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Abstract  

Microscopic technology has recently flourished, allowing unparalleled viewing of 

microscopic elements invisible to the normal eye. Still, the existence of unavoidable 

constraints led on many occasions to have low contrast scanning electron microscopic 

(SEM) images. Thus, a noncomplex multiphase (NM) algorithm is proposed in this 

study to provide better contrast for various SEM images. The developed algorithm 

contains the following stages: first, the intensities of the degraded image are modified 

using a two-step regularization procedure. Next, a gamma-corrected cumulative 

distribution function of the logarithmic uniform distribution approach is applied for 

contrast enhancement. Finally, an automated histogram expansion technique is used to 

redistribute the pixels of the image properly. The NM algorithm is applied to natural-

contrast distorted SEM images, as well as its results are compared with six algorithms 

with different processing notions. To assess the quality of images, three modern metrics 

are utilized, in that each metric measures the quality based on unique aspects. 

Extensive appraisals revealed the adequate processing abilities of the NM algorithm, 

as it can process many images suitably and its performances outperformed many 

available contrast enhancement algorithms in different aspects. 

1. INTRODUCTION  

Microscopic technology has lately flourished, allowing to view of different microscopic 

elements that are invisible to the normal eye (Cocks, Taggart, Rind & White, 2018). Electron 

microscopes are deemed the most powerful and versatile tools for depicting the micro-

structures of various materials (Al‐Ameen, 2018a). The capacity of a microscope to view 

small details has dramatically increased in recent years. The scanning electron microscope 

(SEM) can achieve resolutions of less than 0.4 nm (Vladár, Postek & Ming, 2009). In inte-

grated circuits, biological cells, and other important applications, SEM is becoming increas-

ingly demanded as vital information is frequently extracted from Such images (Feng, Ye & 

Pease, 2006). The SEM uses high energy with a concentrated beam of electrons to generate 

a variety of pulses that are used to display the examined object in the form of a digital image 

(Sutton et al., 2007).  
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Normal humans can observe two items that are 0.2 mm at a distance without the need for 

magnifying lenses. Modern SEM devices, on the other hand, may achieve a resolution of  

1 nm. The SEM on the other hand may enlarge objects to 300,000 times, which is much 

more than the standard simple microscope that can only enlarge objects to 1,500 times 

(Wighting, Lucking & Christmann, 2004). The SEM devices produce grayscale images that 

can be colorized using specific processes to make such images look more practical. Although 

the SEM devices have thrived, the produced images from such a device are still owning 

degradations, and one of the most common occurring degradations in SEM is the low-contrast 

effect (Ohta et al., 2012; Beekman et al., 2019; Sim, Ting, Leong & Tso, 2019; Bennet, Burr, 

Schmid & Hodoroaba, 2021).  

The difference between the lightest and dimmest image regions is what defines the 

contrast, in that a high difference leads to better contrast and a low difference leads to poor 

contrast. As a result, the details of an image with high contrast are preserved better than the 

details in an image with poor contrast (Chen et al., 2018). The low contrast is an unfavorable 

artifact that decreases the visibility of the details and makes it difficult to extract useful 

information. Therefore, such an effect must be processed efficiently to produce an output 

image that owns better visibility and has no processing artifacts (Cakir, Kahraman, Cetin-

Atalay & Cetin, 2018). Contrast enhancement (CE) is an approach that is used to improve 

the distribution of pixels in the image dynamic range. The fundamental goal of CE is to 

create an output image that is more lucid than its original version and does not include any 

processing artifacts (Pei, Zeng & Chang, 2004).  

Various CE approaches have been presented in the past and among those approaches, the 

histogram equalization (HE)-based methods have been of high popularity (Hashemi, Kiani, 

Noroozi & Moghaddam, 2010). For SEM, various CE approaches have been introduced in 

the past years, and such approaches vary in their ideas. Thus, different approaches are 

reviewed in Section 2 of this article. Hence, a noncomplex multiphase algorithm is devel-

oped for the CE of SEM. Accordingly, it owns two key phases: Firstly, a two-step processing 

approach is implemented for intensity adjustment. Secondly, a gamma-corrected cumulative 

distribution function of the log-uniform distribution (GCCDFLUD) method is implemented 

to further enhance the image. Finally, an automated histogram expansion method is utilized 

to reallocate the pixels to the full image interval.  

