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Abstract 

Plant diseases are a foremost risk to the safety of food. They have the potential to 

significantly reduce agricultural products quality and quantity. In agriculture sectors, 

it is the most prominent challenge to recognize plant diseases. In computer vision,  

the Convolutional Neural Network (CNN) produces good results when solving image 

classification tasks. For plant disease diagnosis, many deep learning architectures 

have been applied. This paper introduces a transfer learning based model for detecting 

tomato leaf diseases. This study proposes a model of DenseNet201 as a transfer 

learning-based model and CNN classifier. A comparison study between four deep 

learning models (VGG16, Inception V3, ResNet152V2 and DenseNet201) done in order 

to determine the best accuracy in using transfer learning in plant disease detection. 

The used images dataset contains 22930 photos of tomato leaves in 10 different classes, 

9 disorders and one healthy class. In our experimental, the results shows that the 

proposed model achieves the highest training accuracy of 99.84% and validation 

accuracy of 99.30%. 

1. INTRODUCTION  

Agriculture is a major component of the Egyptian economy, contributing up to 11.3 

percent of Gross Domestic Product (GDP) and 28 percent of all jobs. The economy relies on 

agricultural product quality, which is affected by weather and other environmental factors. 

Since a wide range of agricultural products are produced and exported to many countries,  

it is vital to generate high-quality products with an acceptable yield. Over 80% of the human 

diet is comprised of plants production.  Plants are afflicted by a variety of plant diseases, 

including bacteria, fungus, and viruses. According to Food and Agriculture Organization 

(FAO), plant pests and diseases are responsible for losses of 20 to 40% of global food 

production (Plant Health and Food Security, 2017). For Egypt, assisting in the resolution of 

this issue is a huge challenge helping to achieve food security. 
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In the case of farming, disease mitigation has recently become a significant factor. Plant 

disease identification is essential in the field of agriculture since plant diseases are unavoidable. 

The most diseases’ symptoms are appeared on plant leaves. So, checking the status of  

a diseased plant's leaves is the simplest technique to figure out if it's infected. Plant disease 

recognition is a challenging task for agriculture specialists to tackle since it necessitates the 

use of scientific procedures and a long period of observation (Mohamed, Abdel-Gaber, Nasr 

& Hazman, 2020). 

The shortage of agricultural extension workers involved in providing agricultural advice 

and guidance to farmers has become a major problem in Egypt. So that, farmers become 

dependent on themselves or the Internet to solve any problem they face in agricultural 

operations. 

As the widespread use of smart phones among farmers, as well as the widespread use  

of graphics processing units (GPU) in computers and servers, and the rapid advancement of 

artificial intelligence, computer vision, and deep learning techniques, it becomes a necessary 

to develop an automated system that can perform plant disease recognition operations and 

provide an effective solution. 

Plant diseases can be detected using CNNs (Venkatesh et al., 2020). CNN is one of the 

most powerful pattern identification techniques for massive data sets. CNN has a really 

encouraging performance in terms of detecting these disorders. Various CNN classification 

architectures, VGG16, Inception V3 and DenseNet201 were previously used in diseases 

detection (Venkatesh et al., 2020; Peyal et al., 2021). 

In order to develop an automatic plant leaf disease detection, a comparison study is 

applied to find the high accuracy CNN deep learning models. Then the one with highest 

results is used as the base transfer learning model for our proposed model. The base transfer 

learning model works as feature extraction followed by a CNN classifier. The contributions 

of this research are:  

a) comparison among some transfer learning based models, 

b) proposed model based on DenseNet transfer learning as features extractor and a CNN 

classifier. 

In the presented study, Tomato leaves images a subset of the plantvillage images dataset 

are used. It includes 22930 photos for 10 different classes downloaded from kaggle website 

(Kaggle, 2018). These classes are: tomato Bacterial spot, tomato early blight, tomato late 

blight, tomato leaf mold, tomato septoria leaf spot, tomato spider mites two spotted spider 

mite, tomato target spot, tomato yellow leaf curl virus, tomato mosaic virus and tomato 

healthy. First, the selected tomato images dataset is resized and augmented to be ready for 

training the classification model. In order to improve the classification results, we do some 

fine-tuning to classification models and rerun the classification models. Then, we test 

different models against subset of images. The DenseNet model gives the highest accuracy 

used as features extractor to our proposed CNN model. Finally, we compared the results and 

analyze them. 

