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Abstract 

This paper presents the results of a preliminary study on simplified diagnosis of osteo-

arthritis of the knee joint based on generated vibroacoustic processes. The analysis was 

based on acoustic signals recorded in a group of 50 people, half of whom were healthy, 

and the other half – people with previously confirmed degenerative changes. Selected 

discriminants of the signals were determined and statistical analysis was performed to 

allow selection of optimal discriminants used at a later stage as input to the classifier. 

The best results of classification using artificial neural networks (ANN) of RBF (Radial 

Basis Function) and MLP (Multilevel Perceptron) types are presented. For the problem 

involving the classification of cases into one of two groups HC (Healthy Control) and 

OA (Osteoarthritis) an accuracy of 0.9 was obtained, with a sensitivity of 0.885 and  

a specificity of 0.917. It is shown that vibroacoustic diagnostics has great potential in 

the non-invasive assessment of damage to joint structures of the knee. 

1. INTRODUCTION 

The knee joint is the largest and one of the most complex joints in the human body. 

During everyday activities, it is exposed to significant loads, often several times the weight 

of the human body, which makes it extremely vulnerable to injury and the possibility  

of osteoarthritis (Arendt, Miller & Block, 2014; Będziński, 1997; Krakowski, Karpiński, 

Maciejewski & Jonak, 2021). It is one of the most susceptible to the loss of articular cartilage 

and, as a result, to the development of degenerative changes in the joints of the human body 

(Cross et al., 2014; Krakowski, Gerkowicz, et al., 2019; Kyu et al., 2018). Osteoarthritis is 

a clinical syndrome characterized by progressive degeneration of articular cartilage that may 

involve the entire joint, including synovial membranes and fragments of subchondral bone 

(Befrui et al., 2018; Krakowski, Karpiński, Jonak & Maciejewski, 2021; Krishnan et al., 

2000). It is now one of the most common causes of pain and disability in middle-aged and 

elderly people and a major cause of impairment of activities of daily living (Hunter & Bierma-
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Zeinstra, 2019; McDonough & Jette, 2010). The incidence of osteoarthritis is influenced by  

a number of factors such as work, sports, musculoskeletal injuries, obesity and gender (Felson, 

2004; Johnson & Hunter, 2014; Krakowski, Karpiński, Maciejewski, Jonak & Jurkiewicz, 

2020; Krakowski, Karpiński, Jojczuk, Nogalska & Jonak, 2021; Reyes et al., 2015).  

Non-invasive diagnosis of knee osteoarthritis is most often carried out based on physical 

examination and typical imaging techniques such as radiography (X-ray) (Hayashi, Roemer 

& Guermazi, 2019; Richette & Latourte, 2019), computed tomography (CT) (Ahn & El-

Khoury, 2006), magnetic resonance imaging (MRI) (Krakowski, Nogalski, Jurkiewicz, 

Karpiński, Maciejewski & Jonak, 2019) and also ultrasound (US) (Mathiessen et al., 2016; 

Möller et al., 2008). Invasive methods include arthroscopy of the joint during which 

intraoperative assessment is performed, but this procedure carries a risk of complications as 

with any surgery. The main limitations of diagnostic imaging for the assessment of osteo-

arthritis undoubtedly include the low sensitivity of detecting lesions at an early stage of their 

(Krakowski, Nogalski, et al., 2019) and the limited accessibility especially for patients living 

in smaller towns. These methods are also associated with high costs related to the use of 

specialized equipment and the need to employ highly qualified staff. Considering the above 

facts, it seems extremely important to develop an inexpensive, non-invasive method of 

assessing damage to joint structures, allowing diagnostics to be performed in the orthopedic 

office during routine examinations.  

