

Applied Computer Science, vol. 18, no. 1, pp. 89–98

doi: 10.35784/acs-2022-7

89

Submitted: 2022-02-19 | Revised: 2022-03-21 | Accepted: 2022-03-24

Keywords: source code, binary classification,

text classification, AutoML

Marcin BADUROWICZ [0000-0003-2249-4219]*

DETECTION OF SOURCE CODE IN INTERNET

TEXTS USING AUTOMATICALLY GENERATED

MACHINE LEARNING MODELS

Abstract

In the paper, the authors are presenting the outcome of web scraping software allowing

for the automated classification of source code. The software system was prepared for

a discussion forum for software developers to find fragments of source code that were

published without marking them as code snippets. The analyzer software is using

a Machine Learning binary classification model for differentiating between a program-

ming language source code and highly technical text about software. The analyzer

model was prepared using the AutoML subsystem without human intervention and fine-

tuning and its accuracy in a described problem exceeds 95%. The analyzer based on

the automatically generated model has been deployed and after the first year of contin-

uous operation, its False Positive Rate is less than 3%. The similar process may be

introduced in document management in software development process, where automatic

tagging and search for code or pseudo-code may be useful for archiving purposes.

1. INTRODUCTION

In the community of software development, there is a huge network of applications and

websites provided for knowledge exchange. While aspiring software developers may use the

community help to search for answers for their questions, the more experienced ones could

respond and provide feedback but also take part in discussions about software architecture

and more advanced topics. These discussions are highly technical and full of jargon, but also

the requirement is to show snippets of source code in various programming languages

to achieve proper comments.

Two problems are arising – to properly format the source code published on the website,

it must be properly marked as a source code, using either the HTML5 code element or the

triple backtick element in the Markdown system. Inability to properly mark the code will

render the code snippet hard to read by other software developers, as presented in figure 1

for example. On the other hand, the misformatted code snippet may be completely impossible

to understand because it lacks proper indentation, e.g., in the case of the Python program-

ming language.

* Lublin University of Technology, Faculty of Electrical Engineering and Computer Science,

Department of Computer Science, Poland, m.badurowicz@pollub.pl

http://orcid.org/0000-0003-2249-4219

90

In the last decade, both Machine Learning (ML) and Natural Language Processing have

been applied in the study of the source code (Ugurel, Krovetz & Giles, 2002), and the

problem of classification of programming languages has been also broadly discussed (Van

Dam & Zaytsev, 2016), using Neural Networks (Gilda, 2017), Bayesian learning (Khasnabish

et al., 2014) or Multinomial Naïve Bayes (Alreshedy et al., 2018), Convolutional Neural

Networks (CNN) (Ohashi & Watanobe, 2019) and Neural Text Classification (LeClair,

Eberhart & McMillan, 2018) or even, alternatively the usage of Speech Recognition

techniques (Madani et al., 2010). However, all of the presented similar works are mostly

concentrating on differentiating between different programming languages than on a problem

of differentiating between source code and natural text, however some of the presented

concepts may be useful for the presented problem.

Two already available libraries for programming languages are also available right now,

pygments for Python (Pygments – Python Syntax Highlighter, n.d.) and github-linguist

(Linguist, n.d.) for Ruby, also suited for recognizing a programming language, but able to

return “text” classification in case of pygments and “nil” result in Ruby when the text does

not seem to be a source code.

Fig. 1. Example of wrongly formatted source code on the website

Source code understanding could be also used in other contexts, e.g., training ML systems

to understand natural language to produce output in a given programming language, starting

with CoNaLa dataset (Yin et al., 2018) and currently available commercial products like

GitHub Copilot (GitHub Copilot – Your AI Pair Programmer, n.d.).

