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Abstract 

The paper presents results of research on neural network application in fore-

casting the tensile strength of two types of sutures. The preliminary 

research was conducted in order to establish the accuracy of the proposed 

method and will be used for formulating further research areas. The neu-

ral network enabled evaluation of suture material degradation after  

3-to-6-days’ exposure to Ringer’s solution. The encountered problems 

regarding inaccuracies show that developing a single model for sutures 

may be difficult or impossible. Therefore future research should be 

conducted for a single type of sutures only and require applying additional 

parameters for the neural network. 

 

 

1.  INTRODUCTION 

 

Surgical sutures are widely used in numerous fields of specialist medicine, 

and are mainly applied to join the edges of wounds resulting from a surgical 

intervention or an accident. Non-absorbable sutures retain their mechanical 

properties over the entire period of implantation until removed from the tissue, 

                                                           
* Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine 

Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland, r.karpinski@pollub.pl, 

j.gajewski@pollub.pl 
** Lublin University of Technology, Faculty of Mechanical Engineering, Institute of Technological 

Systems of Information, Nadbystrzycka 36, 20-618 Lublin, Poland, j.szabelski@pollub.pl 
*** University of Zilina, Faculty of Mechanical Engineering, Univerzitna 1, 01026 Zilina, Slovak 

Republic, dalibor.barta@fstroj.uniza.sk 



77 

whereas absorbable sutures lose their initial properties to the point of complete 

absorption. In the processes of biodegradation and absorption two major para-

meters are considered: absorption of suture mass and retention of initial tensile 

strength (Zapalski & Chęciński, 1999; Karpiński, Szabelski & Maksymiuk, 

2017; Karpiński, Górniak, Szabelski & Szala, 2016a). Synthetic absorbable 

sutures become absorbed in the process of hydrolytic decomposition of the su-

ture material. Premature strength loss, on account of suture material absorption 

occurring before the healing process completes, results in wound dehiscence.  

On the other hand, excessively low tensile properties may contribute to the 

suture acting like a surgical knife, cutting through surrounding tissues. It is 

therefore critical to the applicability of sutures that their selection is suitable to 

purpose requirements (Zapalski & Chęciński, 1999; Karpiński, Górniak, 

Szabelski & Szala, 2016b). As in other material testing applications, com-

putational methods may aid testing the changes in strength profile of selected 

suture materials. The aim of this preliminary study is to assess the suitability  

of Radial Basis Function Networks (RBF) in prediction of suture strength  

(Luo, 2017; Youshia, Ali & Lamprecht, 2017; Lv & Zheng, 2017; Hasnaoui, Krea 

& Roizard, 2017). 

 

1.1. Radial Basis Function Networks 

 

Radial basis functions neural networks (RBF) consist of a single hidden layer 

with radial neurons and the linear output layer (including scalar product).  

The hidden layer consists of radial neurons which – in the predicting strength 

case – model the Gaussian response surface. A function of any shape can be 

modelled using only one hidden layer. This results from the fact that the function 

is of a nonlinear character. In order for the network to create an effective model 

of a given function, it is necessary to ensure that the network's system hasa 

sufficient number of radial neurons. With a suitable number of radial neurons, 

each important detail of the function being modelled can be assigned a relevant 

radial neuron, which leads to producing a solution that reflects the applied 

function with a satisfactory accuracy. The publications supporting the scientific 

achievement present the conclusions about the selection of signal features  

as input variables in RBF systems, comparing them to the previously used network 

models (Gajewski, Golewski & Sadowski, 2017).  

In radial basis functions, for the input vector ƍ, the hidden neuron realises the 

radialchange around a given centre k function φ(ƍ) = φ(‖ƍ-k‖), where non-

zero values occur only in the vicinity of the centre. Based on the hidden neurons 

radially reflecting the space around individual points, the input neuron reflects  

a multidimensional space. The approximate output of an RBF, for the K basis 

functions can be written as: 
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 𝑦 = ∑ 𝑤𝑖𝜑(‖ƍ − k𝑖‖)𝑁
𝑖=1  (1) 

 

where ci is a set of determinable centres (i = 1, 2, 3, ... , N). 

