

61

Applied Computer Science, vol. 13, no. 1, pp. 61–74
doi: 10.23743/acs-2017-06

Submitted: 2016-12-10
Revised: 2017-01-05

Accepted: 2017-03-01

Fireworks algorithm, Function optimization, Swarm intelligence,

Mathematical programming, Natural computing

Evans BAIDOO*

FIREWORKS ALGORITHM

FOR UNCONSTRAINED

FUNCTION OPTIMIZATION PROBLEMS

Abstract
Modern real world science and engineering problems can be classified

as multi-objective optimisation problems which demand for expedient

and efficient stochastic algorithms to respond to the optimization needs.

This paper presents an object-oriented software application that implements

a firework optimization algorithm for function optimization problems.

The algorithm, a kind of parallel diffuse optimization algorithm is based

on the explosive phenomenon of fireworks. The algorithm presented

promising results when compared to other population or iterative based

meta-heuristic algorithm after it was experimented on five standard ben-

chmark problems. The software application was implemented in Java with

interactive interface which allow for easy modification and extended expe-

rimentation. Additionally, this paper validates the effect of runtime on the al-

gorithm performance.

1. INTRODUCTION

Function optimisation problems have been solved by many different techniques.

Optimization in operation research explains a process of finding the high value

of a function in a domain definition which is subject to numerous constraints

on the variable values. As a rule of thumb, function optimization problem finds

the optimal solution of an objective function definition by means of iteration

(Ren & Wu, 2013). Characters of these optimisation problems are mostly identified

as linear or non-linear, continuous or discrete, concave or convex functions etc.

* Kwame Nkrumah University of Science and Technology, Department of Computer Science,

PMB, KNUST, Ghana, Email: ebaidoo2.cos@st.knust.edu.gh

62

In such instances conversion from constraint function optimization problem into

an unconstrained problem is implemented by focusing on the designed special

operators and penalty functions so as to enable the feasibility of the solution at

all times.

There are a wide range of mathematical programming algorithms which offer

various techniques to control various optimization problems as numerical,

discrete or combinatorial optimization problems, but most of the methods at most

times fail to return satisfactory results. In operations research, as an alternative

to the mathematical programming methods, bio-inspired optimization algorithms

have become very popular. Over the last decade, researchers are paying attention

to nature-inspired heuristics. These algorithms centre on the cooperative

intellectual behaviours of animal groups, insects, bee or ant colonies etc and its

problem solution abilities. Swarm system as mostly referred have lots of ad-

vantages in finding solutions to many optimization problems (Bonabeau, Dorigo

& Theraulaz, 1999). As applied in many technical fields, such as data mining,

signal processing, network routing, pattern recognition and others, this system

is a kind of random search algorithm that simulates the biological population

evolution and hence solves complex stochastic optimization problems through

cooperation of individuals and species competition (Yuan, de Oca, Birattari

& Stutzle, 2012). Typical among the swarm intelligence algorithms are the ant

colony optimization (ACO) algorithm (Chandra et al., 2012), the bee colony

(ABC) algorithm (Karaboga & Basturk, 2007) particle swarm optimization

(PSO) algorithm (Kennedy & Eberhart, 1995), and the genetic algorithm (GA)

(Tang, Man, Kwong & He, 1996) enthused by the Darwinian law. Among the

listed SI algorithms, PSO is one of the largely accepted algorithms for probing

optimal locations in an undefined dimensional space.

A new swarm intelligence algorithm which aroused worldwide concern

in 2010 with an excellent optimisation performance was one proposed by Ying

Tan. This algorithm which inspired by the emergent swarm behaviour

of fireworks is referred to as Fireworks algorithms. This algorithm follows in the tra-

dition of swarm intelligence (Tan & Zhu, 2010).

In this paper an object-oriented implementation of fireworks algorithm

is tested on unconstrained function optimization problems. A software program

was developed in Java to solve the function optimisation problem, test the results

of benchmark functions and also to test the system robustness and performances.