The problem presented in this paper is a little bit different, as there is no need to identify

the programming language, only a need to differentiate between a programming language

and the natural text. However, this “natural text” may include specific jargon, names of

variables, or even keywords of a programming language. Additionally, the system should be

able to identify programming language for any kind of given language, both with more

natural-looking syntax e.g., SQL and Python, as well as the ones with a very complex or

mathematical-like syntax, e.g., Prolog and Haskell.

91

The overall document management, especially in software development may also benefit

from this kind of solution, where some parts of the pseudo-code or fragments of real life

implementation may be properly detected and marked in the documentation of the software

development process for easier analysis and archiving purposes.

The final problem is that the system was proposed for one of a Polish software

development discussion forum (4programmers.net, 2000), where jargon and overall

discussion texts are very different from that in the anglosphere. The second part of this same

problem is that in case of internet communication the “natural text” may also include

abbreviations, internet acronyms and emotes/emoji.

The author proposed an automated system analyzing the publications on the website and

providing feedback if there is a source code block found, which was not marked properly,

resulting in the wrong presentation on the website, which will be tested on the website and

deployed if successful, working under a set of conditions:

 It will be automatically tracking new threads and discussions on the website,

 It should allow recognition if a single line of text is a programming language snippet

or just a text,

 Text may include small fragments of programming syntax,

 Code may be in any kind of programming language,

 Text will be mostly in Polish, but may include English loanwords and jargon,

 After final deployment, if there will be an unmarked code fragment recognized, the

system should notify the original author and/or moderators of the website.

2. THE PROPOSED SOLUTION

To solve the first problem, to recognize if the given fragment of a text is a source code

or not, a few solutions were considered:

 Using an database for keywords of different programming languages, and a scoring

system,

 A scoring system based on lack of whitespace characters between words and a huge

number of characters normally not used in a text (e.g., square brackets, semicolons at

the end of the line, and similar),

 A statistical system using the average metrics of natural language (length of the word,

length of the sentence) in contrast,

 Naïve Bayes system trained on keywords of different programming languages,

 A Machine Learning-based binary classification for text.

After reviewing the similar papers mentioned earlier and similar discussions on other

software development websites, the author decided to try to use the Machine Learning approach.

 The author has added one more requirement – it would be best if the model could be

generated automatically, without user intervention, without manual planning of Artificial

Neural Network (ANN) structure (Kulisz et al., 2021) and fine-tuning (Sobaszek, Gola

& Kozłowski, 2020).

Such an approach forced to use the automated machine learning (AutoML) solutions,

where, provided with only dataset and the definition of the problem (in the case of this paper

– text binary classification), the system can automatically generate the ML model to be used in

created software, to reduce time and complexity of crafting the solution (He, Zhao & Chu, 2021).

92

The multi-label classification of the text has been discussed (Wever et al., 2021) as

a more challenging problem, but the binary classification is already available in commercially

available open-source ML toolkit for the .NET platform, ML.NET (Ahmed et al., 2019).

AutoML is also available for modelling and prediction problems (Machrowska et al., 2020),

e.g. using LSTM method (Szabelski, Karpiński & Machrowska, 2022). In this paper the text

classification will performed, but classification of images (Kłosowski et al., 2021) is also

available with such toolkits.

2.1. The basic and final datasets

Because the website in question is providing the Application Programming Interface

(API) for getting the content of threads and single posts in the discussion forum module, the

basic dataset was prepared by downloading several newest posts from the system using

created software in the C# programming language and manually categorizing them into

a tab-separated (TSV) file, where each line of the file consisted of two columns – first was

deciding if the line is code or text by setting 0 (not code) or 1 (code) value, the second was

a single paragraph of text extracted from the discussion. The data has been manually checked

to include also longer texts with fragments of the source code inside. Finally, the basic

dataset was consisting of 145 examples of text and 96 examples of code, totaling 241 lines

in the TSV file, about 53 KB of text. An example of the format of the dataset is presented

in figure 2. The source code in the dataset was including C#, SQL, and XML languages.

