
93

Applied Computer Science, vol. 14, no. 4, pp. 93–108
doi:10.23743/acs-2018-32

Submitted: 2018-09-06
Revised: 2018-12-01

Accepted: 2018-12-16

Business standards, Interoperability, Canonical Data Models,

Graphs, Graph Databases, Graph Transformations

Leszek JASKIERNY [0000-0002-9451-8569]*

REVIEW OF THE DATA MODELING

STANDARDS AND DATA MODEL

TRANSFORMATION TECHNIQUES

Abstract

Manual data transformations that result in high error rates are a big problem

in complex integration and data warehouse projects, resulting in poor quality

of data and delays in deployment to production. Automation of data trans-

formations can be easily verified by humans; the ability to learn from past

decisions allows the creation of metadata that can be leveraged in future

mappings. Significant improvement of the quality of data transformations

can be achieved, when at least one of the models used in transformation

is already analyzed and understood. Over recent decades, particular

industries have defined data models that are widely adopted in commercial

and open source solutions. Those models (often industry standards,

accepted by ISO or other organizations) can be leveraged to increase reuse

in integration projects resulting in a) lower project costs and b) faster

delivery to production. The goal of this article is to provide a comprehensive

review of the practical applications of standardization of data formats.

Using use cases from the Financial Services Industry as examples, the author

tries to identify the motivations and common elements of particular data

formats, and how they can be leveraged in order to automate process of data

transformations between the models.

* AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics,

Computer Science and Biomedical Engineering, Department of Computer Science,

e-mail: leszekj@agh.edu.pl

http://orcid.org/0000-0002-9451-8569

94

 1. INTRODUCTION

Although from a business perspective data models are created to support

particular business objectives, from the practical perspective they must be focused

on particular outcomes and selected groups of the end users. Both, technical

complexity of the model and level of details included in the data model are

dependent on the reason why the model was created and on its target audience.

Looking from this perspective, models can be divided into sub-categories such as:

conceptual models, logical models, and physical models. From a technical

perspective, models can be defined as structured models, requiring strict definition

of the details of the model, and non-structured (conceptual) models, built from

more generic, loosely coupled objects. Conceptual models are created using various

modeling techniques that don’t enforce formal validation of the model. Structured

logical models are created using modeling techniques supporting formal

validation of the model. A good example of such a model is a UML class diagram

Finally, physical models can be represented by various schema definitions, e.g.

XML Schema Definition (XSD), that specify how to formally describe the ele-

ments in an Extensible Markup Language (XML) document.

Such a formal definition is mandatory for documents being exchanged between

applications. Further specifications, such as Web Service Description Language

(WSDL), are built on top of XSD, to specify functional (business related) and non-

functional (IT systems related) aspects of the data exchanged between applications.

2. REVIEW OF DATA FORMAT STANDARDIZATION METHODS

AND TECHNIQUES 

The following chapter provides an overview of data modeling languages and

standards.

2.1. Data Format Description Language

Data Format Description Language (DFDL), published as an Open Grid Forum

Proposed Recommendation in January 2011, is a modeling language for describing

general text and binary data in a standard way. A DFDL model (or schema) allows

any text or binary data to be read (or “parsed”) from its native format and to be

presented as an instance of an information set.

Unlike XSD, which is usually created to model an existing business envi-

ronment, DFDL takes a practical approach, building a model based on the existing

data structures where, in some cases, source data might not be well formatted.

95

An information set is a logical representation of the data contents, independent

of the physical format. For example, two records could be in different formats,

because one has fixed-length fields and the other uses delimiters, even though they

contain exactly the same data and are both represented by the same information

set.

2.2. Dataset Structure Definition

Dataset Structure Definition (DSD) describes how information in a specific

dataset is structured. Knowledge of the structure is important, because it allows

desired information to be filtered out and very precisely limited specific dimen-

sions based on selected criterions. In addition to DFDL, DSD provides a me-

chanism to model, not only particular data items, but also complex data structures.

2.3. UML

Unified Modeling Language is a general-purpose modeling language, intended

to help visualize the design of a system. Data models, as part of the overall design

of a system, can be visualized using Class Models. Class Models significantly

differ from business conceptual Entity-Relationship Diagrams because of their focus

on object-oriented design. Class models can be used at any stage of the modeling

process, i.e. to create conceptual models, logical models and physical models.

