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Abstract 

Supervised learning as a sub-discipline of machine learning enables the recognition  

of correlations between input variables (features) and associated outputs (classes) and 

the application of these to previously unknown data sets. In addition to typical areas of 

application such as speech and image recognition, fields of applications are also being 

developed in the sports and fitness sector. The purpose of this work is to implement  

a workflow for the automated recognition of sports exercises in the Matlab® program-

ming environment and to carry out a comparison of different model structures. First, 

the acquisition of the sensor signals provided in the local network and their processing 

is implemented. Realised functionalities include the interpolation of lossy time series, 

the labelling of the activity intervals performed and, in part, the generation of sliding 

windows with statistical parameters. The preprocessed data are used for the training 

of classifiers and artificial neural networks (ANN). These are iteratively optimised in 

their corresponding hyper parameters for the data structure to be learned. The most 

reliable models are finally trained with an increased data set, validated and compared 

with regard to the achieved performance. In addition to the usual evaluation metrics 

such as F1 score and accuracy, the temporal behaviour of the assignments is also 

displayed graphically, allowing statements to be made about potential causes of incorrect 

assignments. In this context, especially the transition areas between the classes are 

detected as erroneous assignments as well as exercises with insufficient or clearly 

deviating execution. The best overall accuracy achieved with ANN and the increased 

dataset was 93.7 %. 

1. INTRODUCTION 

The exponential increase in data volumes, favoured by factors such as lower costs for 

end devices, storage media and servers, as well as the steadily expanding use of smart 

devices requires methods for automated data analysis (Brühl, 2019). One of such methods  

is supervised learning as a sub-discipline of machine learning (ML), in which knowledge is 
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generated from labeled data sets and applied to previously unknown data. The described 

approach is also suitable for the human activity recognition (HAR), in particular for the 

recognition of sports exercises, which are characterised by a periodic execution of movement 

patterns. Inertial measurement units (IMUs) are especially suitable for the sensory detection 

of dynamic movements. The use of IMUs as a tracking method enables to record the 

movements of several people simultaneously in almost any environment. Compared to 

optical tracking methods, this allows a more robust data collection without the requirement 

for visual markers (Helten, 2013). With the inertial signal characteristics, statements can be 

formulated about the type and duration of the activity (type and length of the periodic signal 

patterns), as well as the speed of execution (signal frequency) and the intensity (signal 

amplitude) (Schuldhaus, 2019).  

Movement classification of exercises in the fitness sector enables a better analysis, moni-

toring and correction of performed sports exercises. This favours new possibilities in the field of 

training plan development. An example is the application field of physiotherapy. Here the 

initial conditions of rehabilitation patients are precisely detectable through the additional use 

of sensors. Based on this, individual training plans can be created and training progress can 

be continuously measured without the need for the trainer's constant presence. As a result, 

health risks resulting from improper exercise are minimised and training potential can be 

better realised. An increased motivation caused by regular feedback during training is also 

an additional incentive for establishing tracking systems in the fitness sector (Schuldhaus, 

2019). In the following, some recent work in the field of HAR is described in a comparative 

way. 

As shown in Tab. 1 there is a wide range of implementations available, from data 

acquisition to data processing and classification. A frequently used development environment 

for the implementation of AI models is Python, due to its open source character. At research 

institutes, however, Matlab is a widespread development environment that also provides 

comprehensive toolboxes for machine learning, which are particularly suitable for a fast 

entry without in-depth programming knowledge.  

The workflow in this work is developed uniformly in Matlab, from data acquisition to 

classification. A special feature of the measurement system used in this work is the additional 

detection of absolute position data. These can improve the accuracy of the classification, 

especially when performing exercises at several stations. 