The assessment of the proposed algorithm is done by applying it to different real contrast 

distorted SEM images. Furthermore, it is appraised against different approaches and the 

accurateness of the outputs is considered along with the processing speed. From the results, 

the proposed algorithm provided satisfactory performance as it performed the best in many 

aspects. Finally, the organization of this study goes as follows: Section 2 contains a review 

of the germane methods; Section 3 includes a full description of the developed algorithm; 

Section 4 describes the experimentations, comparisons, and results, along with their 

discussions; Section 5 includes the important conclusions. 

2. RELATED WORK 

This part reviews different studies related to improving the contrast of SEM images  

to deliver a clear grasp of the formerly utilized methodologies in this field. The main aim is 

to highlight the previously used concepts and determine their advantages and disadvantages 
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so that when developing the proposed algorithm, a wide knowledge of processing concepts 

would be known so that the development process becomes easier. Moreover, the advantages 

and disadvantages are considered, in that the advantages are properly exploited, and the 

disadvantages are carefully avoided. In (Sengee, Sengee & Choi, 2010), a two-phase 

approach was proposed, in which the large histogram bins that cause the washout artifacts 

are divided into sub-bins using a neighborhood-based process, in which the adjacent infor-

mation is arranged accordingly. In the second phase, the processed histogram is separated 

into two smaller histograms depending on the histogram average value and these two 

histograms are equalized independently using a refined HE procedure. In (Ma & Han, 2014), 

a fusion-based algorithm was introduced, which begins by implementing a gradient 

transform to attain the edge information. Next, the Laplace of Gaussian (LoG) and the 

median filters are applied to the input image to get the filtered high-frequency information. 

After that, the image low-frequency components are processed by the contrast limited 

adaptive histogram equalization (CLAHE) technique. The outputs of the aforesaid three 

steps are fused to get the output image.  

In addition, a hybrid technique was presented by (Lal & Chandra, 2014), in that it starts 

by applying a modified sigmoid function to modify the image intensities. Then, the outcome 

is further processed by the CLAHE technique to get the output image. Moreover, a spatial 

entropy-based algorithm is introduced by (Celik, 2014), in that it computes the spatial 

entropy of pixels by using the spatial distribution feature of image pixels. Next, entropy is 

used along with specific statistical measures to redistribute the image intensities and obtain 

the output. Likewise, a histogram sub‐blocking-based algorithm is developed by (Sim, Teh, 

Tey & Kho, 2016), which starts by normalizing the input image to get its correct confined 

information. Then, the normalized image is broken into different sub-blocks and each sub-

block is enhanced using a generalized HE technique. Using the output, the mid-nodes are 

computed and then a piecewise equalization approach is applied. Finally, a convolution 

procedure is implemented to mix the processed sub-blocks and get the output of the 

algorithm.  

Furthermore, a quad HE-based approach is presented by (Shukri, Sim & Leong, 2016), 

in that it separates the input into two sub-histograms, in that they are separated again into 

quad-histograms. Then, the four histograms are considered and normalized using a specific 

probability density function. Finally, a remapping and equalization procedure is imple-

mented depending on a distinct cumulative distribution function to get the output image. 

Moreover, an improved contrast equalization method was introduced by (Al‐Ameen, 2018a), 

in that it includes two key stages. The first phase includes two-step image intensity rescale 

procedures that are used to modify the image intensities. The second phase includes two-

step processing and remapping procedures that are used to adjust the contrast and remap the 

intensities to the full range.  

In addition, a CLAHE-sigmoid-based algorithm was presented by (Arya, Sharma & Arya, 

2019), in that it begins by implementing a modified sigmoid function on the input. Then,  

a CLAHE approach is implemented depending on the output of the previous step. The output 

is finally processed by the modified sigmoid function again to get the output image. Lastly, 

a multi-scale top-hat-based algorithm was proposed by (Mello-Román et al., 2021), in that 

it initially extracts different bright and dark features of the input image by utilizing the top-

hat procedure. Next, the dark and bright scale variations are determined using a specified 

method. After that, a separate summation of the dark and bright scale variations is obtained. 
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The last step includes the adjustment of the bright and dark elements, in that the adjusted 

bright elements are added to the image and the adjusted dark elements are subtracted from 

the image to get the output.  