An alternative to the currently used methods may be vibroacoustic diagnostics. This method 

is widely used in non-invasive diagnostics of machines where it gives very good results  

(Figlus, Kozioł & Kuczyński, 2019; Jedliński et al., 2015; Jedliński & Jonak, 2015). For the 

diagnosis of the knee joint, this method was first proposed by Blodgett in 1902 (Blodgett, 

1902). Depending on the efficiency of lubrication, the joint systems generate vibrations and 

noises. The same is true for the knee joint and other joints in the human body. Changes in 

the mechanical properties and surface structure of the articular cartilage, such as the 

appearance of bumps, cracks or cartilage defects in the successive stages of degenerative 

changes, influence the vibroacoustic signals recorded during movement of the knee joint 

(Karpiński, Machrowska & Maciejewski, 2019; Prior et al., 2010; van den Borne et al., 

2007). Fig. 1 shows images taken during arthroscopy of the knee showing healthy (a) and 

degenerated (b) articular cartilage. Analysis of the differences in the characteristic parameters 

of the recorded signals may allow for a preliminary assessment of the condition of the joint 

and allow for accelerated diagnosis and selection of an appropriate therapy. In addition, this 

method provides information about the mutual cooperation of intra- and extra-articular 

structures of the moving joint, in most other cases we obtain information about the joint in 

a static position (Kernohan et al., 1990; Rangayyan & Wu, 2008; Walters, 1929; Wu, 2015). 

The application of machine learning methods can be extremely useful in the analysis of 

issues related to non-invasive diagnosis of articular cartilage damage based on vibroacoustic 

signals. 



73 

 

(a) 

 

 

(b) 

Fig. 1. Arthroscopic images of healthy (a) and degenerated (b) articular cartilage 

The purpose of this study is to evaluate the usefulness of selected discriminants deter-

mined for acoustic signals generated in the knee joint, recorded in the control group (healthy 

subjects) and the study group (confirmation of degenerative changes), in the diagnosis of 

cartilage damage of the knee joint using machine learning. 
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2. MATERIALS AND METHODS 

2.1. Participants and study protocol 

The study was conducted on a group of 50 volunteers, half of whom were healthy people 

(HC group) and the other half, people previously qualified by an orthopedic surgeon, for 

surgery including arthroscopy or total knee replacement due to the presence of degenerative 

changes in the knee joint. All surgeries were performed by a surgeon specializing in TKR or 

arthroscopy according to a standard protocol depending on the type of surgery. During 

surgery, the extent of cartilage damage and the location of cartilage damage were accurately 

assessed. The International Cartilage Repair Society (ICRS) scale was used to assess 

cartilage (Brittberg & Winalski, 2003; Cameron, Briggs & Steadman, 2003).  The control group, 

on the other hand, consisted of people without any complaints occurring in the knee joints. 

Signal recording in this group was carried out in laboratory conditions in the premises of the 

Lublin University of Technology. In the case of the study group, the recording of signals 

took place in the conditions of the orthopaedic department on the day of admission to 

hospital preceding the surgery. The examination in both groups was preceded by physical 

tests and a questionnaire examination, allowing to determine the condition of the joint.  

The protocol was identical in both groups and was conducted by a specialist in orthopedics 

and traumatology of the musculoskeletal system.  In the control group, the signal recorded 

for one randomly selected limb was analyzed, while in the case of subjects in the study 

group, the signal acquired from the limb qualified for surgery was analyzed. The whole 

procedure was conducted in accordance with the principles of good clinical practice and was 

approved by the bioethics committee of the Medical University of Lublin (consent no. KE-

0254/261/2019). Details of the groups are summarized in Table 1. 

Tab. 1. Characteristics of study participants 

Study group N 
Males/ 

Females 

Age 

(years ± SD) 

Heigh 

(m ± SD) 

Weight 

(kg ± SD) 
BMI 

Tegner-

Lyshom 

score 

Healthy 

control (HC) 
25 9/16 25.04 ± 5.76 1.72 ± 0.09 68.00 ± 15.33 22.69 ± 2.98 100 ± 0.0 

Osteoarthritis 

(OA) 
25 9/16 61.40 ± 9.11 1.68 ± 0.08 90.84 ± 14.36 32.38 ± 4.82 34.00 ± 9.54 

 

To record acoustic signals the author's measurement system was used, consisting of  

a microcontroller with peripheral devices for signal acquisition in the form of a CM01b 

piezoelectric microphone, a rotary encoder installed on a typical knee orthosis and a computer 

with software for signal recording. The signals were recorded with the microphone, while 

the encoder was used to measure the flexion angle and limb position. The sampling frequency 

was 1400 Hz and the resolution was 10 bits. Details of the measurement system are described 

in previous work (Karpiński, Machrowska & Maciejewski, 2019; Karpiński et al., 2022b). 

