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Abstract 

In this work, we present a computer simulation model that generates the propagation 

of sound waves to solve a forward problem in ultrasound transmission tomography. 

The simulator can be used to create data sets used in the supervised learning process. 

A solution to the "free-space" boundary problem was proposed, and the memory 

consumption was significantly optimized from O(n2) to O(n). The given method of 

simulating wave scattering enables the control of the noise extinction time within  

the tomographic probe and the permeability of the sound wave. The presented version 

of the script simulates the classic variant of a circular probe with evenly distributed 

sensors around the circumference. 

1. INTRODUCTION  

1.1. Ultrasound Transmission Tomography  

Measurement methods using the information contained in the ultrasonic signal after its 

passage through the medium under test are called ultrasonic transmission methods (Polakowski, 

Rymarczyk & Sikora, 2020). The main advantage of ultrasonic testing is the non-invasive 

measurement in the tested environment, not causing any changes in physical and chemical 

parameters that could interfere with the measurement results. In addition, because ultrasound 

waves belong to the category of short waves, they possess propagation and radiation 

properties such that they can be treated as rays. The wavelengths of these waves depend on 

the medium they are radiated into and range from a few micrometres in liquids to tens of 

centimetres in metals. Therefore, they can be used to measure the attenuation coefficient and 

transit time of the ultrasonic signal in the medium subjected to their influence. 
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Moreover, with the help of ultrasound, it is possible to make multiple measurements 

without fear of damage or irradiation of the tested objects. Measurements of such parameters 

as signal transit time, damping factor and its derivative after frequency allow, after 

appropriate reconstruction transformations, to image the internal structure of the tested 

medium and such flow parameters as its instantaneous velocity, average velocity or velocity 

profile. Differences in local values of specific acoustic parameters are the basis for such 

imaging. The image obtained using appropriate reconstruction methods presents the 

distribution of local values of selected acoustic parameters, obtained from the measurement 

of data with the scanning technique from as many directions as possible after the passage of 

ultrasonic impulses through the surveyed medium. In addition, this technique allows 

obtaining quantitative images of the internal structure, in which numerical values of each 

pixel describe such physical properties of the studied objects as flow velocity, temperature 

distribution, density, and viscosity (Antunes dos Santos Júnior, 2012). A characteristic 

feature of ultrasonic techniques is that the measurement of only two to three selected acoustic 

parameters can be the basis for a whole range of different measurement technologies because 

ultrasonic waves interact with the tested environment in many different ways (Polakowski 

& Sikora, 2016). 

1.2. Finite difference approaches 

This method was proposed by A. Thom in the twenties of the twentieth century, under 

the name of the "square method", to solve the nonlinear hydrodynamic equation. Since then, 

the method has found applications in solving various problems. Finite difference techniques 

are based on approximations that allow the differential equation to be replaced by finite 

difference equations. These approximations have an algebraic form. They bind the value of 

the dependent variable at the solution region point with the values at several adjacent points. 

The Finite Difference Method (FDM) is one of the most frequently used methods of approx-

imating partial differential equations using a system of algebraic equations, which is usually 

solved using a computer (Degroot‐Hedlin, 2008). 

The areas in which the output equations are determined coincide with the solution grid, 

and the derivatives of the solution sought are approximated by appropriate difference 

quotients, using only values in the grid nodes. The so constructed differential scheme is used 

to determine the value of the approximate solution in the mesh nodes, and it leads directly 

to a system of equations with a special structure related to the local character of the 

approximation of the differential operator. 

The classical method of finite differences is an approximate method of discrete solving of 

boundary problems described by ordinary or partial differential equations. The idea of the 

method is to replace the differential operators with appropriate differential operators, defined on 

a discrete and regular set of points; this set was called a mesh, and its elements were called nodes. 

As a result, the initial-boundary problem is reduced to a system of equations in which the values 

of the function and, in some cases, their derivatives are the unknowns (Bilbao, 2013). 

The generalization of the classical method of finite differences is the method with an 

arbitrarily irregular mesh of nodes, also used to solve problems formulated in the variational 

form. The research conducted as part of the work was limited to applying the classical finite 

difference method to solve partial differential equations; solving ordinary or partial differential 

equations is elementary. Examples of applications can be found in textbooks on numerical 
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methods. During the research, the basic issue was the correct setting of the tasks, where an 

important element is the uniqueness of the solution and its continuous dependence on the 

right sides of the equations and boundary conditions that guarantee the stability of the 

differential problem. In addition, the research showed whether the approximate solutions 

converge to the exact solution and the speed of this convergence. In this way, information 

about the numerical correctness of the respective algorithms was also taken into account (Li 

Li, Shao & Li, 2019). 

