of current and dispersed stator stream 

analysis (Ishkova & Vitek, 2016), 

 using a discrete wavelet transform of the current stator envelope for de-

tection of spiral short circuits in an induction motor, in the initial phase of 

failure (Wolkiewicz & Kowalski, 2015), 
 application of statistical features of wavelet distribution coefficients to a neural 

network training, using a backpropagation algorithm (Yayakumar, Thangavel 

& Elango, 2015), 

 detection of a stator winding fault, using a combination of a wavelet 

transform and a neuro-fuzzy identifier (Farronato et al., 2005). 
 

 

2.  METHODOLOGY AND RESEARCH OF THE DIAGNOSTIC 

ALGORITHM FOR FAULT IDENTIFICATION 
 

Diagnostic tests have been carried out for the nominal conditions of an induction 

motor whose model has been built in a stationary coordinate system related  

to the stator (model α, β, 0). It is assumed that the load of the induction motor is 

a working machine of the form of a dynamic mass-absorbing-resilient element. 

Figure 1 shows in a simplified form a diagram of the connection of a working 

machine with the induction motor. The tested width of the backlash zone occurs 

between the rod of the induction motor drive and a working machine drive 

wheel. The backlash results from the line slip of the dynamic-absorbing-resilient 

dynamic element on the surface of the working machine drive wheel. 



 

98 

 

Fig. 1. Diagram of the dynamic mass-absorbing-resilient element, which has been connected 

to the used in the tests induction motor. The diagram shows the inertia moment  

of the masses reduced on the motor shaft 
 

The tests have been carried out within the MATLAB / Simulink environment, 

using the following parameters of the induction motor (parameters of its sub-

stitute circuit are expressed in relative units): circuit stator relative resistance  

rs = 0.059 [Ω], circuit rotor relative resistance rw = 0.048 [Ω], relative reactance 

of the dispersion circuit stator xs = 1.92 [Ω], relative reactance of the dispersion 

circuit rotor xw= 1.92 [Ω], relative reactance of the dispersed circuit xm= 1.82 [Ω],  

w = xs * xw – xm * xm = 0.374, mechanical time constant Tm = 0.86 [s]. 
 

 

3.  IDENTIFICATION TESTS OF THE INERTIA MOMENT VALUES  

IN THE ELECTROMECHANICAL SYSTEM CONTAINING 

VISCOUS FRICTION 
 

The tests have been carried out in four test groups, with the following four 

different values of apparent viscosity coefficient ƞk: 0.0125 [Pa.s 1
n ],  

0.025 [Pa.s 1
n ], 0.0375 [Pa.s 1

n ] i 0.05 [Pa.s 1
n ]. Each test group contained six 

cases with different backlash zone width values. Results of simulations for all 

physical quantities and for every case of change of inertia moment of reduced 

masses and connected stiffly with the induction motor drive rotor Js – have been 

written in the matrix M[7,2048]. Elements of the matrix M have been written for 

each consistency coefficient value ƞk (i.e. for apparent viscosity). Value of  

an inertia moment Js have been determined as the percentage in relation to its 

nominal value Js, up with value A% and down with value C%. Formal changes 

of inertia moment Js have been written in matrix "moments" in the following 

order: moments = [nominal value of inertia moment (Js = 0.862), A=2.5%  

(Js = 0.884), A=5% (Js = 0.905), A=8% (Js = 0.932), A=21% (Js = 1.045), C=2.5 % 

(Js = 0.841), C=5% (Js = 0.819)]. 
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In each of the six cases of changes of backlash zone width have been carried 

out simulation tests for seven inertia moment Js values. The backlash zone width 

values have been taken in sequence from the epsilon matrix, in the following 

order: epsilon = [0.0025, 0.00375, 0.005, 0.0075, 0.009, 0.01]. All tests have 

been carried out for the creep index n1 value equal 0.93. 
The wavelet type and its order has been selected in such a way that the shape 

of the basic wavelet approximately would be adequate to the character of  

the transient course of the tested physical quantity, obtained as a result of a sim-

ulation for the case of the smallest backlash value. Based on the carried out tests 

the following selections of wavelets have been made for individual physical 

variables, with decomposition level 10: 
a) linear acceleration of the induction motor drive as – sym5,  
b) electromagnetic moment of the induction motor drive mel – db6,  
c) angular speed of the induction motor drive rotor s – sym5,  
d) linear acceleration of a mass ac – db6,  
e) linear speed of a mass vc – sym5. 
 