Although Class Models have several drawbacks they set a foundation for other

notations, e.g. XSD.

2.4. XML

Extensible Markup Language (XML) is a markup language that defines a set

of rules for encoding documents in a format that is both human-readable

and machine-readable (Thompson & Lilley, 2014). The design goals of XML

emphasize simplicity, generality, and usability. It is a textual data format with strong

support via Unicode for different human languages (Bray, Paoli, Sperberg-McQueen,

Maler & Yergeau, 2008).

2.5. XML Schema Definition (XSD)

XSD, a recommendation of the World Wide Web Consortium (W3C),

specifies how to formally describe the elements in an Extensible Markup

Language (XML) document. Such a formal definition is mandatory for the doc-

uments being exchanged between applications. Further specifications, such as Web

Service Description Language (WSDL), are built on top of XSD to specify func-

tional (business related) and non-functional (IT systems related) aspects of the

data exchanged between applications.

96

3. INDUSTRIAL DATA MODELS

The following chapter provides an overview of the standards from the Financial

Services Industry, influenced mainly by the commercial organizations, such as

Society for Worldwide Interbank Financial Telecommunication (SWIFT), who

provides a network that enables financial institutions worldwide to send and re-

ceive information about financial transactions in a secure, standardized and reliable

environment. Over the past several years, SWIFT provided strong commercial

support, leading to the creation of widely adopted messaging standards, e.g. ISO

15022 and ISO 20022. The following examples aim to provide an overview of

those standards, in order to identify common characteristics driving particular

vendors and particular industry solutions.

3.1. SWIFT MT

SWIFT allows financial and non-financial institutions to transfer financial

transactions through a financial message (“SWIFT”, 2018).

While SWIFT started primarily working with the simple payment instructions,

it now sends messages for wide variety actions including security transactions

and treasury transactions. Nearly 50 percent of SWIFT traffic is still for payment-

based messages, 43 percent now concern security transactions, and the remaining

traffic flows to treasury transactions.

SWIFT can be considered as a true pioneer of the global standardization of data

formats on the industry level. All the messages are built to comply with various

needs and regulations, while maintaining core compatibility across the industry.

The main benefit of SWIFT messages is their business content, while

standardization of the data format is important, the main challenge is in ensuring

that message’s business content meets the following criterion:

 Universal core business entities are shared by the whole industry,

 Extendable, specific extensions are built on top of the core components of

the model in order to preserve compatibility, while maintaining customer-

specific features,

 An open model has to be prepared for future extensions and changes, while

maintaining its core compatibility.

By setting-up the above foundations, SWIFT made an important step towards

industrialization of the data exchange processes. SWIFT messages consist of five

blocks of data including three headers, message content, and a trailer. Message

types are crucial to identifying content. All SWIFT messages include the literal

“MT” (Message Type). This is followed by a three-digit number that denotes

the message category, group and type.

97

3.2. ISO 20022

CIOs and IT architecture experts from leading banks and other major financial

institutions, along with independent software vendors, systems integrators, and SAP,

have joined in a collaborative effort to shape the future of enterprise service-

oriented architectures (enterprise SOA) in the banking industry. This joint effort

– known as the SAP industry value network (IVN) for banks – was launched in

September 2005 and had 35 members (“ISO 20022”, 2018). Although the main

focus of IVN was creation of the reusable services, creation of the appropriate

data model was necessary in order to assure data consistency and interoperability

of those services. SWIFT, as one of the strong contributors to IVN for Banking,

took over work on the definition of a comprehensive data model that would cover

main activities of the banks. This effort greatly enhanced the previous

standardization efforts of SWIFT, mainly related to payments and asset transfers.

The ISO 20022 standard is described in the document “ISO 20022 Financial

Services – Universal financial industry message scheme”.

3.3. OASIS Universal Business Language (UBL)

UBL, the Universal Business Language, defines a royalty-free library of standard

XML business documents supporting digitization of the commercial and logistical

processes for domestic and international supply chains such as procurement,

purchasing, transport, logistics, intermodal freight management, and other supply

chain management functions (Holman, 2018). UBL can be thought of as a language

that allows disparate business applications and trading communities to exchange

information along their supply chains using a common format. UBL also provides

the opportunity to end the debate over standards for business document formats

that has discouraged the adoption of new technologies for conducting business

in the digital age.