The first, basic, dataset, was used for evaluation of AutoML pipeline available in ML.NET

as well as already available libraries, mentioned earlier: pygments and linguist.

Pygments library marked 52 out of those 96 source code samples as text, wrongly classi-

fying 54.16% of examples, marking it completely unreliable in this given task. The linguist’s

results were also completely unsuitable for the task, as it couldn’t properly classify 95 out

of 96 code fragments in the basic dataset except for one line consisting of the fragment of

an XML document.

It must be noted that both libraries are better suited to classify the programming language

on the whole file or repository, not on a single-line code snippet. Those particularly poor

results however forced the author to solve the problem using a solution crafted specifically

to the problem.

The first AutoML generated model was using the AveragePerceptronOva trainer and

reported an accuracy of 95.83%, which was already a very promising result. The preliminary

trained model (on the basic dataset) was then used to provide a final dataset.

The web scrapping system has been improved to get more posts and pre-classify them

using the ML model acquired in the first step. Then, the dataset labeling has been fixed

manually.

93

Fig. 2. Dataset fragment example

In total, the final dataset consists of 1974 lines of text (448 KB in total), consisting

of 83% of regular text (which may include small fragments of code snippets) and 17%

(335 lines) of pure code snippets. This dataset was including more programming languages

– C#, C and C++, Java, JavaScript, HTML, XML, SQL, and Python, where all of them have

their own characteristics.

2.2. The ML model generation using AutoML

The AutoML solution included in the ML.NET platform is based on: definition of the

problem and the time given the algorithm to test for different results – during a limited time,

the software is testing various algorithms, trying to find the best solution to a given problem.

In the described situation, the problem is “binary-classification” and 3 runs have been tested,

on Core i7-6600U machine without GPU acceleration: with 30-, 60- and 180-seconds time

limits.

The ML.NET is grading the solution using three indicators: Accuracy, Area Under

Precision-Recall Curve (AUPRC), and FPR Area Under the Curve (AUC).

For 30 seconds run result, the system tested two classifiers, SDCA Logistic Regression

and Averaged Perceptron, both suited for binary classification problem. The indicators

marking the tested solutions are presented in figure 3.

94

Fig. 3. Results for 30 seconds run

For longer runs, more algorithms have been tested, as presented in figures 4 and 5,

including SVM and GBM.

Finally, the best solution returned from the ML.NET autotraining subsystem was based

on SDCA Logistic Regression with an accuracy of 95.72%, AUC 95.65%, and AUPRC

88.01% returned after the 180-second run.

Longer autotrain sessions were also tried, but there was no better result returned from the

AutoML system than SDCALogisticRegressionBinary.

The final step of the AutoML subsystem is generating a usable trained model for con-

sumption for the .NET platform. The result is a ZIP file consisting of a model and a sample

code fragment showing the example usage of the code. The code and the trained model were

later used in the deployment step of the proposed solution.

Finally, the system trained on the final dataset has been tested on the smaller, basic

dataset, achieving an accuracy of 94.79%.

Fig. 4. Results for 60 seconds run

95

Fig. 5. Results for 180 seconds run

3. DEPLOYMENT AND RESULTS

The model has been included in a “bot” system, which is using a real user account on

a system and is posting a comment to a post where the misformatted code has been found –

usually because the user forgot to mark the code snippet properly, but just copying and

pasting it into the text.

The first test deployment started in October 2019, and the system was limited only to

report the found unmarked code problems to the logging system, no actual messages to users

were sent. The problems reported were then manually checked and the algorithm was

modified to post a comment only if a confidence score for a classification was greater than

0.99, to limit the number of false positives, as the author decided it would be better to not

nag the user (as other, real human users can do this) than to nag the user unnecessarily.

The final deployment started in early 2020. The system was prepared as a service com-

pletely separate from the discussion forum itself, running on a separate machine and inter-

acting with API only. The overall algorithm for deployed software is presented in figure 6.