The remaining of the paper is organised as follows: In section 2 Fireworks

algorithm is introduced followed by section 3 with a brief explanation of five

standard unconstrained Benchmark functions. Section 4 details the software

implementation of the fireworks algorithm with Section 5 presenting the

simulation experiment and results. Finally the paper concludes with Section 6.

63

2. FIREWORKS ALGORITHM

2.1. Background

A novel swarm intelligence algorithm, Fireworks Algorithm (FA), over the past

decade has been implored to solve universal optimisation problems although

research of various works according to survey, have shown few implementation.

Proposed by Tan and Zhu, this algorithm mimics fireworks explosion activity

and behaviour. Its first implementation was to identify its superior performance

over Standard PSO and Clonal PSO (Tan & Zhu, 2010). Zheng et al. (2012)

put forward a hybrid fireworks-differential evolution (FWA-DE) algorithm.

They use the crossover, mutation and selection operators in the Differential

evolution algorithm. An enhanced fireworks algorithm (EFWA) presented

by Zheng et al. (2013) was used to improve the least radius detection rate, the

rules of mapping and spark selection approach of the explode sparks. In 2014,

a Hybrid approach which put together FWA and differential mutation (FWA-

DM), was formulated. Having successfully experimented on CEC 2014

benchmark functions, it proves to be a good solution. Another proposed solution

is the dynamic search firework algorithm (DFWA) (Zheng et al., 2014).

This algorithm works by dividing the fireworks population into basic fireworks

with optimal fitness value and non-core fireworks. This strategy enables the al-

gorithm to undertake local search and global search efficiently and effectively.

As put forward by Ding et al. (2013), the parallelized GPU-based Fireworks

Algorithm (GPU-FWA) proficiently exploit graphical processing unit (GPU),

to solve large-scale problems. In a research paper by Li et al. (2014), they

propose the adaptive firework algorithm (AFWA) to carry out self-tuning

of blast radius. They measure the distance involving the best individual and the

discussed individual by setting the distance as the next blast radius of the best

individual. From this kind of technique, the adaptive step size adjustment shows

good optimization performance on the improved FWA.

The focal source of motivation for the FA is the process of starting out

a firework. Any time a firework is start out, shower of sparks consume the local

space in the region of it. Tan disclose that, the explosion progression

of a firework can be analyse as an exploration in the local space about an exact

point where the firework left through the sparks created in the explosion

(Tan & Zhu, 2010). The explosion of Firework reveals two specific behaviours.

A healthy created fireworks, presents numerous sparks and the sparks tends to be

engulf in the centre of the explosion. The fireworks is mostly found in areas

in the search space which tends to promising and may possibly be close to optimal

solution. Therefore it is ideal to produce enough sparks to locate the best spot

in the region of the firework. In contrast, poor quality fireworks demonstrate

divergent behaviour. Mostly in such instances, sparks generated are relatively

few and scattered in the local space. This activity indicates that, the best solution

64

to the problem is distant away from the spot of the firework and for that matter,

the radius of the search could be larger.

2.2. Algorithm attitude

The fireworks algorithm (FA) is a novel iterative-based disperse optimization

algorithm approach that imitates the behaviour of fireworks explosion that

identifies the equilibrium between global search and local exploration by means

of regulating the explosion method of fireworks bombs. The overall algorithm

is stochastic in nature. When there is an explosion of fireworks, the sparks

produced spread in the air filling their immediate region. For this matter

to locate a point x in the specified function f(x) = y, fire explosion can be created

in the area which is possible to search continually until sparks locates the point

close to x or find the x space. In every generation of explosion, N positions

of the fireworks are chosen. Then after N other positions are chosen from the

recent sparks and fireworks positions for the next firework explosion. From the

results obtained after the explosion, a rough estimation of the position is reco-

rded until the finest position is recorded else fireworks explosions are continued

with explosion locations of N selected again. A graphical clarification is ex-

pressed in figure 1.