Signals were recorded for a closed kinetic chain (CKC) where standing up from a sitting 

position to full upright was realized. A movement in the range of 90° – 0° – 90° was 

considered as one cycle. The cycle duration was approximately 2s and depended on the 

individual predisposition of the patient. The measurement was conducted for ten complete 

cycles. The signals obtained in this way contained some artifacts including mainly the 
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registration of time series before and after cycles of movements, random noise, and electrical 

network disturbances. In order to remove these disturbances, the signals were subjected to  

a preprocessing procedure involving the removal of insignificant fragments of the time series 

before and after the analyzed movements. For this purpose, a procedure was used to semi-

automatically remove irrelevant signal samples from the encoder data. A trend line was also 

removed from the signals using the EEMD procedure, which is described in more detail in 

the papers (Huang et al., 1998; Jonak et al., 2019; Karpiński et al., 2022b; Machrowska  

& Jonak, 2018; Wu, 2015). For the signals prepared in this way, selected discriminants were 

determined. 

2.2. Feature extraction  

In diagnostic practice it is very important to use simple discriminants of vibration 

acoustic signals, which are easy to determine and allow assessment of the type of damage 

present (Madej, Czech & Konieczny, 2003). An observable quantity associated with a tech-

nical condition may be classified in the group of diagnostic symptoms, provided that the 

relationships describing this phenomenon are determined (Stanik et al., 2013). The changes 

occurring in the observed signal in a unit of time take many instantaneous values, which 

often, due to the dynamics of changes, makes it impossible to observe each change of the 

instantaneous value in the analysis (Cempel, 2005; Stanik et al., 2013). However, it is important 

to define the values of signals describing the characteristic points of greatest importance for 

the overall signal analyzed. In this study, the following signal discriminants were determined 

for the analyzed acoustic signals: 

1. Straightened average value (SA): 

𝑥̅ =
1

𝑁
∑ |𝑥𝑖|
𝑁
𝑖=1        (1) 

where:   𝑥𝑖 – the value of the discrete signal at the nth point, 𝑛 = 1,… ,𝑁, 

𝑁 – number of samples in the signal. 

 

2. Root mean square (RMS): 

𝑥𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1                                                  (2) 

3. Peak value (PV): 

𝑥 = 𝑚𝑎𝑥|𝑥𝑖|                                                          (3) 

 

4. Peak to peak value (PPV): 

𝑥𝑃𝑃𝑉 = |𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛|                                                 (4) 

 

5. Crest Factor (CF): 

𝑥𝐶𝐹 =
𝑥

𝑥𝑅𝑀𝑆
                                                              (5) 
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6. Impact Factor (IF): 

𝑥𝐼 =
𝑥

𝑥̅
                                                                (6) 

7. Shape factor (SF): 

𝑥𝑆𝐹 =
𝑥𝑅𝑀𝑆

𝑥̅
                                                            (7) 

8. Variance (VAR): 

𝑥𝑉𝐴𝑅
2 =

1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1                                                (8) 

9. Kurtosis (KUR): 

𝑥𝐾𝑈𝑅 =
1

𝑁
∑ (𝑥𝑖−𝑥̅)

4𝑁
𝑖=1

[
1

𝑁
∑ (𝑥𝑖−𝑥̅)

2𝑁
𝑖=1 ]

2                                                     (9) 

 

A detailed description of the designated discriminants was presented in the author's 

previous work (Karpiński et al., 2021a, 2021b, 2022a, 2022b) and other studies (Jedliński  

& Jonak, 2020; Stanik i in., 2013).  

2.3. Statistical Analysis  

Statistical analysis to determine whether there were statistically significant differences 

between the determined signal discriminants for signals recorded in the HC and OA groups 

was performed using Statistica 13.3. The significance level was taken as α = 0.05. 

The first step in the analysis was to test whether the values of the individual discriminants 

of the acoustic signals in the both groups have a normal distribution. For this purpose, three 

tests were performed: Kolmogorov-Smirnov test, Lilliefors test and Shapiro-Wilk test 

(Karpiński, Szabelski & Maksymiuk, 2019a; Rabiej, 2018; Szabelski, 2018). 