In these simulation tests, it has been assumed that the process of the electro-

mechanical system dynamics testing in the backlash zone starts when the expression 

specified in the left part of the following inequality (1) is smaller than the right 

part of the below inequality: 

 

6..2,1;
)(

21
 i

r

i
epsilon

 ,       (1) 

 

where:  r – radius of the drive wheel of a working machine [m], 
  epsilon(i)– value that has been taken sequentially from the "epsilon" 

matrix and corresponding to the given backlash value in mechanical 

connection, 
  i – index number within the "epsilon" matrix. 

 

The location change angle 1 for rod masses of the induction motor drive 

[rad/s] has been calculated using the formula: 
r

x
1

1
 , and the location change 

angle 2 of the dynamic mass-absorbing-resilient element mass [rad/s], has been 

calculated using the formula: 
r

c
x


2

 , where xc and x1 – are linear distances,  

the first done by mass of the dynamic mass-absorbing-resilient element [m],  

and the second - done by rod mass of the induction motor drive [m]. 
After satisfying the condition determined by inequality described by formula 

(1) the load moment of dynamic mass-absorbing-resilient element is set to zero 

in the tested electromechanical system. For all tested physical quantities the matrix M 
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has contained 2048 samples chosen starting from the moment of obtaining 

backlash zone. Figure 2 presents the example of a course of the tested signal of 

the induction motor driver linear acceleration as in a backlash zone. 
Samples chosen according to the scheme presented on figure 2 have been 

written in sequence to the matrix M for each executed simulation for a given 

backlash zone width. 
 

 

Fig. 2. Testing dynamics of the induction motor drive linear acceleration as in a backlash 

zone, carried out during selected time range choices (samples of the tested signal) 
 

3.1.  Processing of the three-layer neural network learned by the Levenberg-

Marquardt algorithm with the use of a backpropagation method 
 

Algorithm of a one-way neural network taught by means of the Levenberg-

Marquardt algorithm using a backpropagation method and the cascade connections 

structure in this network – enables obtaining fast convergence at the relatively 

low computational complexity. In subsequent epochs of the network learning,  

if the calculated error value is smaller than the error in the previous (starting) 

point, then the coordinates of the new point will determine a new starting point 

with a corresponding set of weights that would have the ability to approximate 

the optimal parameters of the learned network. 

Applied in the test neural network has contained three layers. To obtain the 

most profitable results of identification of backlash zone width in chosen 

physical quantities signals tests – an important element was to determine the number 

of neurons in the input layer, which represents the first layer of the applied neural 

network.  

To obtain the appropriate number of samples, which determine input values 

as well as the proper output values of the neural network, there have been made 

many series of simulations and observations of results using different number of 

samples, which have been written in the matrix M. Finally, after the simulation 

tests execution, the last 400 samples have been chosen from the matrix M  

and have been written in a separate matrix M1. In every case considered in the entire 

this section the value of the consistency coefficient ƞk used in tests equals to 0.025. 

The same variables, which are used in many formulas, when their meaning stays 

the same, then it is explained only once during their first occurrence. 
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In case of all tested physical quantities every input value X in the first layer 

of the neural network has been transformed to the [h2, k2] range of normalized 

values of the matrix M1 according to the formula: 
 

      
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(2) 

 

where: M1  – values of the matrix M1, registered for testing in which 

consistency’s coefficient ƞk = 0.025 and for assumed correct value of 

inertia moment Js, 

  h1 and k1 – the minimal and maximal value (respectively) of the matrix 

M1, for assumed correct value of inertia moment Js, 

  h2 and k2  – the initial and the final value of the range, which contains 

normalized values of the matrix M1, 

e – an index of a column’s number in the "epsilon" matrix. 
 