Fig. 1. Flowchart of Fireworks Algorithm

65

2.3. Algorithm Structure

Two important elements of the FA are the number of sparks and the ampli-

tude of explosion. To illustrate the first element of the algorithm, assuming that

FA is intended for some kind of optimisation problem:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) ∈ ℝ, 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 , (1)

in this casex = x1, x2 … , xn represent a probable solution, with f(x) being the

objective function and xmin and xmax denoting extent of the solution search

space. So therefore the number of sparks that can be produced by each single

firework xi can be stated as:

𝑆𝑖 = 𝑚
𝑦𝑚𝑎𝑥− 𝑓(𝑥𝑖)+ 𝜉

∑ (𝑦𝑚𝑎𝑥− 𝑓(𝑥𝑖))+ 𝜁𝑛
𝑖=1

, (2)

Where m symbolize a parameter which take care of the general number of sparks

generated by n fireworks, with ymax = max (f(xi)) (i = 1, 2, … , n) being the

worst value of the target function amongst the n fireworks, and ξ, is the least

computer constant exploited to evade zero-division-error. From experimen-

tations by (Tan & Zhu, 2010), Si needs to be smaller so as to avoid devastating

outcomes under terrible firework explosions, therefore bounds on Si are created

as expressed in 3.

𝑆�̂� = {

𝑟𝑜𝑢𝑛𝑑(𝑎 ∙ 𝑚) 𝑖𝑓 𝑆𝑖 < 𝑎 ∙ 𝑚

𝑟𝑜𝑢𝑛𝑑(𝑏 ∙ 𝑚) 𝑖𝑓 𝑆𝑖 > 𝑏 ∙ 𝑚

 𝑟𝑜𝑢𝑛𝑑(𝑆𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑎 < 𝑏 < 1,

 (3)

where a and b represent preset constant parameters. The second important

element of FA defines the amplitude of explosion. A well created firework

amplitude usually is smaller compared to that of a terrible one. The expression

defined in 4 illustrates the amplitude of each explosion.

𝐴𝑖 = �̂� ∗
 𝑓(𝑥𝑖)− 𝑦𝑚𝑖𝑛+ 𝜉

∑ (𝑓(𝑥𝑖))− 𝑦𝑚𝑖𝑛+ 𝜁𝑛
𝑖=1

, (4)

where �̂� refers to the value of the highest explosion amplitude with 𝑦𝑚𝑖𝑛 = 𝑚𝑖𝑛

(𝑓(𝑥𝑖))(𝑖 = 1, 2, … , 𝑛) representing best firework of the target function in n

fireworks. In the course of an explosion, the z direction (dimension) of sparks is

affected. The number of randomly affected directions is obtained by

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝑑 ∙ 𝜒), (5)

66

where d denotes the optimisation problem number dimension of location x,

with 𝜒 being a uniform distribution of a random number ranging from 0 and 1.

With the aim of determining the 𝑥𝑖 firework location of a spark, a spark location

𝑥𝑗 is first generated. The entire process is made known in pseudo-code 1.

Pseudo-code 1

Find the initial spark’s location: 𝑥𝑗 = 𝑥𝑖

Choose random z dimensions of 𝑥𝑗 by adopting Eq. (5)

Compute the displacement: h = 𝐴𝑖 ∙ 𝜎;

for each chosen dimension 𝑥𝑘
𝑗
 of 𝑥𝑗 do

 𝑥𝑘
𝑗

= 𝑥𝑘
𝑗

+ ℎ

 If 𝑥𝑘
𝑗

< 𝑥𝑘
𝑚𝑖𝑛 𝑜𝑟 𝑥𝑘

𝑗
> 𝑥𝑘

𝑚𝑎𝑥

 map 𝑥𝑘
𝑗
 to the promising space:

 𝑥𝑘
𝑗

= 𝑥𝑘
𝑚𝑖𝑛 + |𝑥𝑘

𝑗
|%(𝑥𝑘

𝑚𝑎𝑥 − 𝑥𝑘
𝑚𝑖𝑛);

 end if
end for

From the pseudo-code 1, 𝜎 represent a random number of intervals (-1, 1).

To maintain the goal of diversity of sparks, a second approach to establishing

sparks generation is implemented - Gaussian explosion as illustrated in Pseudo-

code 2. A Gaussian (1, 1) function which refers to the Gaussian distribution

with a single standard deviation and mean is adapted to describe the explosion

coefficient. With this approach mˆ sparks are generated in every Gauss explosion.