Analysis of equality of variance was performed using three tests: F (Fisher's), Levene's, 

and Brown and Forsyth. For results characterized by normality of distribution and equality 

of variance – Student's t-test was used to analyze the equality of the resulting means of 

individual signal discriminants, at the assumed level of significance. For the results 

characterized by normality of distribution but lack of equality of variance – to analyze the 

equality of mean values of signal discriminants we used Student's t-test with separate 

variance estimation (Cochran-Cox test) (Karpiński, Szabelski & Maksymiuk, 2019b; Rabiej, 

2018). For discriminants that did not have a normal distribution, the Mann-Whitney U test 

with a continuity correction was used. This correction is used to ensure that the test statistic 

can accommodate all real number values as assumed by the normal distribution. Discriminants 

showing statistically significant differences were determined from the analyses and were 

used as inputs to the neural classifiers. 

2.4. Machine learning  

Machine learning (ML) is a subset of artificial intelligence (AI). It is an area devoted  

to algorithms whose performance improves automatically based on collected experience, or 

exposure to data. A subset of machine learning is deep learning (DL), within which are 

artificial neural networks (ANNs) (Machrowska, Karpiński, et al., 2020; Machrowska, 
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Szabelski, et al., 2020). A neural network is a collection of appropriately connected neurons 

arranged in layers. Artificial neural networks are one type of highly parameterized statistical 

models. They have been developed based on information about the functioning of the 

nervous system of living organisms and are capable of mapping extremely complex functions 

(Bauer, Stütz & Kley, 2021; Dudek-Dyduch, Tadeusiewicz & Horzyk, 2009; Tadeusiewicz, 

1993). Technically, an artificial neuron is an element whose properties correspond to selected 

properties of its biological counterpart. Each neuron has at least one input and one output. 

The signals at the inputs are multiplied by factors referred to as synaptic weights. Each 

neuron calculates a weighted sum of its inputs, which are then summed. The activation level 

determined in this way becomes the argument of the transition function (activation function), 

which calculates the output of the neuron. The values of weights can be changed, which 

allows the network to learn and adapt to the problem being solved. ANNs find application 

in solving problems related to data processing and analysis, prediction and classification 

especially when the analyzed issues involve poorly known phenomena and processes 

(Badurowicz, 2022; Kosicka, Krzyzak, Dorobek & Borowiec, 2022; Rogala, 2020; Szabelski, 

Karpiński & Machrowska, 2022).  

In the analyzed problem classification was carried out using the Statistica 13.3 package 

(Tulsa, OK, USA), which includes modules covering machine learning and artificial neural 

networks. A built-in algorithm was used to automatically search for multilevel perceptron 

(MLP) and radial basis function (RBF) neural networks with the best possible parameters. 

Acoustic signal discriminants that had statistically significant differences between the study 

groups in the statistical analysis were used as input data. The data were randomly divided 

70% for training, 15% for testing and 15% for validation. The outputs of the neural networks, 

on the other hand, proposed a simplified partitioning that allowed assigning the cases to one 

of the two groups OA and HC. Results for sets of the three best MLP and RBF networks are 

presented. The parameters for automatic design of MLP and RBF neural networks in Statistica 

software are shown in Figure 2. 

 

 

Fig. 2. The parameters for automatic design of MLP and RBF neural networks 
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3. RESULTS  

3.1. Statistical analysis 

Checking whether the values of individual discriminants of acoustic signals have normal 

distribution was carried out using Kolmogorov-Smirnov test, Lilliefors test and Shapiro-

Wilk test. The results of the performed analyses are summarized in Table 2. The following 

hypotheses were assumed in the analysis: 

H0 – Variables within the analyzed groups have normal distribution. 

H1 –  Variables within the analyzed groups do not have normal distribution. 