From the studied methods, different ideas were utilized in the past to process the contrast 

and obtain satisfactory results. Table 1 describes the examined research articles in chrono-

logical sequence, including the authors, years, methodology, difficulty, benefits, and draw-

backs. As noticed, the histogram-based methods are the most used. The standard version of 

histogram equalization is known to deliver an unnatural appearance with brightness 

amplification. The improved versions of histogram equalization may also have these artifacts 

but with less effect. Moreover, they may also involve excessive computations to provide the 

output. As for the statistical-based approaches, they utilize mediocre-intricacy computations 

making them somewhat rapid in processing the given images. However, insufficient 

enhancement abilities and the presence of artifacts may be introduced. Moreover, not all the 

reviewed methods were successful in delivering acceptable quality results as the contrast 

may be insufficient, brightness amplification may happen, and some artifacts may appear 

more distinctly. This is deemed undesirable as efficient processing without generating visual 

flaws is needed. Furthermore, the SEM images are obtained with high resolution and rapid 

processing is also needed for such images. Hence, providing a plain-structure algorithm that 

can produce acceptable results with no flaws is highly needed. 

Tab. 1. A synopsis of the literature review. 

No. Author & Year Concept Intricacy Pros Cons 

1. 
(Sengee et al., 

2010)  

Bi-histogram 

equalization 
Moderate 

Preserve the 

brightness 

Some results 

own a hazy look 

2. (Ma & Han, 2014) 

A mix of statistical, 

morphological, and 

image processing 

operations 

High 

Increase the 

contrast and 

acutance 

Unnatural 

contrast  

3. 
(Lal & Chandra, 

2014) 

Sigmoid function with 

adaptive histogram 

equalization 

High 

Good performance 

in the dark image 

regions 

Many 

computations 

4. (Celik, 2014) Spatial entropy Low  
Non-complex 

method 

Does not 

provide enough 

enhancement 

5. (Sim et al., 2016) 

Sub-blocking multiple 

peak histogram 

equalization 

Moderate 

Makes the dark 

regions more 

visible 

Brightness 

amplification 

6. 
(Shukri et al., 

2016) 

Minimum Mean 

Brightness error Bi-

histogram 

equalization 

Low  
Provides a 

noticeable CE 

Provides 

unnatural look 

7. 
(Al‐Ameen, 

2018a) 
Contrast equalization Low  

Non-complex 

method 

Needs further 

improvements 

8. (Arya et al., 2019) 

Modified sigmoid 

function with limited 

histogram 

equalization 

High  Good CE 
Many 

computations 

9. 
(Mello-Román et 

al., 2021) 

Multiscale top-hat 

transform 
High  Balanced CE 

Complex 

method 
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3. PROPOSED ALGORITHM 

This algorithm is created based on the notion that few computations are required  

to generate satisfactory results, in that it should produce the filter images rapidly with no 

processing artifacts. This algorithm employs a mix of statistical and image filtering methods 

in its processing concept. Its concept is as follows: First, a two-stage adjustment procedure 

is implemented to modify the intensities. Then, a gamma-corrected cumulative distribution 

function of the log-uniform distribution (GCCDFLUD) approach is implemented to further 

enhance the image. Finally, an automated histogram expansion approach is used to redis-

tribute the pixels to the full image interval. To better represent the proposed algorithm, the 

diagram given in Figure 1 explains the steps concisely. 

 

 

Fig. 1. Diagram of the proposed algorithm. 

Explaining the proposed noncomplex multiphase (NM) algorithm in detail, the two-stage 

adjustment procedure is initially used to modify the poor intensities in the image in a non-

linear way, better rescale such intensities, and restrain the extreme values. The two-step 

regularization procedure can be computed using these equations (Al‐Ameen, 2018a): 
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where i and j are image coordinates, W(i,j) is the output of the first step, O(i,j) is a given input 

image, O(i',j') is the transpose of O(i,j), M(i,j) is the output of the first step, W(i',j') is the transpose 

of W(i,j), mean is the average, min is the lowest value, η is an enhancement parameter, in that 

it should be (η > 0), as a higher value leads to more enhancement. Next, the values of M(i,j) 

are increased by a small value τ to avoid getting the values of zero, in that the log is computed 

for the image in an upcoming step, and adding the value of τ helps to avoid computing the 

log of zero which is infinity. Here, τ = 0.1, and the addition is done using the following 

equation: 

Next, a gamma-corrected cumulative distribution function of the log-uniform distribution 

method is applied to further modify the image intensities and control the enhancement 

process as well. The log-uniform distribution is a statistical approach that is used to distribute 

values in a curvy non-linear way (Hamming, 1970). In image processing, it is proven that 

curvy transforms can be used to process the intensity of an image (El Malali et al., 2020). 