Pseudo-code 2

Establish the initial spark’s location: 𝑥𝑗 = 𝑥𝑖

Choose arbitrary z dimensions of 𝑥𝑗 by adopting Eq. (5)

Compute the coefficient of Gauss explosion: g = Gaussian(1, 1)

for each chosen dimension 𝑥𝑘
𝑗
 of 𝑥𝑗 do

 𝑥𝑘
𝑗

= 𝑥𝑘
𝑗

∙ 𝑔

 If 𝑥𝑘
𝑗

< 𝑥𝑘
𝑚𝑖𝑛 𝑜𝑟 𝑥𝑘

𝑗
> 𝑥𝑘

𝑚𝑎𝑥 in that case

 map 𝑥𝑘
𝑗
 to the promising space:

 𝑥𝑘
𝑗

= 𝑥𝑘
𝑚𝑖𝑛 + |𝑥𝑘

𝑗
|%(𝑥𝑘

𝑚𝑎𝑥 − 𝑥𝑘
𝑚𝑖𝑛);

 end if
end for

At the start of every iteration, n fireworks locations are chosen. The finest

position 𝑥∗ according to the best target function 𝑓(𝑥∗) is always kept and

reassigned for the next iteration. At this point, the selection of n–1 locations are

67

chosen rooted on their distance with other locations to maintain sparks diversity.

The measure of distance between a location or spot and other spots/locations

is generally determined in FA as:

𝑅(𝑥𝑖) = ∑ 𝑑(𝑥𝑖𝑗∈𝑘 , 𝑥𝑗) − ∑ ∥ 𝑥𝑖𝑗∈𝑘 − 𝑥𝑗 ∥, (6)

where K is the set of all present locations of both fireworks and sparks. At this

point the probability of selecting location 𝑥𝑖 can be expressed in (7) as:

𝑃(𝑥𝑖) =
𝑅(𝑥𝑖)

∑ 𝑅(𝑥𝑗)𝑗∈𝑘
 , (7)

where 𝑃(𝑥𝑖) indicate the probability that the location 𝑥𝑖 will be chosen. Putting

all together Pseudo-code 3 illustrates the build up of Fireworks algorithm in high

level language.

Pseudo-code 3 in High level language

Arbitrarily establish n location of fireworks
iterate until complete
 for every individual firework
 determine the firework amplitude
 determine the total of regular sparks
 Create the regular sparks
 end for
 create special Gauss sparks
 calculate every individual spark from sparks list,
 choose n to serve as new fireworks locations
 generate n new fireworks
end iteration
present the finest spark location found

The function estimations of the FA are such that there are about n + m + m̂

carried out by each generation. Assuming the optimum of a target function can

be identified in generation T, the FA complexity will be ο(n + m + m̂).

A further explanation of the behaviour of the algorithm process is demonstrated

in the graph in Figure 2 taken from James McCaffrey (2016).

68

Fig. 1. Fireworks optimization algorithm

In summing up, pseudo-code 1 and 2, presents two sorts of sparks which are

respectively generated in each of the iteration. In the first spark kind, the sparks

number and explosion amplitude depend to a larger extent the worth of the

fireworks. This is sharply in contrast with other sparks which are created using

the Gaussian explosion process for firework searching in the local Gauss space.

Subsequently, the n positions of the succeeding explosion are chosen once the

two kinds of spark positions are obtained. Pseudo-code 3 put together the overall

structure of FA.