The paper is arranged as follows: Section 2 describe previous related works. Methodology 

has been explained in Section 3. Section 4 highlights the proposed model. Section 5 holds 

experimental result and analysis. Concluding remarks is in Section 6. 
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2. LITERATURE REVIEW  

Over the years, there has been debate on how to detect plant diseases. Many researchers 

have used machine learning approaches to construct a variety of acceptable designs for 

detecting plant diseases. 

The  authors  in (Rangarajan, Purushothaman & Ramesh, 2018) utilised AlexNet and 

VGG16 to classify six different tomato diseases as well as a healthy class. The performance 

was assessed by changing the number of images, batch sizes, and weight and bias learning 

rates. They concluded that AlexNet outperforms VGG16 in terms of accuracy and execution 

time. It should be noted that, given that this work is also aimed at the classification of 

diseases found in tomato plants. Their proposed methodology was developed based on the 

results reported by this comparison, allowing support in the delimitation of the work and 

selection of architectures to implement. While being able to discard the implementation of 

VGG16 due to the disadvantages it presents in comparison to AlexNet, particularly in the 

computable domain. 

The  authors  in (Hong, Lin & Huang, 2020) used transfer learning to reduce the size of 

the training data, the time and the computational costs when building deep learning. They 

classify 9 types of disease leaves including healthy tomato leaves. Five deep network 

structures of Resnet50, Xception, MobileNet, ShuffleNet and Densenet121_Xception were 

applied to perform the feature extraction. Those network structures with different learning 

rates were compared in experiment. Adjust the appropriate training parameters and test those 

networks. Compared the five convolutional neural network, the parameters and the average 

accuracy are different. The best recognition accuracy of Densenet_Xception is 97.10%, but 

the parameters of Densenet_Xception are at most. The recognition accuracy of ShuffleNet 

is 83.68%, and the paramenters are small. 

The  authors  in (Kabir, Ohi & Mridha, 2020) investigated an optimal plant disease identifi-

cation model combining the diagnosis of multiple plants.  They used data that collected from 

various online sources and it included leaf images of six plants: tomato, potato, rice, corn, 

grape, and apple. They implemented numerous popular convolutional neural network (CNN) 

architectures. They found that the Xception as well as DenseNet architectures perform better 

in multi-label plant disease classification tasks. 

The  authors  in (Agarwal et al., 2020) applied a CNN based approach for the disease 

detection and classification of Tomato. The experimental results shows the efficacy of the 

proposed model over pre-trained model i.e. VGG16, InceptionV3 and MobileNet. The classifi-

cation accuracy varies from 76% to 100% with respect to classes and average accuracy of 

the proposed model is 91.2% for the 9 disease and 1 healthy class. 

The  authors  in (Afifi, Alhumam & Abdelwahab, 2021) developed and evaluated several 

methods for identifying plant diseases with little data. They used three CNN architectures 

(ResNet18, ResNet34, and ResNet50) to build two baseline models, a Triplet network and  

a deep adversarial Metric Learning (DAML) approach. These approaches were trained from 

a large source domain dataset and then tuned to identify new diseases from few images, 

ranging from 5 to 50 images per disease. Their proposed approaches were evaluated in the 

case of identifying the disease and plant species together or only if the disease was identified, 

regardless of the affected plant. The results show that the baseline model achieved an 

accuracy of 99% when the shift from source domain to target domain was small and 81% 

when that shift was large and outperformed all other competitive approaches. 
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The  authors  in (Ji, Zhang & Wu, 2020) proposed a CNN model to identify grape diseases 

from images into 4 classes. The proposed model is a united CNNs architecture based on 

Google InceptionV3 and ResNet50 called UnitedModel. UnitedModel takes advantage of 

the combination of InceptionV3’s width and ResNet50’s depth and learn from the output 

features layers from both models. The proposed UnitedModel achieves 99.17% accuracy. 