4. PROPRIETARY DATA MODELS

Despite high level of standardization, particular organizations (banks, insur-

ance companies, payment providers, etc.) still tend to use proprietary data formats

that meet particular business requirements and allow them to distinguish from

their competitors.

Because standardization processes are expensive, there is always a need for

strong commercial support in order to produce tangible results. Commercial

institutions are funding developments of internal data models, that are focusing

on specific business requirements and following the particular technical limi-

tations of a given organization (McKnight, 2014). Those models (such as ISO20022)

98

are often used as a central model, spanning other data models used in the organization

(e.g. models defined by particular software systems) and can be referenced

as Canonical Data Models (CMD) (Roman, 2006).

Proper construction of the CMD is especially important from the perspective

of ensuring efficient and flawless Data Transformation Processes. A systematic

approach to CMD creation, resulting in the highly optimized data model, can be

done using the following steps:

 Review the Domain Models already used in the Organization,

 Prepare a common data dictionary, including the main business and tech-

nical datatypes,

 Define business areas and main groups of data, together with a dependency

matrix between those areas,

 Review other relevant industry models, e.g. SWIFT (ISO 15022 and ISO 20022),

 Map business requirements on the CMD templates created during past projects,

 Build versioning mechanisms directly into the model (CMD),

 Extend the meta-data related to the CMD, e.g. define defaults for particular

datatypes, iterate and enhance the model with business owners.

Some of the commercial models have been wrapped up and packaged in the form

of the templates that are distributed on a commercial basis. An example is ADRM

Software – the leading independent provider of large-scale industry-specific data

models. ADRM Enterprise Data Models provide the reference for related industry

business areas, data warehouses and data mart models (“ADRM Software”, 2018).

The ADRM Enterprise Data Model incorporates integrated data requirements

taken from the best-practices developed by organizations from particular industries,

combined within a single model consisting of approximately 400 entities and 2,500

attributes. It is the essential data model for strategic planning, communicating

information requirements across the organization, developing integrated systems

and organizing data in the Business Area, Data Warehouse and Data Mart models.

Each Enterprise Data Model is built upon a common core of entity building

blocks, which contributes those same common entities for the construction of

business area, data warehouse, data and application models.

A common set of core entities enables the related models to be consistent

and extendable across the industries. The same common core of entities is used

wherever applicable in other industries, thus providing a means of integrating data

across different industries or lines of business. Such a data model has several

common design characteristics:

 Industry-specific design,

 Comprehensive business area coverage,

 Is fully-attributed,

 Provides complete and detailed definitions,

 Is semantically clear and easy-to-understand,

99

 Reflects current industry data best-practices,

 Provides flexible and extendible design,

 Utilizes industry-standard data whenever possible,

 Can be presented using large format graphic representation,

 Supports a wide audience of interests,

 Is integrated with Business Area, Data Warehouse and Data Mart models.

5. BANK-MF PROPRIETARY MESSAGE FORMAT OF BANK X

Bank-MF (or Bank Message Format) is used as an example of a proprietary

data format; the following example is not directly related to any particular imple-

mentation, but rather summarizes common elements of various implementations

of proprietary data models.

Note: Data Model and Message Format are used here as synonyms; this is because

focus of this article is on the data models used for the exchange of information

between various IT systems. Usually this kind of data exchange is done using

messages built upon technical formats (such as XML or JSON) and business data

models.

In order to understand the complexity of the model, let’s analyze the following

diagram that presents the components of the sample solution: The Lego bricks

represent messages compatible with Bank-MF data model (or Canonical Model),

while wooden bricks and Post-It notes represent proprietary data formats, derived

from particular IT systems.

Fig. 1. Data transformation via Canonical Model

100

Although particular proprietary models are representing the same business data,

there is a need for additional knowledge (referenced here as Metadata), in order

to translate data between particular formats. The most important observation is that

a canonical model is central to all other models, i.e. trans-formation between any pair

of the proprietary models always goes via a Canonical Data Model. In order

to facilitate mediation between a large number of proprietary models, Bank-MF

has to meet the same criteria, as defined in a foundation of the SWIFT MT messages:

universality, extensibility and openness.

The sample model referenced in this article was defined as a complex XSD

schema, with clearly defined common components, basic data types, complex data

types and orchestration of the messages into complex structures, representing

particular business objects.