3. BENCHMARK FUNCTIONS

Numerous benchmark functions have been reported in literature over the years

yet; there have not been an accepted standard list. This paper experimented five

rich set of popular benchmark functions with varied qualities in terms of valley

landscape, separability, and modality to assess the character traits of the solution

algorithm adopted – in this case check its correctness, toughness and general

performance of the implementation program as adopted in Virtual Library of Si-

mulation Experiments: “Test Functions and Datasets” (2016) and Bacanin et al

(2014). In this paper the unconstrained function optimization problems used

is of the form:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑥
̇

 𝑓(𝑥)
Subject to: 𝑥 ∈ 𝜔 ≤ 0, 𝑖 = 1 … 𝑚

𝑥𝑗
𝑙 ≤ 𝑥𝑗 ≤ 𝑥𝑗

𝑢, j = 1…n

69

Where, f(x) represent the objective function to be minimized, with x being the

continuous vector variable of domain ω ⊂ Rn and f(x): ω → R representing

a continuous real-valued function. The lower and upper bounds defined within

each function dimension is represented by ω.

The first is the Dixon-Price test function, 𝑓1. This function is a continuous,

non-separable and multimodal minimization test operation. It search domain lies

in −10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, 2, … , 𝑛 with its global minimum, f(x) at 0.

Griewank function, 𝑓2 which has its global minimum value at 0 with the

function initialization range from [−600,600], is second. It is a continuous and

differentiable function which has a corresponding universal optimum solution as

𝑥𝑜𝑝𝑡 = (𝑥1, 𝑥2, … , 𝑥𝑛) = (100, 100, … , 100). This function although multimodal,

its multimodality diminishes with high dimensionalities (n > 30) and therefore

appears uni-modal.

Rosenbrock, 𝑓3 makes the list as third. It is a well-known traditional

optimization problem with a 2 dimensional function which describe a deep

valley with a parabola form of the shape 𝑥1
2 = 𝑥2 that results to the global

minimum. Owing to the non-linearity of the valley, lots of algorithms converge

slowly since they vary the direction of the search constantly and for this reason

this problem has been repetitively used in assessing gradient-based optimization

algorithms performance. Valley function is unimodal with the initialization

interval of X [−30, 30].

The fourth test function is the Schwefel function, 𝑓4. This function is comp-

lex, with many local minima. Initialization range for the function is [−500, 500].

The surface of Schwefel function is made up of a large amount of peaks

and valleys. It is a deceptive function which possesses two global minimum

with its global minimum over the parameter space from the succeeding best

local minima geometrically far-off. Thus its search algorithm is ably susceptible

to converging in a wrong direction. It has its global minima 𝑥∗𝑎𝑡 =
= ±[𝜋(0.5 + 𝑘)]2, 𝑓4(𝑥∗) = −418.983. The difficulty with this test function

is that its gradient cannot bend along their axis owing to the epitasis with their

variables. For this reason, most algorithms that make use of the gradient

leisurely converge.

The Sphere concludes the benchmark functions. This function has the

properties of being separable, scalable, continuous and multimodal. Its interval

range lies in the region of 0 ≤ 𝑥𝑖 ≤ 10 with its universal minimal value at 0

and optimum solution being𝑥𝑜𝑝𝑡 = (𝑥1, 𝑥2, … , 𝑥𝑛) = (0, 0, … , 0).

The functions expression, its initialization and intervals are further expressed

in Table 1.

70

Tab. 1. Benchmark functions expression and initialisation

Function Expression Initialisation

Dixon-Price 𝑓1(𝑥) = (𝑥1 − 1)2 + ∑ 𝑖(2𝑥𝑖
2 − 𝑥𝑖−1

𝑛

𝑖=2

)2 [–10, 10]

Griewank 𝑓2(𝑥) = ∑
𝑥𝑖

2

4000
𝑛
𝑖=1 − ∏ 𝑐𝑜𝑠𝑛

𝑖−1 (
𝑥𝑖

√𝑖
) + 1 [–100, 100]

Rosenbrock
𝑓3(𝑥) = ∑[100. (𝑥𝑖+1 − 𝑥2

𝑖)2 + (𝑥𝑖

𝑛−1

𝑖=1

− 1)2]

[–30, 30]

Schwefel 𝑓4(𝑥) = ∑ −𝑥𝑖 sin (√|𝑥𝑖|

𝑛

𝑖=1

 [–500, 500]

Sphere 𝑓5(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 [0, 10]

