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Abstract 

Computer systems are being employed in specialized professions such as medical 

diagnosis to alleviate some of the costs and to improve dependability and scalability. 

This paper implements a computer aided breast cancer diagnosis system. It utilizes the 

publicly available mini MIAS mammography image dataset. Images are preprocessed 

to clean isolate breast tissue region. Extracted regions are used to adjust and verify  

a pretrained convolutional deep neural network, the GoogLeNet. The implemented 

model shows good performance results compared to other published works with accuracy 

of 86.6%, sensitivity of 75% and specificity of 88.9%.  

1. INTRODUCTION 

Breast cancer is one of the most frequently occurring types of cancers (Batra, Sekhar  

& Radha, 2020). It is reported that in the year 2018 alone more than two million new cases 

were diagnosed (Breast Cancer Facts and Statistics, 2018). A study conducted by Cancer 

research UK showed that almost all women diagnosed with breast cancer at earlier stages 

are most likely to live for at least 5 years after their diagnosis compared to only 15% of those 

diagnosed at later stages (Survival, 2018). A recent report sponsored by Breast Cancer Care 

revealed that more than 40% of UK National Health Service (NHS) trusts lack the qualified 

specialist nurses to manage breast cancer (Written evidence (RTR0073), n.d.). Further, it is 

reported that the survival rates of cases of breast cancer in developing countries is under 

40% with the main factor for such low rates being the scarcity of early diagnosis programs 

as well as the lack of specialized facilities and trained staff (Breast cancer: prevention and 

control, 2008). These findings together with the fact that this type of cancer is invasive 

necessitates particular attentiveness of medical and technological communities alike (Batra 

et al., 2020). This is an important area of research because during conventional examination 

by a radiologist, non-cancerous lesions can be misclassified as a cancer (false-positive), 

while malignancies may be missed (false-negative) resulting in radiologists failing to detect 

between 10% and 30% of breast cancers cases. Computer aided diagnosis (CAD) is aimed 

to speed up and enhance the diagnosis process via assisting specialists in the detection and 

classification of the breast cancer by deploying scalable computerized diagnostic tools, 
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hence, restricting the occurrence of human related shortcomings (AL-Huseiny & Sajit, 2021; 

Batra et al., 2020; Jalalian et al., 2013; Tan, Sim & Ting, 2017). The introduction of 

computerized approaches into medical procedures is highly reliant on the sensing mechanisms. 

Depending on the particular clinical condition and region in the human body, medical 

doctors utilize among a pool of diagnostic tools starting from physical inspection, patient 

history, lab tests and extending to sophisticated imaging procedures such as x-ray, ultrasono-

graphy, CT scans, MRI, mammography and etc. Successful exploitation of modern powerful 

computation in CAD is closely related to the development of computer algorithms to work 

with each of these diagnostic tools, particularly, different imaging modalities (Yadav  

& Yadav, 2020). Mammography is one of the most widely used method in the diagnosis of 

breast cancer. It is a relatively inexpensive screening procedure that usually takes between 

10 and 15 minutes to perform (Davis, 2021). In most computer imaging procedures, CAD 

systems are constituted of four parts: (a) preprocessing, (b) detection of regions of interest 

(ROI), (c) feature selection/extraction, and (d) classification (Jalalian et al., 2013). The reliability 

of conventional classification methods resides in the implementation of a suitable data 

representation. Much of the efforts in this regard are dedicated to the identification of 

discriminative traits, a difficult and time-demanding operation that requires the knowledge 

of domain experts (Spanhol et al., 2016a). Many CAD approaches employ a combination of 

hand-designed heuristic features with mathematical descriptor features (Zeiler, Taylor  

& Fergus, 2011). An alternative path is to derive features automatically from training images 

(Lazebnik, Schmid & Ponce, 2006). Recent advancements allowed machine learning/computer 

vision tasks to perform feature learning feasibly. Convolutional neural networks (CNN) 

which perform local connectivity pattern among neurons of successive layers can charac-

terize spatial locality of input features yielding highly dependable feature extraction. 

