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Abstract  

The paper evaluated the possibility of using artificial neural network models for 

predicting the compressive strength (Fc) of concretes with  the addition of recycled 

concrete aggregate (RCA). The artificial neural network (ANN) approaches were used 

for three variable processes modeling (cement content in the range of 250 to 400 kg/m3, 

percentage of recycled concrete aggregate from 25% to 100% and the ratios of water 

contents  0.45 to 0.6). The results indicate that the compressive strength of recycled 

concrete at 3, 7 and 28 days is strongly influenced by the cement content, %RCA and 

the ratios of water contents. It is found that the compressive strength at 3, 7 and 28 

days decreases when increasing RCA from 25% to 100%. The obtained MLP and RBF 

networks are characterized by satisfactory capacity for prediction of the compressive 

strength of concretes with recycled concrete aggregate (RCA) addition. The results in 

statistical terms; correlation coefficient (R) reveals that the both ANN approaches are 

powerful tools for the prediction of the compressive strength.  

1. INTRODUCTION 

Machine learning methods have been constantly developing in recent times. One of the 

methods of machine learning are artificial neural networks (ANN) that are used in various 

areas of life and science (Machrowska et al., 2020a, 2020b; Karpiński, 2022; Szabelski, 

Karpiński & Machrowska, 2022; Rymarczyk et al., 2021; Szala et al., 2021; Pytka et al., 

2022; Rymarczyk et al., 2019). ANN is one of the important artificial intelligence technique 
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inspired on the study of biological neural networks that can be applied to studies in the area 

of construction where there is a database of a problem and the ANN model learns by example 

(Dantas, Leite & Nagahama, 2013; Parichatprecha & Nimityongskul, 2009). It has been 

proven to be a powerful modeling technique for complex and nonlinear problems with strong 

proposed to learning and function approximation (Dahmoune et al., 2015; Hammoudi et al., 

2019). At present, the topic of the use of neural networks in various fields of human activity 

is extremely popular. Many methods and methodologies based on the application of ANN 

are used in the construction industry for optimization, control, problems of identification and 

forecasting (Das, Swetapadma & Panigrahi, 2019; Orosa et al., 2019; Pezeshki & Mazinani, 

2019; Fei, Youfu & Xuejun, 2019). 

In recent years, researchers have begun using artificial neural networks to determine the 

properties of building materials, including: predicting performance of lightweight concrete 

with granulated expanded glass and ash aggregate (Kurpinska & Kułak, 2019), designing 

the composition of cement stabilized rammed earth (Anysz & Narloch, 2019), studying 

adiabatic temperature rise reflecting hydration degree of concrete (Han et al., 2018), and 

predicting the compressive strength of cement-based materials exposed to sulfate attack 

(Chen et al., 2018).  

The work presented here evaluates the feasibility of using a neural network model to 

predict the performance of recycled aggregates (RCAs). ANN techniques are rarely used to 

predict the performance of RCA and concretes in general due to their complex composition. 

Topçu and Seridemir (2008) predicted the compressive and splitting tensile strength of 

recycled aggregate concentrate containing silica fume have been developed at the age of 3, 

7, 14, 28, 56 and 96 days. The values are closer to the experimental results obtained from 

training and testing for in artificial neural networks (Topçu & Saridemir, 2008). Chopra et 

al. employed an ANN model to predict the compressive strength of concentrate. It was 

deduced that the best training algorithm is ‘Levenberg-Marquardt’ algorithm that attains 

more than 95% on average prediction accuracy (Chopra, Kumar & Kumar, 2015). Atici 

(2011) applied multiple regression analysis and an artificial neural network in estimating the 

compressive strength of concrete that contains various amounts of blast furnace slag and fly 

ash. He showed that the application of an artificial neural network to the prediction of the 

compressive strength in admixture concrete of various curing times shows great potential in 

terms of inverse problems, and it is suitable for calculating nonlinear functional 

relationships, for which classical methods cannot be applied (Atici, 2011). 

This study aimed at predicting and modeling the compressive strength of a concrete 

containing recycled concrete aggregates following 3, 7 and 28 days for different ranges of 

cement content, percentage of recycled concrete aggregate and the ratios of water contents. 