4. eFIREWORKS IMPLEMENTATION

This paper implements a software program which uses an object oriented

approach to its execution of the fireworks algorithm. The developed software

is named eFireworks (explosive Fireworks). When an objected oriented approach

is adopted there is improvement in the software scalability and therefore there is

lesser time execution even when there is an implementation of different

optimization problems of new programming concept. Object oriented

capabilities allow for addition of varying optimization functions and lots more

benchmark problems with little or no effort. Additionally, object oriented

implementation allows for easy modification of the behaviour of algorithm

functions. Similar works have been suggested for artificial fish swarm algorithm

in James McCaffrey (2016) and ABC in Virtual Library of Simulation

Experiments: “Test Functions and Datasets” (2016). The developed software

with its graphical user interface is created in Java programming language.

Java was chosen partly due to the fact that its paradigm entirely imitates object-

oriented and the ability that it is based on classes, concurrent and is general

purposed. Additionally, its implementation dependencies can be as few as pos-

sible. An added advantage that java has is its ability to allow application

developers to ”write once, run anywhere.” This consequently makes most Java

application convenient and portable thus allowing software – eFireworks – to be

executed on varying computer system. The software adopts a graphical user

interface. The graphical user interface among other qualities enables easier

control of parameters and test function to optimize.

71

The software application is deeply adopts the theory of tightly connected

abstract classes and inheritance. This concept enables easy adaptation to new

functional problems and the future extendibility of the program. eFireworks is

developed using java 1.7.0.25, NetBeans 7.1. 2 with Windows 8 operating

system of x64 bit. Figure 2 illustrate a Screenshot of the vital Graphical user

interface (GUI) of eFireworks.

Fig. 2. Screenshot of eFireworks User interface

5. OPTIMIZATION TEST AND RESULTS

All tests were executed on intel(R) Core (TM_i3-3110M CPU@ 2.40GHz

laptop equipped with 4GB RAM on Windows 8 x64 Operating System

in NetBeans 7.1.2 IDE. The NetBeans IDE and operating system were the only

processes running during test execution. To validate the algorithm and examine

runtime effects on the algorithm performance, two sets of test was conducted

on each of the five benchmark functions. 10 runs was set for the first execution

and 30 runs for the second, each using different random seeds. The best,

statistical mean and standard deviation results were the indicators that were

observed from the problem solution. The bounds used for the upper and lower

parameters were the default values from Table 1.The benchmark dimensionality

for all functions is set to 10 (D = 10) with the maximum number of function

evaluation perked at 600,000 for all functions. The parameter settings of FA

used are same as in Tan and Zhu (2010): number of fireworks, n = 5,

72

total number of regular sparks, m = 50, special Gaussian spark, �̂� = 5,

amplitude, A = 40, maximum spark of firework, b = 0.8 and minimum spark of

firework, a = 0.04. Results of test values are shown in Table 2 for runtime of 10

and Table 3 for runtime of 30.

 Tab. 2. Experimental results of 10 runs

Function
Best cost

function

Statistical

Mean

Standard

Deviation

Dixon-Price 4.7E-10 2.01E-01 0.321355

Griewank 0.00172 0.0273431 0.017826912

Rosenbrock 0.02364 0.19397877 0.087896961

Schwefel -4489.82887 -4309.82887 103.2795559

Sphere 2.048E-09 0.025760842 0.081249567

As can be identified from Table 2 and 3, the optimization obtained with Fire-

works algorithm presents satisfactory results for all under listed benchmark

problems. Comparison can be drawn with other famous heuristic or bio-inspired

algorithms and software systems such as Karaboga and Basturk (2007)

& Bacanin (2014). The algorithm proves to be robust in its operations and

presents optimal results.

 Tab. 3. Experimental results of 10 runs

Function
Best cost

function

Statistical

Mean

Standard

Deviation

Dixon-Price 3.66E-10 0.135119376 0.27035624

Griewank 0.0001125 0.019550378 0.022130294

Rosenbrock 0.010225 0.103153984 0.107639116

Schwefel -5389.82887 -4547.919763 369.4342795

Sphere 0 0.008030625 0.043813971

Drawing comparison from Table 2 and Table 3 it can be deduce that as the

number of runs are increased, results obtained tends to be slightly better. It can

therefore be concluded that the performance of the optimization solution,

Fireworks algorithm is marginally affected by alteration of number of runs

although it may be disregarded since the results presented is of tiny deviation.