In the early 1990s, when wave-based approaches started to become computationally 

viable, finite difference methods started to be applied to the problem of simulating acoustics 

in low frequencies, using mathematical formulations stemming from analogous equations in 

electromagnetics (Botteldooren, 1994; Chiba et al., 1993; Mickens, 1994; Ishimaru, 2017) 

and, independently, stemming from developments in digital waveguide sound synthesis 

techniques (Asadzadeh, 2020). Other well-known families of numerical methods were also 

applied to acoustic problems, including finite volume (in the time domain) (Botteldooren, 

1994) and finite element and boundary element methods in both times- and frequency 

domains (Svensson, Fred & Vanderkooy, 1999). However, concerning the methods 

implemented for the wave equation itself (i.e., in the time domain), finite difference methods 

seem to have gained the most popularity over the years, e.g. (Benito et al., 2020; Sullivan & 

Young, 2001; Liu, Ding & Sen, 2011; Liu & Sen, 2009; Kumar, 2004), most likely due to 

their simplicity in formulation and ease in implementation. Seminal texts on finite difference 

methods (and other numerical methods) include (Thomas, 2013; Forsythe & Wasow, 1960; 

Knabner & Angermann, 2021). See also (Thomée, 2001) for a detailed history of finite 

difference methods. 

2.  AIM OF THE RESEARCH 

A modern approach to solving inverse ultrasound tomography problems aims to use novel 

methods based on machine learning techniques. As those methods are excellent for almost 

automatic search for solutions for complex problems, most ML algorithms are the supervised 

methods with the means to find a proper model for a problem. It needs to provide input data 

and referenced output data sets. In tomography, for training, e.g. deep neural network, we 

need to collect a large amount of measurement data with prior knowledge of the distribution 

of imaged medium. It leads to the technical problem that we need another reference method 

to solve the same problem and an inverse problem with one method. Another approach to 

that impasse is to create a forward problem solver capable of simulating measurement data 

on defined medium distribution. That type of solver needs to meet a few requirements.  

It must be quick and thus simple enough to generate large data sets. Moreover, simulations 

need to allow for easy defining a broad range of heterogeneous distributions inside the 

tomographic probe. This research aimed to create a simple but sufficiently versatile 

framework for the quick generation of simulations suitable for tomographic applications, 

focusing on machine learning techniques.  

In the future work, authors plan to use created simulations as a start point for various 

types of tomographic problems like examination of the shapes of sensitivity maps of 

tomographic settings, experimentations of transducers excitations patterns, application of 

style-transfer learning for forward and inverse problems, designing compression algorithms 

for ultrasound measurement data etc.  
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3. COMPUTER SIMULATION MODEL 

Based on the simulation of acoustic wave propagation on a regular square grid, we 

measure the value of acoustic pressure that excites the movement of the diaphragm of the 

measurement sensor, causing the excitation of an electric voltage. Such an approach gives 

the possibility of solving a forward problem. It consequently allows the creation of learning 

sets used in machine learning, especially in supervised deep learning. 

Simulation of acoustic wave propagation inside the tomographic probe is necessary  

to reflect the wave propagation and generated voltages in sensors at a given distribution of 

the internal medium of the probe. Such a situation is not fully possible to reproduce in real 

measurements and, at the same time, is very time consuming and requires a significant 

amount of work. Machine learning requires tagged sets with large volumes, even up to 

several tens of thousands. Moreover, real measurements performed by a human can be 

burdened with uneven distribution of objects inside the tomographic probe, which lead to 

biased measurement data set, which can affect the learning capabilities of neural network.  

Radial models are commonly used to solve the inverse problem (Kania et al., 2019). 