 

For the applied Gaussian radial basis function at point ci, we can define: 

 

 𝜑(ƍ) = 𝜑(‖ƍ − k𝑖‖)  = exp (−
‖ƍ−k𝑖‖2

2𝜎𝑖
2 ) (2) 

where 𝜎𝑖 is a parameter which determines width of the function.  

 

 

2. ABSORBABLE SURGICAL SUTURES 

 

What is considered an absorbable suture material is the one that is subject  

to loss of mechanical properties, predominantly tensile strength, over a certain 

period of time in the body. Degradation of suture material as a result of various 

enzymatic reactions commences upon application of the stitch (Zapalski  

& Chęciński, 1999; Zurek, Kajzer, Basiaga & Jendruś, 2016). In the literature 

the term “enzymatic degradation” tends to be used to refer to decomposition  

of absorbable protein sutures, such as catgut, whereas synthetic suture material 

degradation occurs as a result of hydrolysis. As mentioned, the process  

of degradation begins immediately after inserting the suture material into the tissue 

and is complete after the period of 15–20 weeks. It ought to be remarked that 

hydrolysis is also catalysed by esterase enzyme (& Chęciński, 1999; Bollom  

& Meister, 2013; Casey & Lewis, 1986). Absorbable surgical sutures are also 

divided according to their mass absorption profile into: short-term, medium-term 

and long-term absorption sutures (Table 1). 

 
 Tab. 1. Classification of sutures according to mass absorption profile 

Mass absorption 

50% of initial 

tensile strength 

Complete mass 

absorption 

Short-term 5–7 days 42–56 days 

Medium-term 14–21 days 60–90 days 

Long-term 28–35 days 180–210 days 

Extremelylong-term 90 days approx. 390 days 

 

It is highly important to differentiate between the complete suture mass 

absorption time and the tensile strength retention time, as it is the latter that 

provides critical information regarding absorbable suture applicability (Zapalski 

& Chęciński, 1999). 
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3. RELATIVE TENSILE STRENGTH OF SURGICAL SUTURES 

 

To determine the impact of selected environmental factors on mechanical 

properties of surgical sutures physical tests were carried out. The study consisted 

in loading the suture material in tension to measure its linear tensile strength 

immediately after unpacking (pre-immersion), and collating the results with the 

second group of suture samples that were exposed to Ringer's solution for  

a particular period of time (post-immersion). The sutures were tested and stored 

at a temperature of 22°C. 

There were two different types of short-term absorbable surgical sutures 

selected for testing. They were divided according to absorption time in the body 

into non-absorbable and absorbable sutures. The intervals between subsequent 

tensile strength tests reflected periods of mass suture absorption declared by 

particular manufacturers. The tests employed Ringer’s solution, i.e. an isotonic 

solution, of identical osmotic potential as plasma, 1000 ml of which contains 8.6 g 

of sodium chloride, 0.3 g of potassium chloride, 0.33 g of calcium chloride 

dihydrate which corresponds to the following electrolyte levels: sodium – 147 

mmol/l, potassium – 4 mmol/l, calcium – 2.2 mmol/l, chlorides – 156 mmol/l. 

The sutures were cut into 20 cm long samples. The diameter was measured with 

a micrometer by MIB, model IP 54 with the accuracy of 0.001 mm. Afterwards, 

the measured tensile strength was compared with the one provided on the packaging.  

The testing was carried out on a test set-up comprising MTS Bionix – 

Servohydraulic Test System universal testing machine located in the Institute of 

Technological Systems of Information (fig. 1). MTS TestWorks software 

allowed us to adjust the tensile loading speed according to the structure of the 

suture under examination – 10 mm/min for multifilament and 25 mm/min for 

monofilament materials. The test was automatically stopped when the load 

dropped by 75% at a short interval (suture failure). 