Thus, it is used and modified in this study to process the images as a vital stage. The original 

cumulative distribution function of the log-uniform distribution can be computed as follows 

(Hamming, 1970): 
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where, y is the lowest value in T(i,j), while z is the highest value in T(i,j). the above equation is 

further modified to control the amount of enhancement. The modified version of the above 

equation can be computed as follows: 
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where, Q(i,j) is the output of the GCCDFLUD method. At this point, the image intensities are 

redistributed in a curvy way and are not distributed to the full range. Hence, an automated 

histogram expansion (AHE) method is implemented to well-distribute the pixels to the full 

image range. The AHE method can be computed as follows (Al-Ameen, 2020): 
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where κ and ω are the extension parameters, E(i,j) is the final output of the proposed 

algorithm, and max represents the highest value.  

4. RESULTS AND DISCUSSION 

In this segment, the outcomes of comparisons, experiments, and related remarks are 

presented to analyze and demonstrate the true processing capabilities of the developed NM 

algorithm with a dataset of various real low-contrast SEM images. The dataset of this study 

was collected from different internet websites, in that the images are made available freely 

online. From these websites, almost 200 images were collected, in that these images are 

grayscale, and their sizes vary where the smallest has the size of 500×500 and the largest 

have the size of 3000×3000. The first website is http://www.dartmouth.edu, which includes 

different raw SEM images which are available freely online. The second website is 

https://www.ualberta.ca, which also includes different high-resolution SEM images.  

The third source of SEM images is from the consistence website, which can be accessed at 

https://www.consistence.nl/gallery/.  

From this website, different unprocessed images were collected that own different sizes 

and are beneficial for this study. The fourth and final source of images is particle technology, 

which can be accessed at https://www.particletechlabs.com. The collected images are sorted, 

numbered, and in some cases cropped to be properly utilized. To truly measure the filtering 

abilities of the NM algorithm, a comparison is made with different algorithms namely, 

recursive mean-separate histogram equalization (RMSHE) (Chen & Ramli, 2003), dynamic 

histogram equalization (DHE) (Abdullah-Al-Wadud et al., 2007), adaptively increasing the 

value of histogram equalization (AIVHE) (Lu, Hsu & Wang, 2009), fuzzy-contextual 

contrast enhancement (FCCE) (Parihar, Verma & Khanna, 2017), swift algorithm (SWIFT) 

(Al‐Ameen, 2018b), and improved contrast equalization (ICE) (Al‐Ameen, 2018a).  

The comparison outcomes are evaluated using three no-reference quality evaluation methods, 

in that each metric detects the quality of the assessed images using special traits.  

The used metrics are visual contrast measure (VCM) (Jang et al., 2011), blind pseudo-

reference image (BPRI) (Min et al., 2017), and blind reference-less image spatial quality 

evaluator (BRISQUE) (Mittal, Moorthy & Bovik, 2012). The VCM is a metric that utilizes 

local statistical methods to measure the visual contrast in an image. The smaller output of 

VCM indicates better visual contrast. Moreover, the BPRI is a metric that utilizes a pseudo-

reference approach with the image structural information to determine the naturalness.  

The smaller output of BPRI indicates better naturalness. In addition, the BRISQUE metrics 
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utilize a set of statistical measures to measure the quality of the apparent luminance and 

contrast. The smaller output of BRISQUE indicates better visual luminance and contrast. 

The computer used in this study has the specifications of an intel core I3-2328M 2.20 GHz 

processor and 4 GB of memory. MATLAB 2018a is the programming environment that is 

used for developing the algorithm, running the comparison algorithms, and the image 

evaluation methods. Figures 2 to 4 demonstrate different empirical results of the proposed 

algorithm. Figures 5 to 8 illustrate the comparison outcomes. Tables 2 to 5 represent the 

recorded image evaluation scores and runtimes. Figures 9 to 12 depict the average perfor-

mances of Tables 2 to 5 as graphical charts. From Figure 2 to Figure 4, it is noticed that the 

outcomes of the NM algorithm are of acceptable visual quality, as they own improved 

contrast, preserved brightness, and no obvious processing errors, and they appear more 

credible to the viewer. Accordingly, when comparing the unprocessed image with its 

processed version, it seems as if a coat of mist has been diminished. 