However, despite the effectiveness of these models in imaging on real measurement systems, 

it is not possible to use them to simulate acoustic processes (Kania, Rymarczyk, Maj  

& Gołąbek, 2019). In work (Kania et al., 2020), an attempt was made to simulate acoustic 

phenomena using ray tracing with Fermat's principle, thus succeeding in tracing acoustic 

wave trajectories and reproducing the lensing phenomenon depending on the objects and the 

medium filling the measurement probe. However, due to technical problems, using this 

method for simulation is not an effective method of carrying it out. Furthermore, these 

problems generated the need to use finite difference methods to solve the wave equation. 

3.1. Finite difference methods for the wave equation 

The simulation is performed on a grid of 128x128 spatial nodes during 8000 steps, on a 

40x40 cm square with a probe with a diameter of 20 cm. A sequence of 16 sensors triggered 

with intervals of 500 steps is simulated with the time of activation: 20 iterations and 

sinusoidal excitation: 

 𝑈 = 𝐴𝑠𝑖𝑛(𝑤𝑡)              (1) 

where: 𝐴 = 10, 

𝑤 = 1.0. 

  

Full simulation of the measurement sequence (8000 iterations, 16 sensors) is determined 

in about 7 seconds (on an i9-11900F processor) due to the stability conditions, which 

corresponds to approximately 12 ms of real-time. 

First, matrix boundary conditions were implemented, taking into account the acoustic 

impedance of the "walls" of the simulated area. Through numerical experiments, it turned 

out that implementation of the lossy condition does not allow for the simulation of the total 

absorption of the wave by the border of the simulation area. By analyzing the free-space 

boundary problem, i.e. the condition in which the wave freely "flies" across the simulated 

boundary, it has been established that there are currently no typical boundary conditions for 
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two-dimensional and/or more-dimensional problems. The most common solution to the 

problem is to extend, in some way, the scope of the simulation beyond the area of interest. 

Ultimately, therefore, the scope of the simulation was increased, and the wave energy outside 

the probe circle was periodically reset to zero once for a specified number of simulation 

steps (in this case, Fig. 1, once every 100 iterations). Increasing the simulation area allows 

modelling the wave "drift" outside the region of interest. After erasing the wave outside the 

region of interest, the wave in the probe propagates further undisturbed.  

  

Fig. 1. Simulation results: a collision of an acoustic wave on a square object filled with air (left)  

and view of the wave passing behind the object (right) 

The number of frames after which the deletion takes place is selected in such a way that 

the wave has, on the one hand, sufficient time to escape from the probe, on the other hand, 

so that its reflection from the border of the simulated area does not return to the interior. 

Therefore, it is indirectly related to the allowance to the simulated domain to be considered 

in determining the area of interest of the simulation. The necessity to increase the simulation 

area in relation to FOV causes the reconstructed to be indisputably more pixels than results 

from the FOV size alone. Using the implementation of the simulation, taking into account 

the lossy boundary conditions, based on the matrix equation, we have: 

     𝑢𝑡+1 = (𝜆𝐵 + 𝐼)−1(2𝐼 +  𝜆2𝐿)𝑢𝑡 + (𝜆𝐵 − 𝐼)𝑢𝑡−1         (2) 

We must therefore store in memory two matrices of size 𝑛2 × 𝑛2, where the simulation 

is performed over the area of size 𝑛 × 𝑛. The rigid implementation of the Dirichlet conditions 

allows to simplify the equation to the formula: 

        𝑢𝑡+1 = (2𝐼 + 𝜆2𝐿)𝑢𝑡 − 𝑢𝑡−1            (3) 

However, we still need at least one matrix of sizes 𝑛2 × 𝑛2, which means that the 

simulation still needs 𝑂(𝑛2) memory. To reduce this problem, an equivalent implementation 

based on the convolutional filter was used: 

         𝑢𝑡+1 = 2𝑢 − 𝑢𝑡−1 + 𝜆2𝐶𝑜𝑛𝑣(𝑢, 𝐿)          (4) 

where: 𝐿 = (
0 1 0
1 −4 1
0 1 0

) is a filter implementing the discrete Laplacian. 
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Thanks to this, apart from the necessity to store 𝑢𝑡+1, 𝑢𝑡 , 𝑢𝑡−1 tables in the memory, there 

is no need for additional memory apart from the 3x3 table of the convolutional filter.  