Fig. 6. Overall system architecture

The software is waiting for new posts for a defined time limit, which was set to 15 minutes,

then it is analyzing new posts, and saves their IDs to the local datastore, so no new forum

post is analyzed more than once.

96

For each new forum post, the software is checking if the post is on a blacklist – currently

blacklisted are some of the subforums, the system should be checking only the code in

“technical” subforums, discussing programming languages, not careers or educational

materials. Then, the post content is being acquired from the API, and the HTML content is

being removed – when the code is properly marked as a code, it is being encased in HTML5

code element, so properly marked codes will be removed in this step. Here additional checks

are being run, e.g., removing some of the HTML anchor elements, which also may be classified

as code, but they are not actual code snippets left by the user.

Fig. 7. The analyzer flowchart

Next, the content is being split into paragraphs and each paragraph is being classified by

the ML system – if any paragraph of text classification is “code” with a confidence score

greater than 0.99 the bot is sending a request to the forum software, creating a new comment

to the post saying, “This post may include unformatted code.” and link to a help webpage

describing the problem.

In the last step, no matter if the unmarked code was found or not, the post ID is saved

into the “already analyzed” dataset to prevent double comments.

97

4. CONCLUSIONS

The authors tried to solve a very specific problem of differentiating between the source

code of a programming language and a technical text in the case of very short snippets. Such

a problem is not widely discussed, as similar papers are mostly concentrating on differen-

tiating between different programming languages.

The proposed analyzer was built using the AutoML system included in the ML.NET

library and then deployed. Until the half of 2021, the deployed solution analyzed over

100,000 posts and published over 500 comments when unmarked code was found. Users of

the forum have been informed that the system is in use and were able to report the situation

that the system marked the post as unformatted while there was no such case (“false

positive”) – until the half of 2021, the number of false positives reports was 12, resulting in

False Positive Rate of 2.4%.

Tab. 1. Accuracy of differentiating between code and text in case of short code snippet

Library Accuracy

pygments 45.84%

linguist 1.01%

Proposed solution 94.79%

When comparing the proposed solution with broadly available alternatives, which are

suited for a bit more advanced case, the difference in accuracy is astonishing.

To conclude, the system is working properly and living up to the expectations. The AutoML

process was easy to use and generated a working model, available to use without much hassle.

The author believes that AutoML systems are an interesting case in trying to apply Machine

Learning to solve problems where neither the highest possible accuracy nor the knowledge

of tuning and applying data models is very important. The particular problem may be ex-

changed and implemented into a software development process for documentation

classification and archiving purposes, but the whole AutoML ecosystem is very useful and

may be implemented in the industry in overall.

The software, generated models, datasets, and training logs for the deployed analyzer are

available (Badurowicz, 2020) as the Free Software on the GitHub platform.

REFERENCES

4programmers.net. (2000). Forum dyskusyjne dla programistów. https://4programmers.net

Ahmed, Z., Amizadeh, S., Bilenko, M., Carr, R., Chin, W.-S., Dekel, Y., Dupre, X., Eksarevskiy, V., Filipi, S.,

Finley, T., Goswami, A., Hoover, M., Inglis, S., Interlandi, M., Kazmi, N., Krivosheev, G., Luferenko, P.,

Matantsev, I., Matusevych, S., Moradi, S., Nazirov, G., Ormont, J., Oshri, G., Pagnoni, A., Parmar, J.,

Roy, P., Siddiqui, M. Z., Weimer, M., Zahirazami, S., and Zhu, Y. (2019). Machine Learning at Microsoft

with ML.NET. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (pp. 2448–2458). Association for Computing Machinery.

https://doi.org/10.1145/3292500.3330667

Alreshedy, K., Dharmaretnam, D., German, D. M., Srinivasan, V., & Gulliver, T. A. (2018). SCC: Automatic

Classification of Code Snippets. arXiv:1809.07945. https://doi.org/10.48550/arXiv.1809.07945

Badurowicz, M. (2020). ktos/Eleia: 4programmers.net bot for nagging users when their code in post is not

marked as code. http://github.com/ktos/eleia

98

Van Dam, J. K., & Zaytsev, V. (2016). Software Language Identification with Natural Language Classifiers.