73

6. CONCLUSIONS

In this paper, an implementation of a population based swarm intelligence

algorithm, Fireworks algorithm was adopted to solve unconstrained function

optimization problems using a developed object-oriented graphical user interface

application. The application presents a much more expedient way to work

and allows for easy modification for other optimization problems as compared

to the original version. The algorithm was tested on five benchmark functions

and performance recorded. The optimization solution algorithm demonstrated its

ability to contain several benchmark problems but there is some margin of im-

provement. In future, the study can be extended to investigate and study other

global and real life problems such as urban traffic regulation, job scheduling,

parcel delivery etc.

REFERENCES

Bacanin, N., Tuba, M., & Stanarevic, N. (2012). Artificial Fish Swarm Algorithm for Unconstrained

Optimization Problems. Applied Mathematics in Electrical and Computer Engineering, 405–410.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial

Systems. New York: Oxford University Press Inc.

Ding, K., Zheng, S. Q., & Tan, Y. (2013). A GPU-based Parallel Fireworks Algorithm for Optimization.

Gecco'13: Proceedings of the 2013 Genetic and Evolutionary Computation Conference, 9–16.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3),

459-471. doi:10.1007/s10898-007-9149-x

Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of IEEE International

Conference on Neural Networks, 4, 1942–1948.

Li, J., Zheng, S., & Tan, Y. (2014). Adaptive Fireworks Algorithm. 2014 IEEE Congress on

Evolutionary Computation (CEC), 3214–3221. doi:10.1109/CEC.2014.6900418

McCaffrey, J. (2016, September). Fireworks Algorithm Optimization. Retrieved from

https://msdn.microsoft.com/en-us/magazine/dn857364.aspx

Mohan, B. C., & Baskaran, R. (2012). A survey: Ant Colony Optimization based recent research

and implementation on several engineering domain. Expert Systems with Applications, 39(4),

4618-4627. doi:10.1016/j.eswa.2011.09.076

Ren, Y., & Wu, Y. (2013). An efficient algorithm for high-dimensional function optimization. Soft

Computing, 17, 995-1004. doi:10.1007/s00500-013-0984-z

Tan, Y., & Zhu, Y. (2010). Fireworks Algorithm for Optimization. In: Y. Tan, Y. Shi, & K.C. Tan

(Eds.), Advances in Swarm Intelligence. ICSI 2010. Lecture Notes in Computer Science (vol.

6145, pp. 355–364). Springer.

Tang, K. S., Man, K. F., Kwong, S., & He, Q. (1996). Genetic algorithms and their applications.

IEEE Signal Processing Magazine, 13(6), 22-37. doi:10.1109/79.543973

Virtual Library of Simulation Experiments: Test Functions and Datasets (n.d.). Retrieved August,

2016, from https://www.sfu.ca/~ssurjano/optimization.html
Yuan, Z., de Oca, M. A. M., Birattari, M., & Stutzle, T. (2012). Continuous optimization algorithms for

tuning real and integer parameters of swarm intelligence algorithms. Swarm Intelligence, 6(1),

49–75. doi:10.1007/s11721-011-0065-9

Zheng, S. Q., Janecek, A., Li, J. Z., & Tan, Y. (2014). Dynamic Search in Fireworks Algorithm.

2014 IEEE Congress on Evolutionary Computation (Cec), 3222–3229.

74

Zheng, S., Janecek, A., & Tan, Y. (2013). Enhanced Fireworks Algorithm. 2013 IEEE Congress

on Evolutionary Computation, 2069-2077. doi:10.1109/CEC.2013.6557813

Zheng, Y. J., Xu, X. L., & Ling, H. F. (2012). A hybrid fireworks optimization method with differential

evolution operators. Neurocomputing, 148, 75–80. doi:10.1016/j.neucom.2012.08.075