The main focus of the work described below can be summarised as follows: 

 recording and pre-processing of inertial data during the execution of sports exercises; 

 training of classifiers and artificial neural networks (ANN), iterative optimisation of 

model hyperparameters; 

 performance comparison of data sets with varying numbers of subjects; 

 analysis of the classification processes and interpretation of faulty assignments. 
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Tab. 1.  Selection of current publications in the field of HAR, comparing the applied sensors  

and the achieved accuracies 

Type of activity Sensors used for detection 
Accuracies achieved 

with applied AI 
Ref. 

event detection in 

rugby 

position and inertial data, sensor 

placement on the upper back of 

the player 

up to 0.972 (balanced) 

with classifiers 

(Kautz, 

2017) 

automatic activity 

detection in beach 

volleyball, based on 

deep neural 

networks 

IMU, attached to the dominant 

hand of a player 

overall recall 0.99 

overall precision 0.35, 

obtained with 

classifiers 

(Kautz, 

2017) 

recognition of daily 

activities (washing, 

sitting, sweeping…) 

4 IMUs, attached on chest, 

wrist, hip and foot 

hierarchical 

classification system 

0.891 (balanced) 

(Schuldhaus, 

2019) 

recognition of 

soccer activities  

accelerometer, gyroscope in the 

near of ankle and integrated in 

soccer shoe  

combination of peak 

detection and type 

classification lead to 

0.85 (balanced) for 

kick detection  

(Schuldhaus, 

2019) 

classification of 42 

gym exercises 

tri-axial accelerometer at chest up to 0.91 for 

overlapping data and 

separate LSTM-models 

for each muscle group 

(Hussain  

et al., 2022) 

HAR for five 

activities with 

thermal vision 

sensors  

IoT thermal vision sensor 

captured movements for three 

different perspectives 

neural networks (CNN 

integrated in LSTM 

network), obtained acc. 

up to 1  

(Polo-

Rodriguez  

et al., 2022) 

recognition of 

seven different 

strokes in 

badminton  

three acceleration/gyroscope 

sensors, attached to wrist, upper 

arm and the rackets grip 

CNN lead to 0.99 with 

combination of 

accelerometer and 

gyroscope data 

(Steels et al., 

2020) 

daily life activities 

 

smartphone accelerometer, 

located in the right pocket 

0.93 while using only 

two axes of accel-

erometer, classification 

with multilayer neural 

network 

(Javed et al., 

2020) 

walking activity 

identification 

ankle-worn accelerometer and 

gyroscope, additional use of 

pulse sensor 

0.97 overall accuracy 

distinguishing 

mimicked and real 

walking activities, 

based on CNN 

(Chakraborty 

& 

Mukherjee, 

2022) 

recognition and 

counting of 

physical exercises 

two smartwatches worn on wrist 

and ankle provided acceleration, 

gyroscope and orientation data 

exercise recognition: 

0.99; repetition 

counting: error of ±1 

for 0.91 of sets; 

CNN each for 

classification and 

counting 

(Soro et al., 

2019) 
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2. METHOD 

The performance of the ML models is evaluated with the usual metrics accuracy and F1 

score. The accuracies were calculated for training and validation data. When validating the 

trained models, a confusion matrix as well as the trace of ground truth and prediction were 

plotted with Matlab®. The advantage of the confusion matrix is that it provides an overview 

of the relation between true and predicted classes. With the matrix, the class-related 

true/false positives and negatives can be determined, from which further performance values 

such as the F1 score are calculable. However, the confusion matrix does not provide any 

information about the temporal course of the assignment. For this reason, a trace function is 

additionally applied for showing the progression of ground truth and prediction over the 

ascending number of samples. This allows hypotheses for correct and incorrect assignments 

by including the experimental protocols. Fig. 1 shows an example of a generated 

performance plot for sports activity classification. The confusion matrix shows that there are 

no misclassifications between the activities, only between the noExercise-class and the three 

sports exercises. This can be seen in the strong occupancy of the major and weak occupancy 

of the minor diagonals of the Confusion Matrix, shown in Figure 1 above. Below, the 

comparison of ground truth, i.e. the actual time course of the individual states, with the 

predicted states shows the few differences between model and reality, especially for the 

squats. 

The applied measurement system by Pozyx (developer kit) implies six stationary anchors, 

three mobile sensors, so called tags, and a local gateway for system controlling tasks.  