In this paper, we compare four different deep learning models based on transfer learning. 

As our pre-trained model in Transfer Learning, we mostly employed the DenseNet201 

network, a common CNN architecture. Several Transfer Learning architectures were also 

examined with a few additional well-known pre-trained models (VGG16, Inception V3 and 

ResNet152V2) and compared to DenseNet201. Additionally, Fine-Tuning has been 

performed to improve the detection accuracy. The dataset in our experiment includes 9 

different diseases as well as the images from healthy plants. Our method for detecting plant 

diseases is presented in the below section. 

3. METHODOLOGY 

In this paper, several types of supervised deep learning techniques are utilized to detect 

tomato leaves diseases. We aim to explore their performance in detecting the 10 considered 

tomato diseases and concluding the best of them. Then we will use the best model as the 

base model for our proposed model. 

Several steps are necessary for the implementation of deep learning models. The data set 

is first collected, then divided into two portions, usually 80 percent training and 20 percent 

validation. Deep learning models are then trained from scratch or using the transfer learning 

technique, and training/validation plots are created to determine the models' significance. 

The images are next classified using performance metrics (type of plant disease), and finally, 

visualization techniques/mappings are utilized to classify the images (Saleem, Potgieter  

& Arif, 2019). 

It has been demonstrated that CNNs do not require pre-processing, feature extraction,  

or feature classification in order to perform image recognition. The trained model, on the 

other hand, can swiftly classify the image. The training of a large-scale neural network takes 

a long time, and it requires a massive number of data sets. Also manually labelling data 

according to specified selection criteria is laborious and expensive (Chen et al., 2020). 

When developing deep learning models, transfer learning is a knowledge sharing strategy 

that decreases the size of the training data, the time, and the computing cost. Transfer learning 

allows a pre-trained model's learning to be transferred to a new model. Transfer learning is 

a machine learning approach in which CNNs trained for a task is reused as the starting point 

for a model on another task (Peyal et al., 2021; Chen et al., 2020). 

In order to compare between different models, we follow the steps shown in Fig. 1. First, 

we select the tomato images dataset, which is a subset form plantvillage images dataset. 

Then the required preprocessing of images like resizing is applied. After augmenting the 

images, we build the training model using the selected classification models. To improve 

results of the used models, we do some fine-tuning to the classification models and retrain 

them to get better results. Then we test the selected models against subset of images. Finally, 

we analyse the findings and the results. 
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Fig. 1. Steps of Detection and classification process for leaf diseases 

3.1. Tomato leaves images dataset 

Tomato Dataset is a subset of the larger plantvillage dataset (Kaggle, 2018). It contains 

22930 images, divided into three sets: 75% for training, 20% for validation and 5% for 

testing. A tomato leaf appears in every image in the data set, and the leaf takes up the majority 

of the image's space and provides an almost constant background. The data set divided into 

10 classes, 9 classes of tomato diseases beside the tomato healthy class. The 10 classes were 

as follow: tomato Bacterial spot, tomato early blight, tomato late blight, tomato leaf mold, 

tomato septoria leaf spot, tomato spider mites two spotted spider mite, tomato target spot, 

tomato yellow leaf curl virus, tomato mosaic virus and tomato healthy. They are shown in 

Fig. 2. Table 1 shows the number of images for each disease. 

 

Fig. 2. Examples of tomato 10 classes – (1) Bacterial spot, (2) Early blight, (3) Late blight, (4) Leaf mold, 

(5) Septoria leaf spot, (6) Spider mites two spotted, (7) Target spot, (8) Yellow leaf curl virus,  

(9) Mosaic virus and (10) Tomato healthy 
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  Tab. 1. Images count for each class of Tomato dataset 

Tomato Class 
Training  

Images 

Validating  

Images 

Testing  

Images 

Bacterial spot 1,617 425 85 

Early blight 1,824 480 96 

Late blight 1,758 463 93 

Leaf mold 1,788 470 94 

Septoria leaf spot 1,658 436 87 

Spider mites Two-spotted 1,654 435 87 

Target spot 1,736 457 91 

Yellow leaf curl virus 1,863 490 98 

Mosaic virus 1,700 448 90 

healthy 1,830 481 96 

 

3.2. Image preprocessing 

Image preprocessing enhances the quality of the image data needed for image classification. 