Tab. 2. Results of statistical analysis to test the normality of distribution 

Discriminant 
Study 

group 
N maks D K-S Lillief. W p 

Straightened average value (SA) OA 25 0.168 p > .20 p < .10 0.932 0.098 

Root mean square (RMS) OA 25 0.159 p > .20 p < .15 0.942 0.165 

Peak value (PV) OA 25 0.266 p < .10 p < .01 0.773 0.000 

Peak to peak value (PPV) OA 25 0.192 p > .20 p < .05 0.838 0.001 

Crest Factor (CF) OA 25 0.275 p < .05 p < .01 0.804 0.000 

Impact Factor (IF) OA 25 0.226 p < .15 p < .01 0.753 0.000 

Shape factor (SF) OA 25 0.314 p < .05 p < .01 0.569 0.000 

Variance (VAR) OA 25 0.165 p > .20 p < .15 0.934 0.105 

Kurtosis (KUR) OA 25 0.214 p < .20 p < .01 0.889 0.010 

Straightened average value (SA) HC 25 0.104 p > .20 p > .20 0.986 0.973 

Root mean square (RMS) HC 25 0.134 p > .20 p > .20 0.961 0.428 

Peak value (PV) HC 25 0.235 p < .15 p < .01 0.789 0.000 

Peak to peak value (PPV) HC 25 0.266 p < .10 p < .01 0.524 0.000 

Crest Factor (CF) HC 25 0.190 p > .20 p < .05 0.782 0.000 

Impact Factor (IF) HC 25 0.309 p < .05 p < .01 0.522 0.000 

Shape factor (SF) HC 25 0.326 p < .01 p < .01 0.454 0.000 

Variance (VAR) HC 25 0.110 p > .20 p > .20 0.964 0.500 

Kurtosis (KUR) HC 25 0.166 p > .20 p < .10 0.813 0.000 

 

On the basis of the analyses performed, it can be concluded that in the case of discrimi-

nants such as Straightened average value (SA), Root mean square (RMS) and Variance 

(VAR), there are no grounds to reject the hypothesis of normality of distribution, because 

for these variables for the W Shapiro-Wilk test obtained levels of p > α = 0.05. In the case 

of other discriminants, the results obtained give grounds to reject the hypothesis of normality 

of distribution and assume that these discriminants do not have normal distribution. The next 

step in the analyses conducted for discriminants having a normal distribution was to conduct 

an analysis of equality of variance using three tests: F (Fisher's), Levene, and Brown and 

Forsyth. Depending on the results of equality of variance analysis, the analysis of equality 

of means was conducted using Student's t-test (in case of equality of variance) and Student's 

t-test with separate variance estimation (in case of non-equality of variance). The results of 

the analyses of equality of variance and equality of means are presented in Table 3.  
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Tab. 3. Results of Student’s t-test and Student’s t-test with the separate estimation of variance 
D

is
cr

im
in

a
n

t 

M
ea

n
 O

A
 

M
ea

n
 H

C
 

t p
 

t 
se

p
. 

p
 

S
ta

n
d

a
rd

 

d
ev

ia
ti

o
n

 

S
ta

n
d

a
rd

 

d
ev

ia
ti

o
n

 

F
 q

u
o
ti

en
t 

p
 

L
ev

en
e'

s 

p
 

B
rn

-F
o

rs
 

p
 

Straightened 

average 

value (SA) 

119.96 224.50 -5.66 0.00 -5.66 0.000 65.72 64.99 1.02 0.957 0.133 0.717 0.118 0.733 

Root mean 

square 

(RMS) 

157.24 263.53 -5.04 0.00 -5.04 0.000 74.75 74.27 1.01 0.975 0.120 0.731 0.062 0.804 

Variance 

(VAR) 

 

25919.25 59888.86 -6.19 0.00 -6.19 0.000 17297.74 21301.67 1.52 0.314 0.743 0.393 0.646 0.426 

 

The results obtained show that the mean values for individual discriminants have 

statistically significant differences between HC and OA groups. In the analyzed case, all 

discriminants were characterized by equality of variance, so the results of Student's t-test 

were taken into account in the analysis of equality of means.  

For discriminants that did not have a normal distribution, the analyses used the Mann-

Whitney U test with continuity correction. The results obtained are presented in Table 4. On 

the basis of Mann-Whitney U-test it can be stated that in case of discriminants such as Peak 

value (PV) (p = 0.004), Peak to peak value (PPV) (p = 0.008), Crest Factor (CF) (p = 0.000) 

and Kurtosis (KUR) (p = 0.000) between the tested groups there are statistically significant 

differences on the assumed significance level. These differences were not found for 

discriminants such as Impact Factor (IF) (p = 0.535) and Shape factor (SF) (p = 0.561), due 

to the lack of statistically significant differences these discriminants were not included in 

further considerations.  