By distributing the anchors spatially around the training zone, the position of the individual 

tags in space is measured by trilateration, which describes the special characteristic of the 

employed measurement system. The individual tags periodically transmit signals with their 

ID. Therefore, the ultra wide band (UWB) range is used, which enables a high temporal 

resolution for precise distance measurements, even indoors. The anchors distributed in the 

room receive the ID message of the tag with a minimal time offset, which is in the 

nanosecond range. Based on a highly precise temporal synchronisation of the individual 

anchors, the gateway calculates the absolute positions of the tags in the room. 

The measurement data are accessible in the local network using the MQTT protocol.  

The recording rate for exercise acquisition was set to 30 Hz per tag. In addition to the absolute 

3D position, 3D acceleration, 3D rotation rate, 3D magnetic field strength, 3D euler angles, 

quaternions and absolute pressure are transmitted. This results in a total of 20 measured 

variables that are transmitted 30 times per second from each tag. The tags are attached to the 

chest, right hand and right ankle of the subjects. 
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Fig. 1. Performance graph consisting of a confusion matrix and the ground truth as well as prediction 

curve for a multiclass problem consisting of dips, pull-ups, squats, and no exercise (noEx.) 

 

Once the system is up and running, the accuracy of the 3D position detection is verified 

using static tests. The manufacturer's specifications were confirmed with an average 

deviation of 10 up to 30 cm. This is predominantly interesting if the exercises execution is 

located at several stations, for example in a fitness studio. A classification with positioning 

areas would then contribute to an improvement of the exercise classification, as exercises 

often are linked to specific sports equipment distributed in the tracking area. 

In the described work, three activities should be recognized – named dips, pull-ups and 

squats. The exercises were recorded as combined sets with breaks in between. Each 

combined set has an average duration of about 60-75 s. In total, the sets were repeated 5 to 

10 times per proband. Within the pauses, stretching and relaxing exercises were performed, 

to generate further movement patterns. Also the speed and orientation during the execution 

of the exercises were varied, which additionally contributes to a diversification of training 

and validation data. The subjects determined the number of repetitions according to their 

own fitness level and the experiment instructor documented course and number of finished 

exercises. As an example, the signal of one Euler angle (pitch) is shown in Fig. 2, linked 

with the performed sport exercises. 

The recording of inertial data was done with Matlab® R2020b. Before the model training, 

a data preprocessing has to be carried out. As first step, a linear interpolation of lossy sensor 

data was implemented. Temporary signal losses during the data transmission can occur due 

to obstacles such as metallic objects, especially for the foot-mounted tag. The interpolation 

leads to a uniform sampling rate of the three sensors, which allows in the next step the 

synchronization of the data recorded by different sensor placements. The interpolated data 

are stored in an array of the dimension N x 61. N corresponds to the number of time stamps 

of a measurement, for which the synchronized sensor data are stored rows-wise. For three 

tags with 20 measurement variables in each tag and the conclusive label column, the total 

number of columns results to 61. 
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Fig. 2. Signal of the recorded pitch euler angles when performing four dips, three pull-ups  

and ten squats, sensors located at chest, hand and foot 

 

For model training two different datasets were used – a Single Subject Dataset (SSD) as 

a compressed dataset with data recorded by just one subject and a Multiple Subjects Dataset 

(MSD) consisting of records from eight subjects. For the experimental search for suitable 

hyperparameters, the minor SSD dataset was used, since it allows a high number of tests 

with comparatively less computational effort. After optimizing the hyperparameters, the 

models were trained again with the MSD set to show effects in model behavior when 

increasing the data variety. The database was splitted according to the principle of holdout 

validation: Full sets of several subjects were used either as training or validation data. Here, 

a complete set can be understood as a continuous recording of a subject, in which for 

example pull-ups, dips and squats are performed one after the other with pauses in between. 

In average, one subject completed between eight to ten combined sets. 

Fig. 3 shows the class distribution within the generated training and validation datasets. 