Geometric transformations of images, such as image rotation, scaling, and translation, are 

used in preprocessing approaches. In this step, we decreased the resolution of all of the 

images to 224*224 pixels during the preprocessing stages, the original images are 256*256 

pixels. It must ensure that all images are of the same size and resolution. 

3.3. Augmentation Process 

CNN requires a large amount of training data to achieve improved results (Shorten & 

Khoshgoftaar, 2019). In order to improve the model's performance, image augmentation is 

frequently required to create the best deep CNN model with insufficient training data. Image 

augmentation increases the amount of images in the data set and reduces overfitting by 

adding a few distorted photos to the training data. When the network learns the data rather 

than the overall pattern of the dataset, this is known as overfitting. Image augmentation 

artificially creates training images using a range of processing methods or a combination of 

processing methods such as image flipping, rotation, blur, relighting, and random cropping 

(Chen et al., 2020). In our study we do the following for images augmentation: scaling the 

images, shearing, zooming and horizontal flipping.  

3.4. Fine-tuning 

Fine-tuning is a technique for improving a function's efficiency. It makes little adjust-

ments to improve the outcome. The adjustment process is so important that even minor 

changes have a significant impact on the training process in terms of computation time, 

convergence speed, and the number of processing units used (Too, Yujian, Njuki & Yingchun, 

2019). This fine-tuning process was repeated several times to improve the accuracy of our 

model. The parameters used for training and fine-tuning that give best results are as shown 

in Table 2. 
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 Tab. 2. Fine-Tuning parameters and values used through training models 

Parameter Value 

Batch size 32 

Steps per epoch 545 

Epoch 50 

Validation steps 1 

Optimizer Adam 

Activation function Softmax 

3.5. Training the models 

In this step, the selected CNN models trained on the data set of tomato diseases identification. 

During the training process, the fixed low-level network parameters are unchanged, the high-

level network parameters are fine-tuned. The tomato disease image is input into the network 

to train the high-level parameters of the network, and the trained model is used to classify 

the 10 classes of tomato leaves. The selected CNN are VGG16, Inception V3, Resnet152V2 

and DenseNet201. 

3.5.1. VGG16 

The VGG architecture was introduced in 2014 by Simonyan and Zisserman of Oxford 

University's Visual Geometry Group and Google DeepMind. It's popular because it's 

straightforward, with only 16 convolutional layers stacked on top of one another. It features 

two fully connected layers with 4096 nodes each and a softmax classifier, as well as max-

pooling layers that help reduce volume size (Simonyan & Zisserman, 2015). VGG16 is made 

up of thirteen convolution layers, including five combined max-pooling layers and three 

completely connected layers, according to their research. The rectified linear unit (ReLU) 

function comes after the second fully connected dense layer. The network's last layer is a 

softmax regression classifier, which uses probability to classify the input images. For 

VGG16 architecture, the image input size is appointed to 224 x 224 x 3. Fig. 3 shows the 

architecture of VGG16 model. In our study, for transfer learning of VGG16, the last layer 

with 1000 output classes was deleted and the model output was flattened then, a dense layer 

with 10 outputs -tomato classes- was added to the model. 
 