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER)

(pp. 624–628). IEEE. https://doi.org/10.1109/SANER.2016.92

Gilda, S. (2017). Source code classification using Neural Networks. 2017 14th International Joint Conference

on Computer Science and Software Engineering (JCSSE) (1–6). IEEE.

https://doi.org/10.1109/JCSSE.2017.8025917

GitHub Copilot – Your AI pair programmer. (n.d.). Retrieved January 22, 2021 from https://copilot.github.com

He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art. Knowledge-Based Systems, 212,

106622. https://doi.org/https://doi.org/10.1016/j.knosys.2020.106622

Khasnabish, J. N., Sodhi, M., Deshmukh, J., & Srinivasaraghavan, G. (2014). Detecting Programming Language

from Source Code Using Bayesian Learning Techniques. In P. Perner (Ed.), Machine Learning and Data

Mining in Pattern Recognition (pp. 513–522). Springer International Publishing.

Kłosowski, G., Kulisz, M., Lipski, J., Maj, M., & Bialek, R. (2021). The Use of Transfer Learning with Very

Deep Convolutional Neural Network in Quality Management. European Research Studies Journal,

XXIV(Special Issue 2), 253–263. https://doi.org/10.35808/ersj/2222

Kulisz, M., Kujawska, J., Przysucha, B., & Cel, W. (2021). Forecasting Water Quality Index in Groundwater

Using Artificial Neural Network. Energies, 14(18), 5875. https://doi.org/10.3390/en14185875

LeClair, A., Eberhart, Z., & McMillan, C. (2018). Adapting Neural Text Classification for Improved Software

Categorization. 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)

(461–472). IEEE. https://doi.org/10.1109/ICSME.2018.00056

Linguist. (n.d.). Retrieved January 22, 2022 from https://github.com/github/linguist

Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020). Use of Deep Learning

Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone

Cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419

Madani, N., Guerrouj, L., Di Penta, M., Gueheneuc, Y.-G., & Antoniol, G. (2010). Recognizing Words from

Source Code Identifiers Using Speech Recognition Techniques. 2010 14th European Conference on

Software Maintenance and Reengineering (pp. 68–77). IEEE. https://doi.org/10.1109/CSMR.2010.31

Ohashi, H., & Watanobe, Y. (2019). Convolutional Neural Network for Classification of Source Codes. 2019

IEEE 13th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC)

(pp. 194–200). IEEE. https://doi.org/10.1109/MCSoC.2019.00035

Pygments - Python syntax highlighter. (n.d.). Retrieved January 22, 2021 from https://pygments.org

Sobaszek, Ł., Gola, A., & Kozłowski, E. (2020). Predictive Scheduling with Markov Chains and ARIMA

Models. Applied Sciences, 10(17), 6121. https://doi.org/10.3390/app10176121

Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the

Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with

Imprecise Adhesive Mix Ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721

Ugurel, S., Krovetz, R., & Giles, C. L. (2002). What’s the Code? Automatic Classification of Source Code

Archives. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (pp. 632–638). ACM Digital Library. https://doi.org/10.1145/775047.775141

Wever, M., Tornede, A., Mohr, F., & Hullermeier, E. (2021). AutoML for Multi-Label Classification: Overview and

Empirical Evaluation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 43(09), 3037–3054.

https://doi.org/10.1109/TPAMI.2021.3051276

Yin, P., Deng, B., Chen, E., Vasilescu, B., & Neubig, G. (2018). Learning to Mine Aligned Code and Natural

Language Pairs from Stack Overflow. International Conference on Mining Software Repositories (pp.

476–486). ACM Digital Library. https://doi.org/10.1145/3196398.3196408