Tab. 4. Mann-Whitney U test results 

Discriminant 
Sum of 

ranks 

Sum of 

ranks 
U Z p 2*1str. 

Peak value (PV) 488.00 787.00 163.00 -2.89 0.004 0.003 

Peak to peak value (PPV) 501.00 774.00 176.00 -2.64 0.008 0.008 

Crest Factor (CF) 873.00 402.00 77.00 4.56 0.000 0.000 

Impact Factor (IF) 605.00 670.00 280.00 -0.62 0.535 0.538 

Shape factor (SF) 607.00 668.00 282.00 -0.58 0.561 0.564 

Kurtosis (KUR) 899.00 376.00 51.00 5.06 0.000 0.000 

3.2. Classification  

The results for the most accurate classifiers proposed by the automatic neural network 

selection algorithm of the Statistica package are presented below, three cases each for 

multilayer perceptron (MLP) and radial basis function (RBF) networks. Seven discriminants 

having statistically significant differences between the analyzed groups were used as input 

data, viz: Straightened average value (SA), Root mean square (RMS), Variance (VAR), Peak 
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value (PV), Peak to peak value (PPV), Crest Factor (CF), Kurtosis (KUR). The detailed 

results of learning, testing and validation accuracy for each network in all analyzed variants 

are shown in Table 5. 

Tab. 5. Accuracy of learning, testing and validation for selected MLP and RBF neural networks 

Network 

name 

Accuracy 

(learning) 

% 

Accuracy 

(testing) 

% 

Accuracy 

(validation) 

% 

Learning 

algorithm 

Error 

function 

Activation 

(hidden) 

Activation 

(output) 

MLP 7-22-2 88.89 100.00 85.71 BFGS 10 Entropy Tanh Softmax 

MLP 7-10-2 88.89 100.00 85.71 BFGS 14 Entropy Tanh Softmax 

MLP 7-7-2 83.33 100.00 85.71 BFGS 14 Entropy Exponential Softmax 

RBF 7-9-2 88.89 85.71 85.71 RBFT Entropy Gauss Softmax 

RBF 7-10-2 86.11 85.71 85.71 RBFT Entropy Gauss Softmax 

RBF 7-5-2 83.33 85.71 85.71 RBFT Entropy Gauss Softmax 

 

The highest learning accuracy of 88.89% was observed for MLP 7-22-2, MLP 7-10-2 

and RBF 7-9-2, while the lowest accuracy of 83.33% was observed for MLP 7-7-2 and RBF 

7-5-2, respectively. In the case of testing accuracy, all MLP networks scored 85.71% while 

RBF networks scored 85.71%. The validation accuracy was identical for all the networks 

presented and was 85.71% respectively.  

Information on the classification results for each group and all cases is shown in Table 6. 

The highest classification accuracy of 90% was obtained for MLP-type networks having 10 

and 22 neurons in the hidden layer, respectively. For the best RBF-type network, the 

obtained classification accuracy was slightly lower than that of MLP-type networks at 88%. 

The obtained results show that both networks of multilayer perceptron type and networks 

with radial basis functions perform well in the analyzed problem and give comparable results 

of classification accuracy.  

Tab. 6. Summary of classification accuracy of MLP and RBF 

Network name HC OA Total 

MLP 7-22-2 

Total 25.00 25.00 50.00 

Correct 23.00 22.00 45.00 

Correct (%) 92.00 88.00 90.00 

MLP 7-10-2 

Total 25.00 25.00 50.00 

Correct 22.00 23.00 45.00 

Correct (%) 88.00 92.00 90.00 

MLP 7-7-2 

Total 25.00 25.00 50.00 

Correct 21.00 22.00 43.00 

Correct (%) 84.00 88.00 86.00 

RBF 7-9-2 

Total 25.00 25.00 50.00 

Correct 23.00 21.00 44.00 

Correct (%) 92.00 84.00 88.00 

RBF 7-10-2 

Total 25.00 25.00 50.00 

Correct 21.00 22.00 43.00 

Correct (%) 84.00 88.00 86.00 

RBF 7-5-2 

Total 25.00 25.00 50.00 

Correct 21.00 21.00 42.00 

Correct (%) 84.00 84.00 84.00 
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There are many tools to assess the validity of classifiers among others are ROC curves, 

and metrics such as F1-score and Matthews correlation coefficient (MCC). ROC curves are 

a visualization of the relationship between the effectiveness of positive classifiers 