 

 

Fig. 2. The outcomes of the developed NM algorithm – (a1–d1) real contrast-distorted images,  

(a2–d2) results of the NM algorithm with η = 3.9, 4.9, 5, and 5.3, respectively 

 

Fig. 3. The outcomes of the developed NM algorithm – (a1–d1) real contrast-distorted images,  

(a2–d2) results of the NM algorithm with η = 4.5, 5.2, 5.3, and 6.5, respectively 
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Fig. 4. The outcomes of the developed NM algorithm – (a1–d1) real contrast-distorted images,  

(a2–d2) results of the NM algorithm with η = 2.4, 3.9, 4.9, and 5.9, respectively 

The details stood out better and the images became visually pleasing. Likewise, the NM 

algorithm showed promising performances as it was successful in processing many images 

obtained from different sources. The NM algorithm depends on the value of η, in that if it is 

properly chosen by the operator, the quality of the output would be desirable. From Figure 

5 to Figure 12 and Table 2 to Table 5, it is spotted that dissimilar outcomes are obtained, as 

different algorithms in concept were implemented with numerous SEM images. The FCCE 

algorithm provided good contrast but amplified the brightness in different regions and 

darkened other regions making the image appear with an unusual look. That’s why it scored 

low in all three metrics and was the slowest method. In addition, the SWIFT algorithm 

delivered a balanced performance concerning brightness and contrast, as the contrast is adjusted, 

and the brightness is slightly increased. Yet, it did not reach the scores of the proposed NM 

as it scored high in all three metrics with a slight difference from the NM algorithm. Yet, it 

ranked the 6th fastest method. 

 

 

Fig. 5. The comparison outcomes (Batch -1-) – (a) real contrast-distorted SEM image, images (b–h) are 

processed by: (b) FCCE, (c) SWIFT, (d) ICE, (e) AIVHE, (f) RMSHE, (g) DHE, and (h) proposed NM 
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Fig. 6. The comparison outcomes (Batch -2-) – (a) real contrast-distorted SEM image, images (b–h) are 

processed by: (b) FCCE, (c) SWIFT, (d) ICE, (e) AIVHE, (f) RMSHE, (g) DHE, and (h) proposed NM 

 

Fig. 7. The comparison outcomes (Batch -3-) – (a) real contrast-distorted SEM image, images (b–h) are 

processed by: (b) FCCE, (c) SWIFT, (d) ICE, (e) AIVHE, (f) RMSHE, (g) DHE, and (h) proposed NM 

 

Fig. 8. The comparison outcomes (Batch -4-) – (a) real contrast-distorted SEM image, images (b–h) are 

processed by: (b) FCCE, (c) SWIFT, (d) ICE, (e) AIVHE, (f) RMSHE, (g) DHE, and (h) proposed NM 
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Moreover, the ICE algorithm delivered a reasonable performance as well but with marginally 

greater brightness than SWIFT with a regulated contrast, as it scored above moderate in all 

three metrics and was ranked the 3rd fastest method. Furthermore, the AIVHE algorithm 

delivered a somewhat sensible performance, with more need for contrast enhancement and 

brightness adjustment. Therefore, it scored moderately in all three metrics and was ranked 

the 5th fastest method.  