2. MATERIALS AND METHODS 

Type I ordinary portland cement was used as a binder content for the experiment. The 

chemical compositions were illustrated in Table 1. Sand (NS), i.e. crushed limestone with 

nominal size of 4 mm was used as well; the sand was dried at 105°C. Crushed granite (NSA) 

was used as concrete aggregate with specific gravity 2.7 and nominal size 19 mm in normal 

concrete and the recycled concentrate aggregate (RCA) with attached mortar, nominal size 

19 mm was used as a replacement of the concrete aggregate. The RCA was obtained from 
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the demolition of an old building and had undergone a crushing process to obtain the required 

nominal size. The grading of both types of concrete aggregate complied with the grading 

limits for the crushed-rock aggregate in BS 882:1992 (Gjorv & Sakai, 2014). 

2.1. Experimental  

The mix design of the concrete was done according to the DoE method, which was 

targeted at compressive strength of 25 MPa at the 28th day (British Standards Institution, 

1988).  

  Tab. 1. Composition of CEM II B-V 32,5R  (CEM II/B-V 32,5 R, n.d.) 

Properties Unit CEM II B-V 32,5R 

Specific surface (cm2·g-1) 4237 

Initial setting time (min) 243 

Compressive strength   

after 2 days (MPa) 20.3 

after 28 days (MPa) 45.7 

Density (g· cm-3) 2.83 

SO3 content (%) 2.28 

Chloride ion content  (%) 0.06 

Na2O content (%) 1.09 

 

The mixture compositions of all mixes are presented in Table 2. Notably, there are five 

types of mixtures prepared by replacing the concrete aggregate with the RCA at 25%, 50%, 

75% and 100% of the total concrete aggregate content. The percentage of replacement was 

calculated based on the total weight of the concrete aggregate content.  

Tab. 2. Mixture proportion for 1 m3 of concentrate [kg/m3] 

Mixture % Repl. of recycled aggregates Cement [kg/m3] 
Water 

[kg/m3] 
NSA RCA Sand 

Mix 1 25 250 150 858 286 762 

Mix 2 50 250 150 564 564 762 

Mix 3 75 250 150 279 836 743 

Mix 4 100 250 150 0 110 734 

Mix 5 25 400 180 770 257 685 

Mix 6 50 400 180 507 507 676 

Mix 7 75 400 180 250 751 667 

Mix 8 100 400 180 0 988 659 

Mix 9 25 350 230 105 105 661 

Mix 10 50 350 230 177 177 661 

Mix 11 75 350 230 370 70 661 

Mix 12 100 350 230 360 320 625 

Mix 13 25 350 150 105 105 661 

Mix 14 50 350 150 177 177 661 

Mix 15 75 350 150 370 70 661 

Mix 16 100 350 150 360 320 625 
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All specimens were cast under laboratory condition and demolded at 24 ± 2 hours after 

mixing; afterwards, they were fully submerged in water at a temperature of 25 ± 2°C until 

the age of testing. The testing program introduced the determination of the compressive 

strength and ultra-sonic pulse velocity test, while the durability was tested through the 

shrinkage and expansion test, the ratios of water contents and gas permeability test. Testing 

was carried out in accordance to the British Standard testing procedures. 

2.2. Compressive strength test 

The compressive strength test was performed according to BS EN 12390-3:2009 using 

three cubes with the dimensions of 100 mm × 100 mm × 100 mm to obtain an average value 

(British Standards Institution, 2009). This test was carried out on the specimens at the age 

of 3, 7 and 28 days. 

2.3. Neural network simulation 

Modeling was performed using artificial neural networks, via Statistica Neural Networks 

software. The input neurons were cement content, %RCA and the ratios of water contents, 

and the output neuron was Fc after 3, 7 and 28 days. In connection with modeling Fc at three 

time points, three types of models were analyzed, the diagram of which is shown in Figure 1. 

 

Cement 

%RCA nn
O
O
O

w/c

 
Fig. 1 Schematics of the artificial neural network, where nn – Fc after 3, 7 and 28 days 

 

Two types of neural networks were used for modeling: MLP and RBF. The multi-layer 

perceptron (MLP) is one of the most popular. Characterized by a layered arrangement of 

neurons and a unidirectional flow of data (from input to output) without feedback. The 

training of MLP-type networks is possible by using the backward error propagation method. 