 

 

Fig. 1.  a) MTS Bionix material testing machine, b) the tensile strength test gripping system 
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The statistical analysis to determine discrepancies in the results obtained 

from the strength tests and the neural network prediction was carried out by 

means of Statistica 12.5 software, at a standard significance level α = 0.05 

(Krysicki, Bartos, Dyczka, Królikowska & Wasilewski, 1999; Rabiej, 2012). 

In order to verify whether the scatter of particular strength test results 

corresponds to the normal distribution, we employed three tests: Kolmogorov-

Smirnov tests, Lilliefors test and Shapiro-Wilk W test. 

The analysis of equality of variances was carried out with three tests:  

F (Fisher’s exact test), Levene’s test and Brown-Forsythe test. For the results 

exhibiting normal distribution and equal variances – for the analysis of equality 

of means of relative tensile strength of surgical sutures at the specified 

significance level Student’s T test was employed. In the case of results 

characterised by normal distribution but showing no equality of variances, the 

equality of mean relative tensile strength values was conducted by means of 

Student’s T-test with separate variances adjustment (Cochran-Cox test) 

(Krysicki et al., 1999, Rabiej, 2012). 

 

 

Fig. 2. Experimental results of tensile strength of Monosyn Quick sutures 

 

The statistical analysis conducted for the Monosyn Quick sutures (fig. 2) 

showed no substantial differences between the pre-immersion (D0) and post-

immersion sample series, including samples exposed to solution for three (D3), 
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six (D6), nine (D9) and 12 days (D12). Major discrepancies, however, occurred 

between the series tested during the 12th (D12) and 15th (D15) day of immersion. 

There were no significant differences between the series under examination 

during the 15th (D15) and 21st (D21) day in the solution either. 

 

 

 

Fig. 3. Experimental results of tensile strength of Safil Quick sutures 

 

The statistical analysis of Safil Quick sutures (fig. 3) showed no substantial 

differences between the pre-immersion samples (D0), including samples exposed  

to the solution for three days (D3) and six days (D6). Major discrepancies, 

however, occurred between the series tested during the 6th (D6) and 9th (D9) 

day of immersion. There were no significant differences between the series 

under examination during the 9th (D9), 12th (D12), 15th (D15) and 21st (D21) 

day in the solution. 
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4. RESULTS FROM NUMERICAL TESTS 
 

The numerical part of this study consisted in applying artificial neural 

networks in prognosis of braking load of suture samples at later stages of material 

degradation, which were not subjected to experimental testing (Fig. 4). The nu-

merical study was conducted by means of Statistica 13 software, which offers 

artificial neural network designing solutions. 
 

 

Fig. 4. Results of prognosis for Monosyn Quick suture 

 

The figure above shows the lookahead of Monosyn Quick suture strength, 

evaluated by neural network. Six inputs resulted from the number of lag samples, 

which provided the base for further prognosis. The hidden layer consisted of 5 

neurons. The data presented in the diagram show slight decrease in suture 

strength at subsequent stages of suture material deterioration. Although 

burdened with uncertainty, look ahead in neural networks indicates deterioration 

of tensile strength of samples in subsequent steps of the numerical experiment. 

The presented method may prove particularly useful in samples showing slight 

changes in parameters.  
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Tab. 2. Summary of Safil Quick network 

Summary of active networks (Safil Quick / Days) 

Quality (training) Quality (testing) Quality (validation) 

0.624576 0.682461 0.785921 

Error (training) Error (testing) Error (validation) 

13.19405 10.42415 3.045410 

Training 

algorithm 
Error function 

Activation 

(hidden) 

Activation 

(output) 

RBFT SOS Gaussian Linear 

 

Table 2 shows network training quality for the training, validation and testing 

sets, as well as training algorithms, error function and neuron activation. The di-

vision into testing and validation  sub-sets was conducted at random. The presence 

of both these sets is necessary to conduct further network training with im-

mediate validation of outputs. The reliability of the network is determined by the 

final set of data. High discrepancy in the results of training is likely to be  

the consequence of the small amount of experimental data, which is shown also 

in Fig. 5. The graphs of breaking loads, obtained from the experimental data  

and from the RBF network prognosis, show certain discrepancies of the data sets. 