The set values T of the neural network have been calculated in a similar way 

as input values X of the network. A transformation to the [h2, k2] range has been 

carried out using the following formula:  
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(3) 

 

The beginning as well as the end of the range, to which values of the matrix 

M1 have been transformed – they represent the minimal (  332 min k,h=h  ) and 

the maximal (  332 max k,h=k ) values, which have been determined for the 

two compared values of h3 and k4, where h3 is the variable that has been 

determined using statistical parameters calculated for the matrix M2 rows in 

testing, and k3 is the variable determined using the difference between 

normalized median value of the tested matrix M row and the sum of values of 

variables h3 and h4. 

Therefore the value of the variable h3 has been calculated in the following 

way: 









 1

5

5
13 min m

k

h
,m=h , where: m1  is the average value of the matrix M2, h5  

is the minimal value of the matrix M2, and k5 the maximal value of the matrix M2. 

Statistical parameters m1, h5 and k5 have been calculated for matrix M2 rows 

for testing, for assumed backlash zone width. For all tested physical quantities 

values of matrix M2 contains medians of rows in matrix M3. Matrix M3 contains 

sorted in the ascending order values of rows of matrix M for testing, in which 

assumed consistency coefficient ƞk has been set to 0.025.  
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To determine the value of the parameter k3, it is necessary to perform its nor-

malization, i.e. median of matrix’s tested row M must be decreased by sum of para-

meter values h3 and h4. The normalization formula is as follows: 
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(4) 

 

where: m2 – the value of median of matrix’s tested row M , 

   m5 – the average value of matrix M5 for test,  

   m6 – the average value of matrix M6 for test.  

 

Value of the parameter h4 is determined as the following minimum: 
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For all tested physical quantities value of median m2 is calculated for values 

of matrix M4. This matrix contains sorted in the ascending order values of matrix 

M. 

Values of arithmetic means m5 and m6 were calculated for rows in matrices 

respectively M5 and M6 for testing. In case of all tested physical quantities values 

of matrices M5 and M6 are located in the range [0, 1] and represent the result of 

the normalization process of M2 matrix, carried out according to the below 

formulas: 

 

           
   

 
7...2,1;1,6;

55

52

5 



 ie

hk

hM
M

ie

ie  

 

          
   

 
7...2,1;6,1;

55

25

6 



 ie

hk

Mk
M

ie

ie

 

(5) 
 

 

 
(6) 

 

where: M2 –  matrix containing sorted in the ascending order values of matrix M 

rows for testing, in which consistency’s coefficient ƞk =0.025,  

  h5 and k5 – are respectively the minimal and maximal value of the matrix 

M2.  

The initial values of weights W11,W12,W21,W31 and W32 – have been calculated 

in the following way:   ,M=W i(i) 711    ,M=W i(i) 712    ,M=W ij)(i, 721  

  ,M=W i(i) 731    ,M=W i(i) 732   for indexes i,j = 1,2,...,7, where M7 – matrix 

contains maximum values of rows respectively matrix M8 as well M9. 
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Therefore values of the matrix M7 are calculated for test executed with 

consistency’s coefficient ƞk =0.025, according to the following formula: 

 

                   0482....2,1;7...2,1;max,maxmax ),(9),(87  jiMMM jijii  
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The initial value of W13 weight represents the arithmetic mean m7, calculated 

using M7 matrix: W13 = m7. 
Values of matrices M8 and M9 are located in the range [0, 1] and represent 

values of matrix M, have been obtained as a result of the normalization process 

of all considered physical quantities used in testing, according to the below 

formulas: 
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(9) 

 

where: h6 and k6 – are respectively the minimal and the maximal value of the matrix 

M used for testing. 