Radial basis function (RBF) networks are a special type of artificial neural networks. They 

are unidirectional three-layer networks consisting of an input layer, a hidden layer and an 

output layer. In the hidden layer, there are radial basis functions that correspond to hidden 

neurons (Karpiński et al., 2022a, 2022b).    

 In the case of MLP networks, the learning algorithm – BFGS gradient was used, and 

different activation functions were tested, including: linear, exponential, logistic, tanh and 

sinus. For RBF networks, the learning algorithm is RBFT, and the activation functions are: 

Gaussian distribution (hidden neurons) and linear function (output neuron). Networks with 

one hidden layer were modeled, with a change in the number of neurons in the hidden layer 

(2–10). The input data set was divided into 75%–25% (learning data – validation data). Due 

to the small data set, test data was omitted. 
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The selection of networks was based on indicators such as learning and validation quality 

as well as learning and validation errors. For each Fc model, 200 networks were learned after 

3, 7 and 28 days, from which one of each type was selected. 

Learning and validation quality is defined as the correlation coefficient for these sets, 

calculated according to equation (1): 

𝑅(𝑦′, 𝑦∗) =  
𝑐𝑜𝑣(𝑦′,𝑦∗)

𝜎𝑦′𝜎𝑦∗
              𝑅 𝜖 < 0,1 >      (1) 

where: 𝜎𝑦′ – standard deviation of reference values,  

𝜎𝑦∗ – standard deviation of predicted values,  

𝑐𝑜𝑣(𝑦′, 𝑦∗) – covariance. 

 

The errors are defined as the sum of the squared differences between the set values and 

the values obtained at the outputs of each output neuron, according to the formula (2): 

𝐸𝑟𝑟 =  ∑ (𝑦𝑖
′ − 𝑦𝑖

∗)2𝑛
𝑖=1           (2) 

where: 𝑛 – number of cases in a given set,  

𝑦𝑖
′ – actual value of Fc for the given set for the i-th observation;  

𝑦𝑖
∗ – predicted value of Fc for the given set for the i-th observation. 

3. RESULTS AND DISCUSION 

3.1. Compressive strength 

Table 3 shows the obtained results of the tested mixtures. The results show that the 

compressive strength of recycled concrete after 3, 7 and 28 days significantly changes under 

the influence of the cement content and the addition of the recycled concentrate aggregate. 

Among all the samples, the concrete with 25% RCA addition achieves the highest strength, 

followed by 50%, 75%, 100% RCA addition.  
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Tab. 3.   Experimental values for compressive strengths of 3, 7 and 28 days for 

the tested mixtures 

Mixtures 
Cement 

[kg/m3] 
%RCA w/c 

Fc [MPa] 

3 7 28 

Mix 1 250 25 0.65 21.1 25.9 27.1 

Mix 2 250 50 0.65 18.9 22.1 22.7 

Mix 3 250 75 0.65 20.2 22.2 22.9 

Mix 4 250 100 0.65 16.8 25.1 26.2 

Mix 5 400 25 0.45 32.1 37.7 42.4 

Mix 6 400 50 0.45 30.2 36.3 36.3 

Mix 7 400 75 0.45 27.4 35.2 36.0 

Mix 8 400 100 0.45 21.5 34.6 34.7 

Mix 9 350 25 0.65 34.1 36.5 37.0 

Mix 10 350 50 0.65 23.8 27.2 29.1 

Mix 11 350 75 0.65 19.8 24.1 26.0 

Mix 12 350 100 0.65 18.2 22.3 29.2 

Mix 13 350 25 0.45 28.8 34.2 37.8 

Mix 14 350 50 0.45 27.0 32.4 33.3 

Mix 15 350 75 0.45 24.3 31.5 32.4 

Mix 16 350 100 0.45 19.4 31.2 31.3 

4.2. Modeling results 

The results of the obtained modeling with the parameters of the obtained networks are 

shown in Table 4. The best parameters for MLP networks for Fc modeling after 3 days were 

obtained for a network with six neurons in the hidden layer, after 7 days and after 28 days 

for 4 neurons in the hidden layer. In the case of the RBF networks for Fc modeling, after 3 

days the best results were obtained for a network with seven neurons in the hidden layer, 

after 7 days for six neurons, and after 28 days for 7 neurons in the hidden layer. The quality 

of both learning and validation for all networks exceeds 0.97. In addition, Table 4 shows the 

R-correlation coefficients (for the entire dataset) between the test data and the modeling data. 