Combined with the inherent powerful generalization capability of deep neural networks, 

these together are projected to form a strong CAD system candidate for breast cancer (Batra 

et al., 2020).  

1.1.  Literature Review 

In previous related studies, the authors in (Batra et al., 2020) used preprocessing to 

enhance input images and followed that by image segmentation to extract strips of the 

malignant tissue. These are then fused with the original images to train their 8 layers custom-

built CNN. They also studied the trade-off between accuracy and training in various 

execution environment such as Tensorflow and Matlab. The authors in (Jamieson, Drukker 

& Giger, 2012) modified the Adaptive Deconvolutional Networks (Zeiler, Taylor & Fergus, 

2011) into multiple layers of representation to learn two datasets of breast image data: full 

field digital mammography (FFDM) and ultrasound sets. They employed Spatial Pyramid 

Matching to the inferred feature maps and used linear support vector machine for 

classification to achieve moderate performance. CNNs are also used in detection and 

analysis using histopathology images, the authors in (Zainudin, Shamsuddin & Hasan, 2021) 

proposed four types of deep layer CNN architecture which are called 6-layer CNN, 13-layer 

CNN, 17-layer CNN and 19-layer CNN, respectively, to detect malignant cells (mitosis) in 

breast tissue by using histopathology image and to compare the performance of different 

layered implementations. Spanhol et al (Spanhol et al., 2016a) also implemented a deep 

learning approach to classify breast cancer histopathological images taken from the publicly 
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available BreaKHis dataset (Spanhol et al., 2016b). They suggested a method to extract 

image patches to train the CNN and then combined these patches with the original images 

for final classification. The study employs transfer learning and also combines different 

CNNs by using simple fusion rules with some reported improvement accuracy. Masud et al 

(Masud, Eldin Rashed & Hossain, 2020) in their research also consider transfer learning. 

They fine-tuned eight different pre-trained models as well as a proposed shallow 

convolutional neural network to compare the performance of these models in classifying 

breast cancers on two merged ultrasound datasets. Noise was removed by applying 

morphological operations to extract the ROIs. The achieved results show that the 

performance of the proposed CNN outperforms that of the pre trained models. Arevalo et al. 

(Arevalo et al., 2016) suggested a new representation learning framework for the diagnosis 

of breast cancer in mammograms which merges deep learning with the automatic learning 

of features. They built a new biopsy proven dataset and followed a hybrid approach, hence, 

CNNs are used to learn the features in a supervised setting. Petersen et al (Petersen et al., 

2014) implemented a convolutional sparse autoencoder (CSAE) method which extracts 

descriptive features from unlabeled mammograms taken from the Dutch biennial breast 

screening program dataset (Otten et al., 2005). The learned features are used to train a simple 

classifier which performs tissue segmentation, scoring of percentage mammographic density 

(PMD), and scoring of mammographic texture (MT). The authors in (Tan, Sim & Ting, 

2017) employed Google’s TensorFlow to develop their. classifier on mini-MIAS mammo-

gram dataset. They used preprocessing to crop abnormality tissues to 48 x 48 and then fed 

those features to CNN classifier as training source. Authors in (Charan, Khan & Khurshid, 

2018) suggested a transfer learning model based on GoogleNet and AlexNet pre-trained 

models, they also utilized preprocessing techniques. Their proposed model is applied to 

mammograms with segmented cancer regions. The authors claim that the model achieves 

improved performance over human involved methods.  

The research problem addressed in this paper is to design a learning based computer aided 

breast cancer diagnosis system. This is pursued building on previous efforts by 

implementing CAD system where preprocessing is used to rid input images of markings, 

edges, and unrelated body tissues. ROI containing only breast region is then segmented and 

used to adjust and test a pretrained deep CNN. the rest of this paper includes, in section two 

the material and methods used, the results in section three and finally the conclusions in 

section four.  