Tab. 2. The recorded accuracies and their averages by the BPRI metric 

Methods Fig. 5 Fig. 6 Fig. 7 Fig. 8 Average 

FCCE 0.0133 0.0164 0.0109 0.0364 0.01925 

SWIFT 0.0096 -1.05E-04 0.0101 0.019 0.009649 

ICE 0.0115 0.003 0.0117 0.0228 0.01225 

AIVHE 0.0092 0.0099 0.0116 0.0251 0.01395 

RMSHE 0.0083 0.0174 0.0108 0.0278 0.016075 

DHE 0.009 0.0272 0.0141 0.0347 0.02125 

Proposed NM 0.0123 -0.0049 0.0071 0.0179 0.0081 

Tab. 3. The recorded accuracies and their averages by the BRISQUE metric 

Methods Fig. 5 Fig. 6 Fig. 7 Fig. 8 Average 

FCCE 0.3385 40.1115 15.2681 41.2206 24.234675 

SWIFT -0.5849 28.5376 10.0693 36.4228 18.6112 

ICE 0.4441 29.9195 10.3777 36.6058 19.336775 

AIVHE 1.2809 33.1953 15.4099 40.0946 22.495175 

RMSHE 0.2925 35.1319 25.4102 37.0675 24.475525 

DHE 2.4419 47.1025 20.8524 45.413 28.95245 

Proposed NM -0.033 29.4091 8.9988 35.9838 18.589675 

Tab. 4. The recorded accuracies and their averages by the VCM metric 

Methods  Fig. 5 Fig. 6 Fig. 7 Fig. 8 Average 

FCCE 1944.6 1.97E+03 1.44E+03 1.61E+03 1741.825 

SWIFT 1.23E+03 807.3552 762.6877 338.4481 784.79775 

ICE 1.25E+03 1.02E+03 968.6738 483.8228 931.37415 

AIVHE 1.50E+03 1.11E+03 1.08E+03 436.2752 1032.1438 

RMSHE 1.83E+03 1.44E+03 1.44E+03 721.4281 1357.107025 

DHE 2.33E+03 3.02E+03 1.90E+03 1.52E+03 2190.00 

Proposed NM 1346.3 787.9635 732.6598 255.0645 780.49695 

Tab. 5. The application times and their averages (in seconds) for the comparison algorithms 

Methods Fig. 5 Fig. 6 Fig. 7 Fig. 8 Average 

FCCE 0.789711 0.700735 0.604065 0.541752 0.65906575 

SWIFT 0.197413 0.505441 0.344469 0.21442 0.31543575 

ICE 0.100958 0.12412 0.106676 0.110124 0.1104695 

AIVHE 0.101407 0.084859 0.32177 0.078892 0.146732 

RMSHE 0.097669 0.094901 0.117599 0.087891 0.099515 

DHE 0.102309 0.158808 0.12121 0.111865 0.123548 

Proposed NM 0.097171 0.082195 0.087944 0.076719 0.086005 
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What is more, the RMSHE algorithm delivered an undesirable performance as it introduced 

brightness amplification and unusual contrast to the filtered images. The brightness in some 

areas appears massively amplified and the contrast looks unnatural with some processing 

artifacts. That is why it scored below moderate in all three metrics but was the 2nd fastest 

method. As for the DHE algorithm, it massively increased the brightness and delivered 

uncommon contrast. The overall look of the image is ruined, and many details were lost due 

to brightness amplification and the extreme darkening that happens in some areas. Therefore, 

it scored the lowest in all three metrics and was ranked the 4th fastest method. As for the 

proposed NM algorithm, it showed a clear superiority in performance over the comparison 

algorithms as its outcomes own balanced contrast, preserved brightness, and an overall 

acceptable appearance, in addition to being the fastest in runtimes. This is a noteworthy 

achievement as its structure is simple, yet it was able to perform better than many existing 

algorithms. Despite the above-mentioned primary advantages, it has one disadvantage being 

parameter η must be determined manually. In future work, a suitable optimization method 

can be utilized to automatically assess the value of η. 

 

 

Fig. 9. The average BPRI scores 

 

Fig. 10. The average BRISQUE scores 
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Fig. 11. The average VCM scores 

 

Fig. 12. The average run times 

5. CONCLUSION 

A simple-structure algorithm is presented in this paper to increase the observed contrast. 

In the proposed algorithm, a two-step regularization procedure is initially implemented to 

non-linearly modify the intensities. Then, a GCCDFLUD approach is implemented to further 

enhance the image and suppress high pixel values. Finally, an automated histogram 

expansion method is used to redistribute the pixels to the full image interval. Different real-

contrast distorted images, evaluation methods, and comparison algorithms were utilized in 

this study for efficiency evaluations. The obtained results by the proposed algorithm have 

acceptable quality and surpassed the comparative algorithms in dissimilar facets as the 

attained results became more visually appealing, looked natural and it did not introduce any 

unnatural appearance or undesirable effects. Moreover, The NM algorithm outperformed the 

comparison methods in terms of runtimes, visual contrast, apparent luminance, and natural-

ness as indicated by the utilized VCM, BPRI, BRISQUE metrics, and processor time.  
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The outcomes of this study are significant because a noncomplex algorithm was able to well-

process different SEM images and avoid the drawbacks of different more advanced 

algorithms. As for future works, the NM algorithm may be further modified by using some 

specialized statistical approaches to be utilized with other image datasets that are valuable 

in different scientific applications. Likewise, it can be made entirely automated by using 

specialized artificial intelligence techniques.  