 
Fig. 3.  VGG16 architecture 
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3.5.2. Inception V3 

The deep convolutional architecture Inception V3 is commonly utilized for classification 

problems. Szegedy and his colleagues presented their model concept based on the 

GoogleNet design (Szegedy et al., 2016). By changing the inception module, Inception V3 

was created. Each block of the Inception V3 network comprises several symmetric and 

asymmetric building blocks, as well as various branches of convolutions, average pooling, 

max pooling, concatenated, dropouts, and fully-connected layers. Because there are 42 

layers and 29.3 million parameters in this network, the computational cost is just 2.5 times 

that of GoogleNet. Finally, the scientists discovered that by reducing the number of 

parameters and further regularising the network with batch normalised auxiliary classifiers 

label smoothing, they can train a high-quality network on tiny training sets (Szegedy et al., 

2016).  Fig. 4 shows the architecture of Inception V3 model. In our study, for transfer 

learning of Inception V3, the top layer was deleted and the model output was flattened then, 

a dense layer with 10 outputs -tomato classes- was added on the top of the model. 

 

 
Fig. 4. Inception V3 architecture 

3.5.3. Resnet152V2 

A CNN architecture with hundreds or thousands of convolutional layers is known as  

a Residual Network (ResNet) (Gulli & Pal, 2017). Additional layers' efficacy was reduced 

by previous CNN configurations. ResNet has a large number of layers and is extremely fast. 

The main difference between ResNetV2 and the original (V1) is that V2 applies batch 

normalization to each weight layer before applying it. ResNet has great performance in 

image recognition and localization tasks, demonstrating the importance of numerous visual 

recognition tasks (Kumar, Arora, Harsh & Sisodia, 2020). Fig. 5 shows the architecture of 

Resnet152V2 model which include 152 layers in depth and build mainly from 3-layer blocks. 

In our study, for transfer learning of Resnet152V2, the last output layer was deleted and the 

model output was flattened then, a dense layer with 10 outputs – tomato classes – was added 

to the top of the model. 



64 

 
Fig. 5. ResNet152V2 architecture 

3.5.4. DenseNet201 

 Authors in (Huang, Liu & Weinberger, 2016) proposed a highly linked convolutional 

network design in their study. All layers in the network are connected directly to each other 

in a feed-forward manner to enable maximum information flow between them. All previous 

layers' feature-maps are utilized as inputs into each layer, and its own feature-maps are used 

as inputs into all subsequent layers. DenseNets solves the vanishing-gradient problem while 

drastically reducing the number of parameters. Fig. 7 shows the architecture of DenseNet201 

model which explained in more detailed in the following section. 

4. PROPOSED MODEL 

In  this  section,  the  proposed  model  based  on a pre-trained  model and CNN classifier 

is designed  for  the  prediction  and  classification of tomato diseases from infected leaves 

images. The pre-trained architecture utilized in the proposed model is DenseNet201 as it 

gives the highest accuracy among other models. DenseNet201 is used to extract features, 

which are then fed into a CNN for classification. The test set and validation set are then used 

to evaluate the proposed model. As shown in Fig. 6, the suggested model contains five 

phases. The first phase is data pre-processing. The second phase is data augmentation. The 

feature extraction phase, which uses the pre-trained architecture DenseNet201 with transfer 

learning, is the third phase. The classification of tomato leaf diseases using the retrieved 

features and the CNN classifier is the fourth phase. The final phase is performance 

measurement and analysis. The first two phases of images pre-processing and data aug-

mentation are done the same way as explained in section 3. 
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Fig. 6. The proposed model 

In the third phase, the DenseNet201 model was proposed, which uses transfer learning  

to extract features automatically and leverage their weights learnt on the ImageNet dataset 

to reduce calculation workload. DenseNet201's architecture allows for the creation of simple 

and straightforward models. It's also feasible to reuse features across layers, making the 

architecture's parameters more efficient and allowing for more variation in subsequent layers 

and improved performance. The architecture connects each layer to all other layers in a feed-

forward approach. Additionally, the DenseNet201 model uses a pooling layer and bottleneck 

structure. As a result, this architecture minimizes model complexity and property parame-

ters, making it more efficient. Each layer of DenseNet201 network implements a nonlinear 

transformation, and the nonlinear transformation includes the convolution (Conv), pooling, 

rectified linear units (ReLU) and batch normalization (BN) (Huang, Liu & Weinberger, 

2016). Unlike other networks, the output of each layer is used as the input for each subse-

quent layer in the Densenet201 network (i.e., X0, X1, X2, X3 and X4), so there are L(L+1)/2 

connections in an L-layer DenseNet201 network (Huang, Liu & Weinberger, 2016). In the 

current study, the DenseNet201 architecture contains 707 layers and about 20 million 

parameters. The numbers of parameters of different models used in this study are shown in 

Table 3. The images dimensions in the input layer are set to 224 x 224 x 3. Fig.7 shows the 

architecture of DenseNet201. 