By analyzing the R-correlation, it can be concluded that the cross-correlation between the 

experimental data and the data predicted for the networks of both networks is at a very high 

level (above 0.97). 

Tab. 4. Network parameters obtained as a result Fc after 3, 7 and 28 days of modeling. 

Modeled Fc 3 days 7 days 28 days 

Network Name MLP 3-6-1 RBF 3-7-1 MLP 3-4-1 RBF 3-6-1 MLP 3-4-1 RBF 3-7-1 

Quality (Training) 0.9907 0.9714 0.9932 0.9951 0.9725 0.9881 

Quality 

(Validation) 

0.9941 0.9961 0.9988 0.9989 0.9952 0.9943 

Err (Training) 0.2496 0.7526 0.1106 0.1363 0.7565 0.2946 

Err (Validation) 0.7861 0.1276 0.0244 0.0422 0.3292 0.3004 

Learning algorithm BFGS 168 RBFT BFGS 3339 RBFT BFGS 97 RBFT 

Activation (hidden) Sinus Gaussian Logistic Gaussian Gaussian Gaussian 

Activation (output) Exponential Linear Exponential Linear Sinus Linear 

R(i) correlation  0.9876 0.9773 0.9962 0.9908 0.9903 0.9813 
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For a more detailed comparison of the results of modeling RBF and MLP networks and 

real Fc data after 3, 7 and 28 days, the following figures show correlation plots of these 

relationships – for Fc after 3 days (Figure 2a), Fc after 7 days (Figure 2b), Fc after 28 days 

(Figure 2c). 

Analysis of the following graphs confirms that for both types of RBF and MLP networks, 

the quality of these models is at an acceptable level. Therefore, it can be concluded that 

artificial neural networks are a suitable tool for predicting the Fc after 3, 7 and 28 days. 
 

 
 

a) b) 

 
c) 

Fig. 2. Correlation graph of comparison between the modeling and actual results  

of the Fc after 3, 7 and 28 days for MLP and RBF networks 

As a result of the modeling, it was possible to predict Fc after 3, 7 and 28 days, using the 

trained networks by entering the input data into Statistica. The results of the networks are 

shown for the following figures, for Fc after 3 days depending on %RCA and cement content 

for MLP network (Fig. 3a) and RBF network (Fig. 3b) and depending on w/c and cement 

content for MLP network (Fig. 3c) and RBF network (Fig. 3d), for Fc after 7 days depending 

on %RCA and cement content for MLP network (Fig. 4a) and RBF network (Fig. 4b), and 

w/c and cement content for MLP network (Fig. 4c) and RBF network (Fig. 4d), as well as 

for Fc after 28 days depending on %RCA and cement content for MLP network (Fig. 5a) 

and RBF network (Fig. 5b), and w/c and cement content for MLP network (Fig. 5c) and RBF 

network (Fig. 5d). 
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a) b) 

 

 

 
 

 

 

 

c) d) 

Fig. 3. The network performance results for Fc after 3 days depending on %RCA  

and cement content for MLP (a) and RBF (b) networks as well as w/c  

and cement content for MLP (c) and RBF (d) networks 
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a) b) 

 

 

 

 

 

 
c) d) 

Fig. 4. The network performance results for Fc after 7 days depending on %RCA  

and cement content for MLP (a) and RBF (b) networks as well as w/c  

and cement content for MLP (c) and RBF (d) networks 
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a) b) 

 

 

 

 

 

 
c) d) 

Fig. 5. The network performance results for Fc after 28 days depending on %RCA  

and cement content for MLP (a) and RBF (b) networks as well as w/c  

and cement content for MLP (c) and RBF (d) networks 

In this study, an artificial neural network was developed to evaluate the compressive 

strength properties of recycled concrete aggregate based on the input variables, which were: 

cement content, %RCA, and the w/c ratio. The results of the modeling of compressive 

strengths after 3, 7 and 28 days and the prediction made enable to conclude that the MLP 

and RBF networks obtained have a satisfactory ability to predict these values. This is 

confirmed, among other things, by the R-correlation value of 0.97, the high quality of 

learning and validation of the network at 0.97, and the learning and validation errors. 