2. MATERIALS AND METHODOLOGY  

The proposed framework consists of a set of pre-processing steps, followed by the setup 

of a machine learning model. The model is trained and validated by using mammographic 

image dataset. The various stages of the framework are presented subsequently. 

2.1. MIAS Dataset  

This digital dataset was generated by the (Mammographic Image Analysis Society-MIAS 

(Suckling et al., 1994) which is a research body focused on the development and 

understanding of mammograms. Images produced via the (UK National Breast Screening 

Program) were used for the generation of the dataset after digitization of the original scans. 
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The digital images are utilized in a 50-micron pixel edge by using a Joyce-Loebl 

microdensitometer at 8-bit resolution per pixel (see Fig. 1-a and Fig. 2-a). The dataset 

includes a total of 322 digital images (161 patients) along with expert radiologist annotations 

specifying the regions of detected abnormalities. The dataset is publicly accessible through 

the Pilot European Image Processing Archive (PEIPA) at the University of Essex (Grgic et 

al., 2021). The provided information describing the dataset includes: 

1. The type of the background tissue: fatty, fatty-glandular and dense-glandular. 

2. The detected abnormality: calcification; circumscribed masses, etc. 

3. The degree of abnormality: benign and malignant. 

4. The coordinates of the abnormality on the digitized image. 

5. The radii of the circles surrounding the lesions.  

The image files in the dataset are organized in consecutive odd/even numbered pairs 

representing respectively the right and left mammograms of individual patients. The images 

were normalized to the center of the 1024x1024 grid with origin represented by the lower 

left element of the grid. 

2.2. Pre-processing 

In most classification applications, preprocessing plays a crucial role in exposing and 

magnifying discriminatory features. It is used in this research to perform two functions: to 

rid unnecessary markings and human tissues, and to normalize the appearance of all images. 

As such the resulting images will be a relatively clean centered region of interest (ROI) with 

normalized size and intensity for all files of the used dataset. The stages of preprocessing are 

summarized: 

Gabor filter (Aach, Kaup & Mester, 1995) is used to characterize differently textured 

tissue parts. This will help remove unrelated markings and structures. Gabor filters are 

bandpass filters frequently used in image processing applications, particularly, in dealing 

with human tissues as texture is a more discriminant trait than other features such as shape, 

brightness or etc. Eq. (1) gives the response of Gabor mask to an input image 𝑋(𝑟, 𝑐): 

G𝑟 𝑐 = 𝑒𝑥𝑝 (−
𝑟́2+𝛾2𝑐́2

2𝜎2 ) 𝑐𝑜𝑠 (2𝜋
𝑟́

𝜆
+ 𝜓)       (1) 

where 𝑟́ = 𝑟 cos 𝜃 + 𝑐 sin 𝜃, and, 𝑐́ = 𝑟 sin 𝜃 + c cos 𝜃 of 𝑋(𝑟, 𝑐). Filter parameters are: 𝜆 

represents the wavelength, 𝜃 is the angle of the normal to the wave of a Gabor function, 𝜓 

is the phase shift, 𝜎 is the Gaussian standard deviation and 𝛾 is the aspect ratio(AL-Huseiny 

& Sajit, 2021; Gabor filter, n.d.). The values of these parameters are tuned to achieve best 

results with respect to the input images in terms of emphasizing unwanted structures to be 

eliminated by later stages of preprocessing. the output of Gabor filter is thresholded as shown 

in Fig. 1-b and Fig. 2-b. 