(sensitivity) and the ineffectiveness of negative case classification (1-specificity) at each 

probability level.   A detailed summary of the performance of each classifier is shown in 

Table 7. The highest AUC value of 0.941 was obtained for the MLP 7-10-2 network with a 

sensitivity of 0.917 and a specificity of 0.885. For the RBF-type network, the highest value 

of 0.931 was obtained for the network with 9 neurons in the hidden layer with a sensitivity 

of 0.852 and a specificity of 0.913. A summary of the ROC curves for all the proposed 

classifiers is shown in Figure 3.  

 

 

Fig. 3. Comparison of ROC curves for selected classifiers. 

Tab. 7. Performance comparison of selected MLP and RBF classifiers 

Network 

name 
Sensitivity Specificity AUC 

ROC 

Treshold 
Accuracy Precision Recall 

F1 

score 
MCC 

MLP 7-22-2 0.885 0.917 0.933 0.564 0.900 0.920 0.885 0.902 0.801 

MLP 7-10-2 0.917 0.885 0.941 0.485 0.900 0.880 0.917 0.898 0.801 

MLP 7-7-2 0.875 0.846 0.954 0.490 0.860 0.840 0.875 0.857 0.721 

RBF 7-9-2 0.852 0.913 0.931 0.563 0.880 0.920 0.852 0.885 0.762 

RBF 7-10-2 0.875 0.846 0.881 0.285 0.860 0.840 0.875 0.857 0.721 

RBF 7-5-2 0.840 0.840 0.860 0.556 0.840 0.840 0.840 0.840 0.680 

 

In order to further compare the proposed classifiers, measures such as F1 score and 

Matthews correlation coefficient (MCC) were determined. F1 score is a measure of model 

precision on a dataset and it is most commonly used in evaluating binary classification 

systems. It is a way to combine model precision and recall. It is defined as the harmonic 

mean of model precision and recall (Chicco & Jurman, 2020). In contrast, the Matthews 
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correlation coefficient is one of the most informative single parameters for determining the 

prediction quality of a binary classifier in the context of a confusion matrix. It can be used 

even in cases where two classes have very different counts (Matthews, 1975; Powers, 2020).  

The highest F1 score of 0.902 was obtained for the MLP-type network with twenty-two 

neurons in the hidden layer at a precision of 0.920 and recall of 0.885, while the lowest value 

of 0.840 was obtained for the RBF-type network with five neurons in the hidden layer at  

a precision and recall of 0.840. In the case of MCC, the highest value of 0.801 was obtained 

for the MLP-type network with twenty-two and ten neurons in the hidden layer, respectively, 

while the lowest value of 0. 680 as in the case of the F1 index was obtained for the RBF7-

5-2 network. Detailed results for the parameters of the individual classifiers are presented in 

Table 7. The results obtained show that both multilayer perceptron (MLP) type networks 

and networks with radial basis functions give good results for the analyzed problem with  

a slight advantage of MLP type networks in most of the analyzed parameters of the classifiers 

studied.  

A limitation of this study is undoubtedly the use of a simplified classification model, 

involving the assignment of results to two groups. To the limitations should also be added 

the fact of large differences in personal characteristics between the analyzed groups. 

Further studies are planned, including the development of a method to precisely determine 

the degree of damage according to the ICRS scale and the approximate location of 

degenerative changes.  

4. CONCLUSIONS 

The obtained results confirm the effectiveness of the proposed method for diagnosing 

articular cartilage damage, which involves the selection of optimal discriminants of acoustic 

signals recorded for knee joints based on the results of statistical analyses and subsequent 

classification using artificial neural networks such as MLP and RBF. Vibroacoustic 

assessment may be a cheap and non-invasive alternative to typical imaging diagnostic 

methods, which will complement the physical examination performed during a standard visit 

at an orthopedic clinic.  
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