Funding 

This research did not receive any funding. 

Conflicts of Interest 

The authors declare that we don’t have any conflict of interest regarding this study. 

REFERENCES 

Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization 

for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600. 

http://doi.org/10.1109/TCE.2007.381734 

Al‐Ameen, Z. (2018a). An improved contrast equalization technique for contrast enhancement in scanning 

electron microscopy images. Microscopy Research and Technique, 81(10), 1132–1142. 

https://doi.org/10.1002/jemt.23100 

Al-Ameen, Z. (2018b). Expeditious contrast enhancement for grayscale images using a new swift algorithm. Statistics, 

Optimization & Information Computing, 6(4), 577–587. https://doi.org/10.19139/soic.v6i4.436 

Al-Ameen, Z. (2020). Satellite image enhancement using an ameliorated balance contrast enhancement 

technique. Traitement du Signal, 37(2), 245–254. https://doi.org/10.18280/ts.370210 

Arya, V., Sharma, V., & Arya, G. (2019). An efficient adaptive algorithm for electron microscopic image enhancement 

and feature extraction. International Journal of Computer Vision and Image Processing, 9(1), 1–16. 

https://doi.org/10.4018/IJCVIP.2019010101 

Beekman, P., Enciso-Martinez, A., Rho, H. S., Pujari, S. P., Lenferink, A., Zuilhof, H., Terstappen, L.W. M. M., 

Otto, C., & Le Gac, S. (2019). Immuno-capture of extracellular vesicles for individual multi-modal 

characterization using AFM, SEM and Raman spectroscopy. Lab on a Chip, 19(15), 2526–2536. 

https://doi.org/10.1039/C9LC00081J 

Bennet, F., Burr, L., Schmid, D., & Hodoroaba, V. D. (2021). Towards a method for quantitative evaluation of 

nanoparticle from suspensions via microarray printing and SEM analysis. Journal of Physics: Conference 

Series, 1953(1), 012002.  

Cakir, S., Kahraman, D. C., Cetin-Atalay, R., & Cetin, A. E. (2018). Contrast enhancement of microscopy images using 

image phase information. IEEE Access, 6, 3839–3850. https://doi.org/10.1109/access.2018.2796646 

Celik, T. (2014). Spatial entropy-based global and local image contrast enhancement. IEEE Transactions on 

Image Processing, 23(12), 5298-5308. https://doi.org/10.1109/TIP.2014.2364537 

Chen, J., Yu, W., Tian, J., Chen, L., & Zhou, Z. (2018). Image contrast enhancement using an artificial bee colony 

algorithm. Swarm and Evolutionary Computation, 38, 287–294. https://doi.org/10.1016/j.swevo.2017.09.002 

Chen, S. D., & Ramli, A. R. (2003). Contrast enhancement using recursive mean-separate histogram equalization 

for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.  

Cocks, E., Taggart, M., Rind, F. C., & White, K. (2018). A guide to analysis and reconstruction of serial block 

face scanning electron microscopy data. Journal of Microscopy, 270(2), 217–234. 

https://doi.org/10.1111/jmi.12676 

El Malali, H., Assir, A., Bhateja, V., Mouhsen, A., & Harmouchi, M. (2020). A contrast enhancement model for 

x-ray mammograms using modified local s-curve transformation based on multi-objective 

optimization. IEEE Sensors Journal, 21(10), 11543–11554. https://doi.org/10.1109/JSEN.2020.3028273  



42 

Feng, H., Ye, J., & Pease, R. F. (2006). Pattern reconstruction of scanning electron microscope images using 

long-range content complexity analysis of the edge ridge signal. Journal of Vacuum Science & 

Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and 

Phenomena, 24(6), 3110–3114. 

Hamming, R. W. (1970). On the distribution of numbers. The Bell System Technical Journal, 49(8), 1609–1625. 

https://doi.org/10.1002/j.1538-7305.1970.tb04281.x 

Hashemi, S., Kiani, S., Noroozi, N., & Moghaddam, M. E. (2010). An image contrast enhancement method based 

on genetic algorithm. Pattern Recognition Letters, 31(13), 1816–1824. 