Morphological operations: after Gabor filter, the images are treated with morphological 

operators with carefully selected structuring element. This helps remove small and densely 

perforated regions after texture analysis, including markings and muscle tissue as depicted 

in the examples of  Fig. 1-c and Fig. 2-c. morphological operation is given in Eq. (2): 
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𝐺𝑀𝑟𝑝ℎ = 𝑀𝑜𝑟𝑝ℎ𝑠𝑒𝑙(𝐺)            (2) 

where 𝐺𝑀𝑟𝑝ℎ is the output of morphological operator 𝑀𝑜𝑟𝑝ℎ performing under the structuring 

element 𝑠𝑒𝑙. 
 

Region selection: in cases where more than one region is left after morphological 

operations, the region with the largest area is preserved while other regions are omitted from 

the binary image forming a mask 𝐺𝑀𝑠𝑘 for the desired ROI. 

Masking: input images are multiplied by their respective masks to extract their ROIs as 

given by Eq. (3). This is shown in Fig. 1-d and Fig. 2-d. 

X𝑅𝑂𝐼 = ∑ 𝑋(𝑟, 𝑐) ∗𝑟 𝑐 𝐺𝑀𝑠𝑘(𝑟, 𝑐)        (3) 

Cropping: masked images are then cropped to the boundaries of the extracted region to 

give 𝑋𝐶𝑟𝑝𝑑. The results of this stage can be seen in Fig. 1-e and Fig. 2-e 

Normalization: this step includes both size and intensity normalization, thus, each 

cropped image of ROI is scaled to 224X224 pixels image 𝑋𝑆𝑐𝑙. Scaled images are then 

intensity normalized according to Eq. (4) (Gonzalez & Woods, 2006): 

𝑋𝑁𝑟𝑚 = (𝑋𝑆𝑐𝑙 − 𝑀𝑖𝑛)
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
+ 𝑛𝑒𝑤𝑀𝑖𝑛     (4) 

where 𝑋𝑆𝑐𝑙 and 𝑋𝑁𝑟𝑚 are scaled and output normalized images respectively, 𝑀𝑖𝑛 and 𝑀𝑎𝑥 

are minimum and maximum values of the input scaled image, 𝑛𝑒𝑤𝑀𝑖𝑛 and 𝑛𝑒𝑤𝑀𝑎𝑥 are 

   
a) b) c) 

   
d) e) f) 

Fig. 1. Stages of preprocessing – example 1: a) input image, b) texture analysis followed  

by thresholding, c) morphological operation and region selection, d) masking of original 

image, e) cropping to ROI, and f) size and intensity normalization  
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the desired minimum and maximum values of the normalized image, in this research these 

values are set to 0 and 1 respectively. The output of this stage is presented in the examples 

of Fig. 1-f and Fig. 2-f. 

 

2.3. Transfer learning with GoogLeNet 

Transfer learning involves the use of previously developed computer models to learn 

patterns of new data different from that used in the development of these models (AL-

Huseiny & Sajit, 2021). This approach is useful particularly when the available resources 

such as data and computing power are limited. The attractiveness of such strategy should not 

distract from the fact that not all trained models are capable of learning previously unseen 

data. Thus, the process involves some sort of tuning to parts of the transferred models to 

ensure that there is a compatibility in terms of data types as well as expected classes. In Fig. 

3 it is noticed that early layers are largely kept unchanged due to the fact that these layers 

are activated on low level features and this is the type of knowledge desirable  to be 

transferred to the new domain. Subsequent and last layers are obviously replaced and trained 

with the new data (domain), the reason is that these layers model data specific attributes, as 

such, they are activated by high level features (AL-Huseiny, Abbas & Sajit, 2020;  

AL-Huseiny & Sajit, 2021; Al-Yasriy et al., 2020). The use of transfer learning strategy 

significantly diminishes training time as large parts of the network are at or near 

convergence. 

   

a) b) c) 

   
d) e) f) 

Fig. 2. Stages of preprocessing – example 2: a) input image, b) texture analysis followed  

by thresholding, c) morphological operation and region selection, d) masking of original 

image, e) cropping to ROI, and f) size and intensity normalization 
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Convolutional neural networks (CNNs) are a category of deep NNs widely utilized in the 

analysis of images and videos. These models are characterized by being shift/space invariant 

in the sense that their convolution filters which slide along input features use shared-weight 

architecture. This configuration gives translation equivariant responses commonly defined 

as feature maps ( Convolutional neural network, n.d.; Zhang, 1990). 