 

 
Fig. 7. DenseNet201 architecture 



66 

In the fourth phase, the classification output layers of the DenseNet201 network are 

removed in the fourth phase, and six layers for the classification task are proposed. Fig. 6 

depicts the architecture of the suggested model based on DenseNet201. The first layer is a 

dense layer with 1024 neuron and a Rectified Linear Unit (ReLu) as an activation function. 

The second layer is also a dense layer with 512 neurons and activation ReLu. To avoid 

overfitting, the third layer is a dropout layer with a dropout rate of 0.2, which indicates that 

20% of the neurons will output 0.  The fourth layer is a global average pooling layer for size 

reduction of features maps. In the fifth layer is a dense layer with 128 neurons and activation 

ReLu. The sixth layer is a dropout layer with dropout rate 0.2. The last layer is a dense layer 

with 10 neurons and Softmax activation function. The last layer output the 10 classes of 

tomato diseases. In the following section, we go through the results of our proposed model 

in detail and compare it to other transfer learning-based models. 

5. EXPERIMENTAL AND DISCUSSIONS 

Our experiment is implemented using Jupyter Notebook (Jupyter.Org, 2021) which is an 

open-source web application. It has several algorithms’ coding for both feature extraction 

and classification. Also, it includes code for data cleaning and transformation, numerical 

simulation, statistical modelling, data visualization, machine learning, and much more. The  

machine  over  which  this  research  has  been accomplished  is  having  an  NVIDIA  GeForce 

RTX 2060 graphic card with dedicated 6.0 GB of RAM and 1920 CUDA Cores. Processor: 

Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz. Memory: 16.0 GB. 

In our experiment first: tomato leaves images from plantvillage dataset were resized into 

224×224. Then the augmentation was performed. We used the weights of imagenet for 

saving time of training and getting higher accuracies (Huang, Liu & Weinberger, 2016).  

We used Adam optimizer, softmax activation function and batch size equals 32. Learning 

rate and other parameters was set to default values. 

 Then, we used four CNN models, VGG16, Inception V3, ResNet152V2 and DenseNet201, 

with transfer learning technique to classify tomato diseases and compare them with our 

proposed model. Fig. 8 shows the accuracy and loss of different models. 

 

 
Fig. 8. Accuracy and loss of different models 
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Tab. 3. Results of different models 

Model 
Parameters 

(M) 

Training 

Accuracy 

Validation 

Accuracy 
Loss 

Val. 

Loss 

Time/Step 

(Seconds) 

VGG16 51 0.9869 0.9447 0.0466 0.4049 360.661 

Inception V3 22.3 0.9560 0.9258 0.9437 2.1475 146.269 

Resnet152V2 59.34 0.9909 0.9603 0.4428 4.5758 225.413 

DenseNet201 13.90 0.9910 0.9698 0.3089 1.9804 164.300 

Proposed Model 20.88 0.9932 0.9797 0.0230 0.0898 173.327 

 

The results of these experiments are shown in Table 3. It shows that our proposed model 

has high accuracy. It achieved the highest training accuracy of 99.32 % and validation 

accuracy of 97.97 %. 

The obtained results of the five models are analyzed to enhance the results. However, the 

architectures evaluation is made depending upon two parameters, validation accuracy and 

confusion matrix. The term validation accuracy defines how accurately the trained model is 

tracking the trained data. On the other hand, the sum of each column within a confusion 

matrix corresponds to the false positive rate (FP), and the false-negative rate (FN) for each 

class corresponds to each row’s amount. The diagonal numbers represent the exact positive 

rate (TP), and the exact negative rate (TN) is the sum of all other diagonal numbers. 