Comparing the experimental data and simulated values of compressive strengths after 3, 7 

and 28 days, it can be concluded that the relative error value does not exceed 15%, which 

indicates that the network is well trained. 
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There is little work in the available literature on predicting the compressive strength of 

RCA concretes, where in most previous studies were particularly centric about high-

performance concrete (HPC) containing blast furnace slag (BFS), fly ash (FA) and 

superplasticizer. The networks created for these types of concrete achieved R2>90% (Yeh & 

Lien, 2009; Chou et al., 2011; Deepa, Kumari & Sudha, 2010; Atici, 2011; Erdal, Karakurt 

& Namli, 2013; Qmran et al., 2016). 

The obtained results in statistical terms do not differ much in that respect. Hammoudi et 

al. (2019) predicted the compressive strength of a concentrate containing RCA after 7, 28 

and 56 days. The input data included: content cement, %RCA, slump. For the employed 

model, he obtained the correlation coefficient of 0.98% (Hammoudi et al., 2019). 

Naderpour et al. used an artificial neural network to evaluate the strength properties of 

recycled aggregate concrete based on input variables: water-cement ratio, water absorption, 

fine aggregate, recycled concrete aggregate, natural concrete aggregate, water-total material 

ratio, and 28-day compressive strength. He achieved lower values of correlation coefficient 

than in the presented study. The correlation values of their neural network for training, 

validation and testing reached 0.903, 0.89 and 0.829 respectively (Naderpour, Rafiean, & 

Fakharian, 2018). 

The use of ANN model, which based on experimental results showed that it is useful and 

efficient model to predict the compressive strength. Wider application of ANN methods will 

facilitate determining the composition of concretes with recycled aggregate addition and 

manufacturing of new building materials. 

4. CONCLUSIONS 

The main objective of the study was to present an ANN model for predicting the 

compressive strength of concrete containing recycled concrete aggregate following 3, 7 and 

28 day. The following were used as input date: different ranges of cement content, %RCA 

and water content ratios. 

The following conclusions can be drawn in connection with the research conducted on 

training artificial neural networks: 

 For Fc modeling after 3, 7 and 28 days for both types of RBF and MLP networks, the 

quality of the models is at an acceptable level. In the case of MLP networks for 

individual networks the quality of training and validation were respectively – for Fc 

after 3 days the quality of training it was 0.9907, validation was 0.9941, for Fc after 7 

days the quality of training was 0.9932, validation was 0.9988, and for Fc after 28 

days the quality of training was 0.9725, validation was 0. 9952. In the case of RBF 

networks for individual networks, the training and validation quality were as follows: 

for Fc after 3 days the training quality – 0.9714, validation – 0.9961, for Fc after 7 

days the training quality – 0.9951, validation – 0.9989, while for Fc after 28 days the 

training quality – 0.9881, and validation – 0.9943. 

 The networks obtained by modeling Fc after 3, 7 and 28 days show satisfactory 

predictive ability, as evidenced by the obtained correlation values R. These are  

RMPL – 3 days = 0.9876, RMPL – 7 days = 0.9962, RMPL – 28 days = 0. 9903, RRBF – 3 days = 0.9773, 

RRBF – 7 days = 0.9908, RRBF – 28 days = 0.9813. Thus, it can be concluded that artificial 
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neural networks are an effective tool that can be used to predict compressive strengths 

after 3, 7 and 28 days. 

 The trained networks show the relationships between the input data (cement content, 

%RCA and the ratios of water contents) and the output data (Fc after 3, 7 and 28 days), 

allowing the determination of the corresponding values of the analyzed indicators 

after the input of the set parameters into the network . 

 A model to predict the compressive strength of concretes with recycled coarse 

aggregates can be the basis for creating optimal concrete compositions with RCA.  

It will save time and effort, as well as eliminate the costs that are incurred when 

manufacturing new construction materials. 
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