Further studies with a larger sample set and higher sampling frequency are 

required to determine the efficacy of the method. The graph shows certain data 

generalisation, which must be applied given the character of the experiment, 

however, the correct prognosis trend is retained. 

 

 

Fig. 5. Results of prognosis for Safil Quick suture 
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   Tab. 3. Network weights for network, modelling the Safil Quick suture 

Weight ID 
Network weights 

Connections 
 

Weighted sums 
 

1 
 

monosyn-1 --> hidden neuron 1 -0.041493 

2 
 

monosyn-1 --> hidden neuron 2 -0.061277 

3 
 

monosyn-1 --> hidden neuron 3 -0.062243 

4 
 

monosyn-1 --> hidden neuron 4 0.635251 

5 
 

monosyn-2 --> hidden neuron 1 0.665310 

6 
 

monosyn-2 --> hidden neuron 2 0.596699 

7 
 

monosyn-2 --> hidden neuron 3 -0.276709 

8 
 

monosyn-2 --> hidden neuron 4 0.109763 

9 
 

monosyn-3 --> hidden neuron 1 -0.047365 

10 
 

monosyn-3 --> hidden neuron 2 0.648808 

11 
 

monosyn-3 --> hidden neuron 3 0.735964 

12 
 

monosyn-3 --> hidden neuron 4 0.635251 

13 
 

radial deviation hidden neuron 1 0.291209 

14 
 

radial deviation hidden neuron 2 0.081621 

15 
 

radial deviation hidden neuron 3 0.291209 

16 
 

radial deviation hidden neuron 4 0.081621 

17 
 

hidden neuron 1 --> monosyn -0.021130 

18 
 

hidden neuron 2 --> monosyn 0.001865 

19 
 

hidden neuron 3 --> monosyn -0.151329 

20 
 

hidden neuron 4 --> monosyn 0.005065 

21 
 

hidden shift --> monosyn 0.204858 

 

RBF network results for Monosyn Quick suture are show in Table 4. 
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Tab. 4. Summary of Monosyn network 

Summary of active networks (Monosyn2017 sutures) 

Quality (training) Quality (testing) Quality (validation) 

0.841304 0.765371 0.829250 

Error (training) Error (testing) Error (validation) 

5.074944 7.207897 13.54326 

Training 

algorithm 
Error function 

Activation 

(hidden) 

Activation 

(output) 

RBFT SOS Gaussian Linear 

 

The generated network error was 80%.  

 

 

5. SUMMARY 

 

This paper presents the results from the preliminary study evaluating the ap-

plication of neural networks in prediction of surgical suture strength. The main 

objective of the study was to verify the applicability of the method for the given 

purpose and to pave the way for future studies. In both tested sutures, Monosyn 

Quick and Safil Quick, the Radial Basis Function Network exhibited good 

results in prediction of immediate relative tensile strength of the suture material, 

i.e. within the period of 3-6 days’ immersion in Ringer’s solution. The diagrams 

show that despite slight discrepancies the neural network is capable of predicting 

suture material degradation at a good level of certainty. The two suture materials 

analysed in the study exhibit slight differences in their absorption profile, which 

proves quite problematic in terms of developing a universal model of neural 

network for the strength prediction of all suture material types. It becomes 

evident that different suture material will require a separate neural network.  

In order for the future stages of this study to compensate for the limited 

application of neural networks, an extensive database of surgical suture materials 

should be created to provide a wide array of both suture material types and number. 

In terms of directions for future research, further work should establish the criteria 

for designing surgical sutures for particular purpose requirements. This will 

necessitate determining factors that affect mechanical properties of sutures to the 

greatest extent. 
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