Nevertheless, the formulas applied to measure accuracy, precision, recall, and F1 score of 

an architecture are as follows: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (3) 

 𝐹1_𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

The classification accuracy is a standard performance measure used to evaluate the 

efficacy of the classifier. Where TP (true positive)-correctly classified positive samples, TN 

(true negative)-correctly classified negative samples, FP (false positive)-misclassified 

negative samples and FN (false negative)-misclassified positive samples. 

  Tab. 4. Accuracy, Precision, Recall and F1 score for different models 

Model Accuracy Precision Recall F1 Score 

VGG16 0.9447 0.94 0.93 0.93 

Inception V3 0.9258 0.93 0.92 0.92 

Resnet152V2 0.9603 0.95 0.95 0.95 

DenseNet201 0.9698 0.96 0.96 0.96 

Proposed Model 0.9797 0.97 0.97 0.97 
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To  evaluate the  efficiency  of  different models,  performance  parameters such  as  Classifi-

cation  Accuracy,  Precision,  Recall,  F1-Score are calculated as shown in Table 4. Fig. 9 

shows the accuracy and loss of the proposed model. Fig. 10 shows the confusion matrix for 

the accuracy of the performance of the test data for the classified 10 plant leaf diseases by 

using proposed model. The results of the test data set is nearly the same as the results of 

validation data set. 

Since the DenseNet201 model achieved the highest accuracy in transfer learning 

classification among other models and other properties of DenseNet mentioned in section 4, 

we used it as the base transfer learning model for features extraction to build our proposed 

model for tomato disease identification. DenseNet201 model also has small number of 

training parameters in comparison with the Resnet152V2 model as shown in Table 3 which 

is giving also better accuracy and that affecting the size of the model and the training time. 

  

 
Fig. 9. Accuracy and loss of Proposed Model 

 

Fig. 10. Confusion matrix for proposed  model 
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In our case, DenseNet201 contains 707 layers. One of the benefits of DenseNet201 model 

architecture is that we can train all layers or some layers or only the last level of layers.  

As we did in the first phase and get the results shown in Table 3. We did some fine-tuning 

by retraining about half layers of the DenseNet201 model layers – 300 layers – in the phase 

of features extraction and get better training accuracy of 99.84%, validation accuracy of 

99.30% and testing accuracy of 99%, Training time per step: 190.349 second, validation 

loss: 0.0866. Table 5 shows the results of proposed model after retraining some layers. 

 
 Tab. 5. Proposed model performance values after training some layers  

       of base model 

Performance Metrics Value 

Training Accuracy 99.84% 

Validation Accuracy 99.30% 

Validation Loss 0.0866 

Training time per step 190.349 seconds 

Testing Accuracy 99.0% 

Precision 0.99 

Recall 0.99 

F1 Score 0.99 

6. CONCLUSION 

In this paper, a comparison study has been conducted to find the best deep CNN model 

for using in plant leaves diseases detection. Four deep CNN models, DenseNet201, VGG16, 

Inception V3 and ResNet152V2 were trained and tested using the tomato leaf disease data 

set. Applying transfer learning technique to save time and effort in training these models. 

The data set was split into 75% for training, 20% for validation and 5% for testing, and were 

labelled with 10 different classes of diseased including healthy tomato leaves images. The 

results for each case are presented in Table 3. We also proposed a classification model based 

on DenseNet201 and transfer learning. In our proposed model the DenseNet201 model 

works as features extraction phase that followed by a CNN classifier. The results shows that 

the proposed model gives the highest accuracy. We apply additional fine-tuning by training 

some additional layers of the model during transfer learning not only the last level of layers. 

Finally, the results show that: the parameters and the average accuracy of the five convolu-

tional neural networks are different. Our proposed model gives the highest accuracy. 

In future work, we plan to expand our research with other pre-trained CNNs to solve 

multi-classification tasks. Apply our proposed model to more plants and diseases. Build  

a plant disease diagnosis application that help the farmers in Egypt. 
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