 

  

Fig. 3. The concept of transfer learning shown in terms of model layers – only learnable 

layers are readjusted (Malgonde, 2021) 

GoogLeNet is a Convolutional NN developed by Szegedy et al (Szegedy et al., 2015) for 

the ImageNet challenge (Russakovsky et al., 2015). This challenge involves the development 

of high feature representations by millions of images of ordinary objects collected in a huge 

dataset. The network architecture is formed mainly of stacking of Inception modules as 

shown in Fig 4. The layers of this deep CNN are listed in Table 1. As a standard approach 

in computer vision with deep learning, this CNN classifies input images into one of the 

learned classes and produces a value representing the level of confidence of the output. The 

configuration of this CNN ensures that it has 12 times less parameters than Alexnet (Santos, 

2019). The structure of GoogLeNet constitutes 22 layers. Notably, 9 prominently important 

constructions called the inception modules. 

Inception modules depicted in Fig. 5 employ learnable filters ranging in size from (1×1) 

to (5×5) and are specialized in emphasizing various level features simultaneously (Szegedy 

et al., 2015). These structures act on analyzing the correlation statistics coming out of the 

activations of preceding layers. Correlated activations are clustered together in one vector 

(Tripathy, 2016). This configuration is well suited for computer vision applications where 

higher correlations occur in local neighborhoods, hence, the use of 1x1 filters. As for general 

features spread across larger neighborhoods, larger filters will capture their correlations. 
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Fig 4: The architecture of GoogLeNet, inception modules are shown as blocks  

(Deep Learning Network Part Three: GoogLeNet Series, n.d.; Melli, 2021) 

 

Tab. 1. The Layers of The GoogLeNet CNN 

 Name Count Activation 

1. Input layer 1 / 

2. Convolutional layers 3 / 

3. Max-pooling layers 3 / 

4. Inception module layers; 9 / 

5. Average pooling layers 2 / 

6. Normalization layers 2 / 

7. Dropout layer 1 / 

8. Fully connected layer 1 ReLU 

9. Output layer 1 Softmax 

 

 

 

Fig. 5. The organization of filters within the inception module  

(Szegedy et al., 2015; Tripathy, 2016) 
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2.4. Experimental 

The current study employs the digitized images of the mini MIAS mammographic slides 

(Suckling et al., 1994). Depending on the specialists’ diagnosis, this sample divides its cases 

into three categories: Normal (NRM), Benign (BGN) and Malignant (MLG). Images are 

initially prepared as detailed in Sec 2.2 to extract the ROI. The sample is then grouped into 

two sets for training and testing at the ratio of 70:30. The larger set is used to train the 

transferred GoogLeNet model and adjust its learnable weights. The second set is used to test 

the performance of the learned model. In this setting, the loss3 classifier (fully connected 

layer) and the output (classification) layers are replaced and fine-tuned by using the training 

data to accommodate data specific features and to produce the desired number of classes 

respectively.  

 

Fig. 6. MATLAB user interface showing the parameters 

used in the training/testing of the deep neural network 

For learning the model, the number of epochs was set to 30 with stochastic gradient 

descent (SGD) learning strategy. The learning rate was set to 3x10-5 except for the last layers 

which was at 3x10-4, these values were chosen empirically. In order to assure better learning 

images were shuffled at the start of the epoch. Further, and avoid overfitting these images 

were augmented by using random scaling, translation and rotation. The model was 

implemented by using MATLAB® R2020b deep learning toolbox on a dual-core Intel Core 

i5 MacBook pro machine clocked at 2.5 GHz with 16 GB DDR3 RAM. The algorithm 

parameters were adjusted to the values listed in Fig. 6. 
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3. DATA ANALYSIS AND INTERPRETATION 