6. CHARACTERISTICS OF THE GRAPH MODELS

Graph theory is the study of graphs, which are mathematical structures used

to model pairwise relations between objects. A graph in this context is made up of

vertices, nodes, or points, which are connected by edges. A graph may be un-

directed, meaning that there is no distinction between the two vertices associated

with each edge, or its edges may be directed from one vertex to another (Angles

& Gutierrez, 2008). The edges may be directed or un-directed.

In case of this article, we will focus on directed graphs, defining a clear relation

between a parent node and a child node. In addition, each node of a graph will be

equipped with a set of the attributes, defining proprietary characteristics of this

node.

7. TRANSFORMATION OF THE DATA MODEL TO ITS GRAPH

REPRESENTATION

As described earlier, there is large number of various data modeling standards

and patterns common in multiple commercial implementations. In order to enable

automated transformation of the data model, first we need to perform initial

transformation between the actual definition of the model and reference definition,

expressed in form of the graph. Alongside this transformation, we are also trying

to understand the business context of given data model. Understanding the context

is mandatory, because proper transformation has to be based on the business

context of the data, not only on its technical implementation (Sleger, 2010).

In this article, we will attempt to provide a generic prescription for how to map

any proprietary data model on the formal definition of the graph. The following

chapter describes formal methods and techniques used to transform structured

(e.g. XSD), or unstructured (e.g. NoSQL) data models into graph representations.

101

Further on, this process will be called universalization (or initial transformation)

of the data model, i.e. transformation of a given model to its universal form.

Normalized models would be compatible in terms of formal definitions, such as

definition of the dependencies, list of attributes, etc.

Unlike the highly automated Data Model Transformation Process described

later in this article, Initial Transformation might require signification support from

the Subject Matter Expert (SME) knowledgeable about the business context of the

model being transformed. The ultimate goal is to make the transformation process

automated to its maximum possible extent. In order to achieve a high level of auto-

mation, we need to build a knowledge base containing already processed patterns

and templates.

Presented below is an example from the financial industry.

Fig. 2. Building a pattern from linked data models

In this example, the type of the data model can be recognized by detecting the

dependencies between data elements in the model and by detecting the element

names. The following list of dependencies: Contract_Acc_Currency can be matched

against patterns and can by qualified as a financial data model.

Fig. 3. Example of data dependencies

Source Pattern Target

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

102

Knowing that, we can significantly limit the number of patterns that will be

used for further analysis of the model. Following on that, we can use a limited

dictionary to match the names of the attributes with the patterns. Once this simple

model is analyzed and confirmed by the SME, it will be added to the knowledge

base of patterns. In the future, similar patterns will be recognized automatically.

Initial transformation is a multi-step process, designed to extract important

business information from the source model (S) and make sure that none of the

business information is lost. At the same time, non-business information (e.g. headers,

routing information, signatures, etc.) might be removed from the source model

before its normalization.

The following graphic illustrates the process described below:

Fig. 4. Transformation of the Data Model into Graph representation

Step 1. The first step leads to the identification of the major artifacts; this step can

be performed by simple counting of the attributes used in the model. E.g. a large

number of occurrences of the complex data type called ’account’ suggests that this

might be one of the key attributes of the model. Following on this process, we can

build the list of attributes that are most popular in the source model.

Step 2. During the second step of universalization, we are looking for given

patterns and pre-defined elements (see the example earlier in this paragraph).

The goal of this process is to associate initial transformation with the right set of

dictionaries and patterns. In other words, we need to understand the overall business

context of the data model in order to apply the right set of the transformations.

Step1

• Preliminary
analysis of the
Source Model

Step 2

• Identification
of the
patterns

Step 3

• Cleaning of
the Source
Model

Step 4

• Flattering of
the Source
Model

Step 5

• Top-down &
bottom-up
transformat-
ions

Step 6

• Visualization
of the
resulting
graph

To
p

-d
o

w
n

B
o

tt
o

m
-u

p

103

Step 3. The third step of data model universalization is focusing on cleaning-out

unnecessary elements from the model, especially technical artifacts. The impor-

tance of this step would differ significantly between various models. Technical

(non-functional, non-business) elements of the data model could be either entirely

removed, or replaced with standard place-holders, in order to simplify further

processing while not losing any important artifacts. This stage of the process

might require manual input from the expert.