 

In executed simulations some parameters have been calculated especially 

only for testing, in which assumed consistency coefficient ƞk has been set up to 

the value 0.025. It was applied for the following parameters: h1, h3, h5, h6, k1, k5, 

k6, m1, m5 and m6. 
The initial values of matrix of biases for neural network first and hidden layer 

have been set to 1, i.e. B(f)(i)=1; f = 1,2; i =1,2,…,7, where f is the number  

of neural network layer applied in test. It has been assumed that the initial value 

of bias B3 in the output layer was also set to 1. Output signal Y1 from the first 

layer of the neural network have been calculated as follows: 

 

 ;7,...,2,100;4,...,2,1;)(1)(11)(1),(1  iaBWXY iiaia

 
(10) 

 
where B1  – is the matrix of biases in the neural network input layer. 

 

During executed tests a linearity of neurons activation function has been 

assumed. The output signals Y2 from the hidden (i.e. the second) layer of the 

neural network, have been calculated as follows: 
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where B is the matrix of biases in the hidden layer of the neural network.  

The output signals Y3 of the output layer in the neural network have been 

obtained in the similar way, as in the previous layers, i.e.: 
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where B3 is the value of bias in output layer of neural network.  
 

Adaptation of weights and biases have been carried out for each epoch of 

neural network learning by means of updating values in matrix W4 , containing 

all weights and biases that have been obtained using the following formula: 

 

 

(13) 

 

Values of matrix W4 have been changed in the following way (Rusiecki, 2007): 
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where G – is a matrix of neural network gradient, and H – is the approximated 

Hessian matrix, applied to the Levenberg-Marquardt algorithm. 
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The gradient matrix G is determined according to the formula (Rusiecki, 

2007): 
 

93,,1,2,400;,1,2,  =i=a;EJ=G T
(a)

Ti)(a,(i)

 
(15) 

 

The Hessian matrix H is calculated in the following way (Rusiecki, 2007): 
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where: I – identity matrix assumed as diagonal, 
  J – Jacobian matrix of neural network, 
  l – coefficient of neural network learning, and belongs to the [0,1] range. 

 

Values of the neural network Jacobian matrix J have been calculated 

according to following formula (Rusiecki, 2007): 
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where: E  – matrix containing values of the neural network errors,   
  W4 – matrix of the neural network weights and biases.     

 
In order to provide the appropriate approximation of the Hessian matrix H, 

the following diagonal identity matrix I has been was provided: 
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The coefficient of neural network learning l changes in every given epoch of 

this network learning process depending on the value of the mean square error 

(MSE) and this is shown by the below formula: 
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where: g  – the number of a given epoch of this neural network learning process, 
  l1   – the first beginning coefficient, set to 10, 
  l2   – the second coefficient set to 0.1. 

 

In the output layer of the neural network values of errors on neurons have 

been stored in matrix E. They have been calculated on the basis of the difference 

between the output values Y3 and set values T, i.e.: E(a) = (Y3(a) – T(a)), where  

a = 1, 2, …, 400. The mean square error (MSE) has been calculated according to 

the formula: 

  

400

400

1

2


=a

aE

=MSE  and compared with  , i.e. with the earlier 

experimentally assumed value, used for stopping the learning process of the neural 

network. In other words, when the condition of δ<MSE  has been satisfied,  

the neural network learning process has been finished. 

For the earlier assumed value of consistency coefficient ƞk = 0.025 and backlash 

zone width there have been created pattern matrices Ww (for every group of tests 

one matrix). Each such pattern matrix with set up earlier value of ƞk = 0.025  

and backlash zone width – was accepting changing respectively values of the inertia 

moment Js. In this way has been obtained a matrix with a dimension 7 by 7,  

and this can be expressed by the formula: 
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where: h3 – is the value of the variable necessary to determine the range,  

in which would be placed calculated values of matrix X and T. 