The transfer learning approach employed in this research to use a pretrained deep neural 

network, the GoogLeNet was used to classify the mammograph images of the mini MIAS 

breast cancer dataset. The results show that the transfer learned model has achieved an 

accuracy of 86.6% for the test sample. In Fig. 7 the accuracy and the loss over the course of 

training and testing over 2160 iterations is shown. It is obvious that the algorithm begins 

settling after 1100 iterations. In the graphs of Fig. 7 continuous ripple is observed in the 

accuracy as well as the loss, this can be referred to the presence of noise and non-uniform 

imaging conditions common in real world data as well as the augmentation deployed to 

overcome overfitting.  
A group of four randomly selected classified images is shown in Fig 8. The figure also 

provides the probability of the generated class for each image. It is evident that the algorithm 

in some cases is making guesses as would be the case with specialists. However, the majority 

of classifications is performed with high degree of confidence. The trained model also scores 

sensitivity of 75% and specificity of 88.9%, further detailed outcomes are presented in the 

confusion matrix of Tab. 1. 

 

 
(I) 

 
(II) 

Fig. 7. The outcomes of the training/testing of the proposed transfer learning model over 30 

epochs and 2160 iterations in terms of (I) accuracy, (I)loss 
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Fig 8: Examples of classified mammograph images selected at random, shown 

with the classification labels are the probabilities of the generated classes 

The outcomes of the proposed implementation are measured against other related models 

mentioned in the literature. Tab. 3 provides comparison figures for the proposed system 

against those models, in which it shows that this work scored higher accuracy, and also, 

better specificity (where values were provided), which indicates an improved true negative 

and false positive rates. Sensitivity was slightly below that of other methods which refers to 

higher false negative cases produced by this approach compared to the other reported 

methods. Despite being better on other metrics, this aspect needs to be looked into and 

improved perhaps by using larger datasets or merging multiple datasets together to help the 

model learn deeper features in order to be more discriminative. 

Tab. 2. Confusion Matrix 

Confusion matrix 
Predicted class 

Non-malignant (positive) Malignant (negative) 

Actual class 
Non-malignant TP = 12 FN = 4 

Malignant FP = 9 TN = 72 

Tab. 3. Comparison of methods 

Method Dataset Accuracy Sensitivity Specificity Time 

Batra (Batra, Sekhar & Radha, 2020) mini MIAS 84.02% / / 45 minutes 

BCDCNN (Tan, Sim & Ting, 2017) mini MIAS 71% 82.68% 82.73% / 

Spanhol (Spanhol et al., 2016a) BreaKHis 84% / / / 

Charan (Charan, Khan & Khurshid, 

2018) 
MIAS 65% / / / 

Zainudin (Zainudin, Shamsuddin  

& Hasan, 2021) 

MITOS- 

ATYPHIA 
84.49 % 80.55 % / / 

Proposed mini MIAS 86.6% 75% 88.9% 56 minutes 
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4. CONCLUSION 

In this paper a computer aided diagnosis system for breast cancer is presented which 

employs a learning algorithm to model the data of publicly published mammographic 

images, the mini MIAS dataset. The images were initially preprocessed to clean and extract 

breast tissue only ROI and remove markings and clutter. They are then size and brightness 

normalized. The treated dataset was then augmented to compensate for the limited size of 

the sample. The set is then fed to the GoogLeNet CNN in a transfer learning approach to 

save training time and reuse derived features. Initial and final layers of the CNN were 

replaced to accommodate input data and the desired classes. This setting produced an 

accuracy of 86.6% which is better than those of the methods reported previously. 

Furthermore, this approach is easy to setup and modify. Therefore, compared to human 

experts it is scalable, reportedly more stable and less prone to subjective and circumstantial 

influences. 
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