Step 4. The next step is about ’flattening’ of the model. Highly normalized data

models tend to be extremely complex and hard to visualize. Simplification focuses

on the removal of unnecessary groupings, while maintaining the original business

meaning of the model.

Step 5. Now comes an important question: where to start the ‘universalization’

process? Two possible choices are: top-down or bottom-up. The first option

focuses on the overall meaning of the model, where each node is further enriched

by the definition of its child elements. The bottom-up approach focuses on the details

that could be further composed into the meaningful entities. Although the top-

down option is preferred, certain element of the bottom-up approach is necessary

in order to preserve the right amount of detail. Graph notation is a very good way

to explain the dependencies within the model, and this is why the top-down

approach seems to be a better choice.

Step 6. The final stage of universalization allows us to generate a consistent graph-

view of the source model. Using a graph-view, we can easily understand the overall

complexity of the model, its bottlenecks, cross-dependencies and the overall

structure.

7.1. Preparation for the transformation of the data model

The following example presents the transformation of the physical data model

(that could be represented by Data Definition Language) to its graph equivalent.

Transformation between the flat structure and graph have been performed using

metadata generated from the Reference Data Model.

The following changes have been applied as a part of initial transformation

of the model:

1. Element names have been changed, according to the data stored in the

dictionary.

2. Basic data structures have been created from the flat structure, based on the

metadata stored in the dictionary.

104

Fig. 5. Visualization of the dependencies in the data model

The resulting graph doesn’t represent Reference Data Model yet, but is using

the naming convention and basic structures, compatible with the template. Further

work would be required to perform a full transformation of the source model

to the Reference Data Model.

7.2. Data Model Transformation Processes

Transformation means that two Data Models, that are compatible on a business

level, can be equipped with a set of the rules that enable transformation between

those models (Kotulski, 2013). Those two models are further referred to as a Source

Model (S) and a Target Model (T). Transformation between these models can

be expressed as:

S T

Customer

First_name Str(20)

Middle_Initial Str(1)

Last_name Str(30)

Cust_ID Str(14)

Street Str(35)

House Str(6)

State Str(2)

City Str(30)

Cust_type Int

Customer

Personal

Apt

fName

mInitial

Type

Id

Street

lName

Address

State

City

105

The assumption is that both models S and T, are already “normalized” to the

graph-representation.

In order to prove that the models are compatible (i.e., can be transformed),

we need to analyze each graph, looking for the productions (results of graph’s

transformations) that have to be used to generate this graph. This set of produc-

tions, for the source model, can be defined as:

SL SR

Fig. 6. Graph production on the source model

Similar analysis would be performed on the target model. The set of produc-

tions for the target model can be defined as:

TL TR

Fig. 7. Graph production on the target model

In the above example, we can consider productions SLSR and TLTR

as compatible, provided that we can map the names of the attributes between

the models. Such a mapping needs to be created by an expert during the first

transformation of given model and recorded as meta-data that can be used for

future automated transformations.

Customer Account

SL

Customer Account

SR

Amount

Currency

CIF Acc

TL

CIF Acc

TR

Amt

Ccy

106

The simple example above presents transformation from S T. At this point,

we can assume that there is another model (e.g. X, Y, Z), compatible with S

and T, but having different structures and using different names of the attributes.

These models can be based e.g. on country regulations and local languages.

In order to make the model universal, we would need to look for compatible

productions, using a pre-defined set of meta data. Such a mapping would require

each pair of the models to be compared and individually transformed, i.e.:

S X, S Y, S Z, X T, Y T, Z T.

In order to simplify this process, we can introduce an intermediary model that

can be used as a source and target for each model being analyzed for suitability

for transformation. The intermediary model would be called a Pattern Model (P).

Provided that there are a large number of models, this approach would sig-

nificantly limit number of potential model model transformations. Resulting

in a list of transformations that would look like the following:

S P, X P, Y P, Z P.

The following example demonstrates two productions, resulting in different

target models:

Fig. 8. Example of productions, resulting in different target models

Customer Account

SR

Amount

Currency

CIF Acc

TR

Available
Balance

Ccy

Ledger
Balance

107

8. PRACTICAL APPLICATIONS OF THE DATA MODEL

TRANSFORMATIONS

Automation of the Data Model Transformation Processes becomes a critical

success factor in multiple commercial solutions. Listed below are practical

examples where a “higher than current” level of automation would significantly

improve both timing and cost efficiency.