 

In the same way, with the earlier set up a backlash zone width and for 

>e 1,6  and ,=j 1,2,...,7  it has been determined values of the matrix Wb of 

dimensions 1 by 7:    .
3
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j
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Correct identification of the value of the inertia moment in the executed test 

for every physical quantity is possible for having assumed earlier values of these 

quantities can be obtained using the values of the matrix G calculated according 

to the formula: 
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Index nr6 (for ><nr6 1,7 ) in matrix G determines the column number  

in the matrix "moments", which contains the correct value of inertia moment. 

The value of index nr6 ( ><nr6 1,7 ) for i = 1,2,...,7 in matrix G has been 

determined using the following minimum function:  .min) (i)
6

(nr G=G  

Therefore, the number i of a column in the matrix moments refers to the 

corresponding to it index nr6 (i = nr6 ). 
 

3.2.  Simulation results of the algorithm of the identification of the moment 

of inertia value while changing the width of the backlash zone  

in the electromechanical system, using a three-layer neural network 
 

In the below tables, using the bold font have been presented the resulting 

final results of calculations of the matrix G, while in the column named Test 

parameters there have been placed the assumed set up earlier values, like the 

widths of the backlash zone, adopted in the process of identifying the moment  

of inertia of the reduced masses and connected stiffly with the rotor of the 

induction motor driver. The values of the G matrix presented in the Table 1 

through 4 – are the correct results obtained finally in the process of identifying 

the fault number. Pattern matrices Ww  have been created for analyzes, and in them it 

was assumed both, the specific value of the learning coefficient l of the neural 

network, as well as the value  – as the value of the accepted error, which has 

allowed to stop the neural network learning process. On the basis of the executed 

simulations and analyzes of its results it is noticeable that obtainment of correct 

results of the identification number of a fault for all tested physical quantities is 

possible, while the following condition is satisfied: execution of a simulation 

with the neural network learning coefficient l changing within the range from 0.1 

to 0.9, with the value of  equal to 10–4, i.e. the parameter controlling  

the stopping time of the neural network learning process. Results that have been 

shown in table 1 through 4 illustrate this fact independently from the obtained 

number of epochs of the neural network processing. 
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Tab. 1. Exemplified results of tests in matrix G for angular speed of the rotor of the 

induction motor drive s 

Test parameters Results 

 

Test parameters Results 

 

 
inertia moment  

Js = 0.819,  

backlash zone = 0.0025, 

ƞk = 0.05, epochs = 7,  

l = 0.9,  = 10–5 

0.0014 

0.0032 

0.0053 

0.0084 

2.8045 

0.0007 

0.0001 

inertia moment  

Js = 0.819,  

backlash zone = 0.0025, 

ƞk = 0.05, epochs = 6,  

l = 0.9,  = 10–4 

0.0019 

0.0040 

0.0072 

0.0137 

4.8939 

0.0007 

0.0005 

inertia moment  

Js = 0.932,  

backlash zone  = 0.0075, 

ƞk = 0.0375, epochs= 7,  

l = 0.9,  = 10–5 

0.0063 

0.0053 

0.0034 

0.0004 
1.6930 

0.0070 

0.0076 

inertia moment  

Js = 0.932,  

backlash zone  = 0.0075, 

ƞk = 0.0375, epochs = 6, 

l = 0.1,  = 10–4 

0.0011 

0.0009 

0.0005 

0.0001 
3.5692 

0.0012 

0.0013 

 
Tab. 2. Exemplified results of tests in matrix G for linear acceleration of the mass ac 

Test parameters Results 

 

Test parameters Results 

 

 
inertia moment  

Js = 1.045,  

backlash zone = 0.009, 

ƞk = 0.0375, epochs = 6, 

l = 0.9,  = 10–5 

1.4902 

1.4776 

1.4566 

0.5744 

0.0864 

1.4958 

1.5023 

inertia moment  

Js = 1.045,  

backlash zone = 0.009, 

ƞk = 0.0375, epochs = 5, 

l = 0.9,  = 10–4 

4.5547 

4.5166 

4.4511 

4.2691 

0.0482 

4.5754 

4.5910 

inertia moment  

Js = 0.884,  

backlash zone = 0.01,  

ƞk = 0.0125, epochs = 7, 

l = 0.9,  = 10–5 

0.0129 

0.0052 

0.0216 

1.6877 

1.4747 

0.0254 

0.0300 

inertia moment  

Js = 0.884,  

backlash zone = 0.01,  

ƞk = 0.0125, epochs = 6, 

l = 0.1,  = 10–4 

0.0037 

0.0001 

0.0082 

0.0270 

0.0418 

0.0064 

0.0078 
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Tab. 3. Exemplified results of tests in matrix G for linear acceleration of the induction motor 