We should also note that such implementation does not require 𝑢 matrix expansion into 

vectors, as in the case of matrix equations. In addition, by experimenting, the simulation is 

more stable for the "soft" Laplacian variant, which is used in the simulation: 

         𝐿∗ = (
0.25 0.5 0.25
0.5 −3 0.5

0.25 0.5 0.25
)             (5) 

The condition for the stability of the simulation for Laplacian L is the so-called Courant-

Friedrichs-Lewy condition: 

         𝜆 =
𝑣 𝑑𝑡

𝑑𝑥
≤ √0.5 ≈ 0.0707             (6) 

where: 𝑣 − wave velocity at a node,  

𝑑𝑥 − the actual distance between nodes,  

𝑑𝑡 − actual time step length. 

 

In practice, to meet this condition, the values of 𝑑𝑡 and 𝑑𝑥 are selected so that: 

           𝜆𝑐 =
𝑐 𝑑𝑡

𝑑𝑥
= 0.07              (7) 

where:  𝑐 – the maximum wave speed used in the simulation.  

 

Thanks to this, by simulating the values of 𝑙𝑎𝑚 ∈ [0, 𝜆𝑐] on the mesh nodes, we can be 

sure that the stability of the simulation will be ensured. In this context, it turns out that the 

use of 𝐿∗ Laplacian allows a slight increase in the range of 𝑙𝑎𝑚 values over 𝜆𝑐 (Fig. 2). 

 

 

Fig. 2. Wave passage through an obstacle (the same 86th frame of simulation) not meeting  

the theoretically CFL condition (𝒍𝒂𝒎 = 𝟏. 𝟐𝝀𝒄), using Laplacian 𝑳 (left, destabilization) and 𝑳∗  

(right, no destabilization artefact) – axis ticks in figures are pixel numbers (32 pixels correspond to 10 cm) 

An additional aspect of the simulation is that in making a series of measurements, we 

must wait until after one sensor is excited until the acoustic wave inside is attenuated enough 

to not interfere with the wave produced by the next transmitter. 
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In the model currently used, the scattering factor was not considered, resulting in the 

probe's interior never reaching the level of complete silence. In order to control the wave 

scattering, Gauss Kernel Filter has been added to the simulation step. This way, by control-

ling the variance of the filter, the scattering of the wave can be increased (Fig. 3). 

 

 

Fig. 3. View 390 of the simulation frame without dispersion 𝝈 = 𝟎 (left) and with the same parameters 

but with dispersion 𝝈 = 𝟎. 𝟒 (right) – axis ticks in figures are pixel numbers (32 pixels correspond to 10 cm) 

By taking into account the dispersion, we can obtain much cleaner measurement 

waveforms, as the calming of the waveform does not disturb the measurement readings in 

the vicinity of the sensors. 

The first extreme will be the variant without attenuation, where there is significant wave 

collimation and no mute (Fig. 4). 

 

 

Fig. 4. Simulated measurement series of probe no. 0 for the first 2000 simulation steps at 𝝈 = 𝟎  

(left, X-axis descriptions are the number of iterations) and the effect of wave collimation on the circular 

edge of the probe 𝝈 = 𝟎 (right) 

On the other hand, too high attenuation causes almost undisturbed wave passage through 

the probe, eliminating the collimation effect, but we get much "cleaner" waveforms of the 

pulses (Fig. 5). 
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Fig. 5. Measurement of probe no. 0 for the first 2000 simulation steps at 𝝈 = 𝟏. 𝟎 (left, X-axis 

descriptions are the number of iterations) and significant "blur" (𝝈 = 𝟏. 𝟎) of the wave eliminating 

collimation (right) 

4. CONCLUSIONS 

The results obtained so far allow for efficient and easy to perform simulations of acoustic 

phenomena on an arbitrary velocity distribution inside the probe, which will allow for the 

generation of simulated data sets of any size. 

Finite difference methods comprise a simple starting point for such simulations, but they 

are known to suffer from approximation errors that may necessitate expensive grid 

refinements to achieve sufficient accuracy levels. As such, research has gone into designing 

finite difference methods that are highly accurate while remaining computationally efficient. 

A solution to the "free-space" boundary problem was proposed, and the memory consumption 

was significantly optimized from O(n2) to O(n). The given method of simulating wave 

scattering enables the control of the noise extinction time within the tomographic probe and 

the permeability of the sound wave. 

Further work will concern the verification of the simulator with real measurements 

(selection of parameters and signal conditioning) and the implementation of the possibility 

of defining custom measurement sequences, including those that enable beam-forming. 
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