8.1. Integration Projects

The EU’s Payment Services Directive (PSD) was originally published in Decem-

ber 2007. The recently proposed PSD2 introduces Trusted Third Party Account

Access, which are represented by two acronyms: Third Party Payment (TPP) under

the Access to Accounts (XS2A) rule. Besides legal and operational discussions,

XS2A has significant impact on how Banks will enable TPP providers to access

their resources (Skinner, 2015).

Proprietary data formats would require each payment provider to commit

to the API exposed by particular banks. On the other hand, banks my want particular

payment providers to easily access their resources; in this case, banks may need

to adopt the API exposed by the TPP.

As discussed in the previous chapters, particular data formats might significantly

vary, while the amount of information is very similar between particular parties.

8.2. Advanced Analytics

The advent of Big Data, supported by virtually unlimited storage capacities

available at the low cost, results in very large amounts of data stored by particular

organizations. Unlike typical database solutions, Big Data doesn’t require data

formats to be precisely defined and followed. It is important to collect a lot of data

and use proper analytical tools to make meaningful use of that data.

8.3. Automation of Test Data Preparation

Automated testing is one of the key components of currently emerging

DevOps. The term “DevOps” is a compound of “development” and “operations”,

and is a movement or practice that emphasizes the collaboration and commu-

nication of both software developers and other information-technology (IT) pro-

fessionals, while automating the process of software delivery and infrastructure

changes (Cortet, 2014). An important part of DevOps is the automation of testing

processes. While in traditional testing approaches, test data are prepared together

with test scripts; an agile approach, combined with DevOps, requires quick access

to the test data for new developments, where actual data doesn’t yet exist. On the

other hand, test data can be created based on some other data, that are similar from

108

a content perspective but are completely different from format perspective. Once

again, the automated transformation of such a data would significantly improve

performance of the projects.

9. CONCLUSIONS

Transformation of a data model to its formal graph representation is necessary,

in order to allow further automation of the transformation process. Provided that

each of the source data models go through this transformation, the resulting

models will share common set of characteristics, such as attribute names and basic

data structures. Resulting high level of automation of the transformation process

would provide significant savings, both in terms of time and money, compared

to similar work performed by a human expert.

REFERENCES

ADRM Software. (2018, August 1). Business Area Data Models. Retrieved from

http://www.adrm.com/data-model-business-area.html

Angles, R., & Gutierrez, C. (2008). Survey of graph database models. New York, USA: ACM.
Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (2008). Extensible Markup

Language (XML) 1.0 (Fifth Edition). Retrieved from https://www.w3.org/TR/xml

Cortet, M. (2014). Access to the Account (XS2A): accelerating the API-economy for banks?

Retrieved from https://innopay.com/blog/access-to-the-account-xs2a-accelerating-the-api-

economy-for-banks

Holman, K. (2018). OASIS Universal Business Language (UBL) TC. Retrieved from https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ubl

ISO 20022. (2018, August 1). Universal financial industry message scheme. Retrieved from

https://www.iso20022.org

Kotulski, L. (2013). Rozproszone transformacje grafowe. Kraków, Poland: Wydawnictwo AGH.

McKnight, W. (2014). IBM Industry Data Models in the Enterprise. Retrieved from https://www-

01.ibm.com/software/data/industry-models/

Roman, D. (2006). Canonical Data & Process Models for B2B Integration. Retrieved from

http://ceur-ws.org/Vol-170/paper3.pdf

Skinner, Ch. (2015). How will Banks organise themselves to manage APIs built for PSD2/XS2A?

Retrieved from http://thefinanser.com/2015/11/how-will-banks-organise-themselves-to-manage-

apis-built-for-psd2-xs2a.html/

Sleger, G. (2010). Data Transformation Mapping – Can it be Automated? Retrieved from

https://www.cleo.com/blog/data-transformation-mapping-can-it-be-automated

SWIFT. (2018, August 1). Financial messaging services. Retrieved from https://www.swift.com/about-

us/discover-swift/messaging-standards

Thompson, H. & Lilley, C. (2014). XML Media Types, RFC 7303. Retrieved from

https://tools.ietf.org/html/rfc7303