Jang, I. S., Kyung, W. J., Lee, T. H., & Ha, Y. H. (2011). Local contrast enhancement based on adaptive 

multiscale retinex using intensity distribution of input image. Journal of Imaging Science and 

Technology, 55(4), 1–14. 

Lal, S., & Chandra, M. (2014). Efficient algorithm for contrast enhancement of natural images. International 

Arab Journal of Information Technology, 11(1), 95–102. 

Lu, C. H., Hsu, H. Y., & Wang, L. (2009, May). A new contrast enhancement technique by adaptively increasing 

the value of histogram. In 2009 IEEE international workshop on imaging systems and techniques (pp. 

407–411). IEEE. https://doi.org/10.1109/IST.2009.5071676 

Ma, H., & Han, L. (2014). Multi-technology integration based on low-contrast microscopic image 

enhancement. Sensors & Transducers, 163(1), 96–102. 

Mello-Román, J. C., Noguera, J. L. V., Legal-Ayala, H., Pinto-Roa, D. P., Monteiro, M. M., & Colmán, J. C. A. L. 

(2021). Microscopy mineral image enhancement using multiscale top-hat transform. In 2021 XLVII Latin 

American Computing Conference (CLEI) (pp. 1–6). IEEE. https://doi.org/10.1109/CLEI53233.2021.9639975 

Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., & Chen, C. W. (2017). Blind quality assessment based on pseudo-

reference image. IEEE Transactions on Multimedia, 20(8), 2049–2062. 

Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial 

domain. IEEE Transactions on Image Processing, 21(12), 4695–4708. 

Ohta, K., Sadayama, S., Togo, A., Higashi, R., Tanoue, R., & Nakamura, K. I. (2012). Beam deceleration for 

block-face scanning electron microscopy of embedded biological tissue. Micron, 43(5), 612–620. 

https://doi.org/10.1016/j.micron.2011.11.001 

Parihar, A. S., Verma, O. P., & Khanna, C. (2017). Fuzzy-contextual contrast enhancement. IEEE Transactions 

on Image Processing, 26(4), 1810–1819. https://doi.org/10.1109/TIP.2017.2665975 

Pei, S. C., Zeng, Y. C., & Chang, C. H. (2004). Virtual restoration of ancient Chinese paintings using color contrast 

enhancement and lacuna texture synthesis. IEEE Transactions on Image Processing, 13(3), 416–429. 

https://doi.org/10.1109/TIP.2003.821347 

Sengee, N., Sengee, A., & Choi, H. K. (2010). Image contrast enhancement using bi-histogram equalization with 

neighborhood metrics. IEEE Transactions on Consumer Electronics, 56(4), 2727–2734. 

https://doi.org/10.1109/TCE.2010.5681162 

Shukri, N. M., Sim, K. S., & Leong, J. W. (2016). Minimum mean brightness error quad histogram equalization 

for scanning electron microscope images. In 2016 International Conference on Robotics, Automation 

and Sciences (ICORAS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICORAS.2016.7872601 

Sim, K. S., Teh, V., Tey, Y. C., & Kho, T. K. (2016). Local dynamic range compensation for scanning electron 

microscope imaging system by sub‐blocking multiple peak HE with convolution. Scanning, 38(6),  

492–501. https://doi.org/10.1002/sca.21285 

Sim, K. S., Ting, F. F., Leong, J. W., & Tso, C. P. (2019). Signal-to-noise ratio estimation for SEM single image 

using cubic spline interpolation with linear least square regression. Engineering Letters, 27(1), 151–165. 

Sutton, M. A., Li, N., Joy, D. C., Reynolds, A. P., & Li, X. (2007). Scanning electron microscopy for quantitative 

small and large deformation measurements part I: SEM imaging at magnifications from 200 to 

10,000. Experimental Mechanics, 47(6), 775–787. https://doi.org/10.1007/s11340-007-9042-z 

Vladár, A. E., Postek, M. T., & Ming, B. (2009). On the sub-nanometer resolution of scanning electron and 

helium ion microscopes. Microscopy Today, 17(2), 6–13. https://doi.org/10.1017/S1551929500054420 

Wighting, M. J., Lucking, R. A., & Christmann, E. P. (2004). The latest in handheld microscopes. Science 

Scope, 6, 58–61. 