drive as 

Test parameters Results 

 
Test parameters Results 

 

inertia moment  

Js = 0.884,  

backlash zone = 0.0075, 

ƞk = 0.0125, epochs = 7,  

l = 0.9,  =10–5  

0.0526 

1.0286 

0.1911 

3.2197 

0.0094 

0.0170 

0.0023 

inertia moment  

Js = 0.884,  

backlash zone = 0.0075, 

ƞk = 0.0125, epochs = 6, 

l = 0.9, = 10–4 

0.0506 

2.2530 

1.8502 

8.0211 

0.0075 

0.0165 

0.0037 

inertia moment  

Js = 0.905,  

backlash zone = 0.009,  

ƞk = 0.05, epochs = 6,  

l = 0.9,  = 10–5 

3.5903 

3.1856 

0.6751  

10.8113 

2.6810 

2.7129 

2.6956 

inertia moment  

Js = 0.905,  

backlash zone = 0.009, 

ƞk = 0.05, epochs= 4,  

l = 0.1,  = 10–4 

3.0191  

5.2248  

0.0643  
13.9348 

3.0097  

3.0134  

3.0110 

 

Tab. 4. Exemplified results of tests in matrix G for Electromagnetic moment  

of the induction motor drive mel 

Test parameters Results 

 
Test parameters Results 

 

inertia moment  

Js = 0.841,  

backlash zone = 0.005,  

ƞk = 0.05, epochs = 7,  

l = 0.9,  = 10–5 

0.0182  

0.0454  

1.5448  

1.0588  

0.0864  

0.0011  
0.0081 

inertia moment  

Js = 0.841,  

backlash zone = 0.005, 

ƞk = 0.05, epochs = 6,  

l = 0.9,  = 10–4 

0.0198  

0.0638  

0.1773  

3.0455  

0.1373  

0.0020  
0.0101 

inertia moment  

Js = 1.045,  

backlash zone = 0.0025, 

ƞk = 0.0375, epochs = 6,  

l = 0.9,  = 10–5 

1.7720  

1.7384  

1.6812  

0.3638  

0.0269  
1.7914  

1.8023 

inertia moment  

Js = 1.045, backlash 

zone = 0.0025,  

ƞk = 0.0375, epochs = 5,  

l = 0.1,  = 10–4 

5.2338  

5.2311  

5.2255  

0.0258  

0.0063  
5.2351  

5.2363 

 
 
 
 
 



 

110 

4. CONCLUSIONS 
 

The presented paper describes a fault detection system containing a neural 

network trained using the Levenberg-Marquardt algorithm together with the adapting 

back error propagation method. The system has been applied to the identification 

of the inertia moment of reduced masses and connected stiffly with the induction 

motor drive rotor Js.  

The process of the identification was executed for certain time periods. These 

ranges have been obtained as the result of changes of the width of the backlash 

zone by means of time-frequency methods with the multistage decomposition  

of the signal for the complex electromechanical system, connected with a dynamic 

mass-absorbing-resilient element. 

The application of the wavelet-neuron method strongly affects the efficiency 

of the analysis of non-stationary signals in the executed researches, effectively 

limiting the dangerous consequences of appearing fault in the initial phase of its 

development. 

On the basis of the executed tests, we can notice that ensuring appropriate 

changes in parameters in a system containing non-zero backlash zones causes 

results to be much more effective in the detection and identification of the fault. 

These parameters are: coefficient of neural network learning and the fixed 

stopping value of the neural network learning process. 
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