In addition to the no exercise class, the squats class is dominant cause this activity could be 

performed most easily by all subjects. In the conducted hyperparameter studies, two different 

basic structures were trained – ANN and classifiers. While ANN were trained with the 

preprocessed raw data, the classifiers were trained with additional extracted features and not 

with the original raw data. For this purpose, each measurement variable was segmented 

according to the sliding window method. This method describes the generating of 

overlapping windows with defined window width w and overlap o. Due to the segmentation, 

the original number of labels (N labels for N samples) gets reduced. The reduced number of 

samples respectively the sample rate is calculated by N/(w-o). Subsequently, with the 

segmented data were calculated six different statistical values (mean, median, standard 

deviation, variance, skewness and kurtosis) for each window. 
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Fig. 3. Class distribution of the generated training and validation sets 

3. RESULTS AND DISCUSSION 

For the training of classifiers the classification learner toolbox of Matlab® was used, 

which provides 31 different types of classifiers. The initial configuration for generating 

sliding windows was set to a window size w of 30 and an overlap o of 10 samples. With this 

window parameterization, all available model types were trained and a reduction to four 

different model types with the highest validation accuracy was made. These four models 

were trained repeatedly and validated with the SSD data and different window 

parameterizations (w = [30, 50], o = [0, 10, 15, 25]). The achieved validation accuracies with 

the tested window parameterizations are shown in Fig. 4. The best results were obtained with 

the Gaussian Naive Bayes classifier, which provided a completely correct mapping of the 

validation data in one experiment.  

ANN were also trained with the SSD set to determine suitable training settings and 

hyperparameters. First, the type of input layer was investigated, which can be defined as 

feature input or sequence input. After several trials, it was concluded that for the given data 

structure, the feature input layer achieved a higher validation accuracy (92.6 % vs. 90.6 %) 

after a significantly shorter training time (39 s vs. 980 s). 

For subsequent investigations two different networks were used as examples, which are 

given in the Matlab® documentation (Sequence-to-Sequence Classification Using Deep 

Learning, n.d.) and which will be referred henceforth as LSTM and CNN. For CNN it is 

important to mention that it does not contain a convolutional layer due to the structure of the 

input data, but it has further typical components of the typical CNN (batch normalization 

layer, reluLayer). Both basic structures can be seen in Fig. 5. 
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Fig. 4. Obtained validation accuracies of four classifier types with six different window 

parameterizations, small data set (SSD) used 

 

 

 

Fig. 5. Basic ANN structures adapted from Matlab® examples (Sequence-to-Sequence Classification 

Using Deep Learning, n.d.; Train Network with Numeric Features, n.d.) 

 

As next step investigations followed on the type of input layer normalization and the 

number of training epochs that ANN passes through. With apply of the feature input layer, 

it was determined that the validation accuracies are already at a high level after three training 

epochs and that no further improvements are achieved by an increased number of epochs. 

Therefore, the number of epochs for subsequent experiments was set to three. 

As another important training parameter, the parameter miniBatchSize was investigated. 

The hyperparameter describes the number of samples considered in one iteration to set the 

network weights of the neurons by applying the solver. Similar to the number of epochs, 

miniBatchSize has an effect on the required training time. An increased miniBatchSize leads 

to an exponential decrease of the training time. The parameter was varied in the range from 

1 to 240 and the required training times as well as the achieved model accuracies were 

documented, which is shown in Fig. 6. It is evident that for a setting of miniBatchSize greater 

than 3, both networks provide high validation accuracies. For subsequent investigations, the 

values 15, 50 and 200 for minibatch were used to increase the statistical reliability. 
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Fig. 6. Progress of validation accuracy and training time while changing  

the training parameter miniBatchSize 

 

The optimization of further network and training parameters was continued in an iterative 

manner. The validation accuracy was always used as performance criterion. Finally, the 

determined parameter settings were tested with seven different network structures. This 

ANN structures were formed by adding individual layers to the basic structures of the LSTM 

and CNN network examples. Their layered structure and the obtained validation accuracies 

are presented in Fig. 7. The network "LSTM_2" achieved the best result with an average 

validation accuracy of 93.36 %. 

The classifiers and ANN were finally trained and validated with the optimized hyper-

parameters and the MSD dataset. Tab. 2 shows the achieved validation accuracies in compare 

with those of the SSD sets. The differences between MSD and SSD accuracies are also 

calculated. Essentially, it becomes clear that the classifiers achieve good results especially 

with small available datasets. Otherwise it could be observed for ANN that the performance 

remains on a similar level or even increases with larger data sets in most cases. Another 

advantage of ANN is the straight usability of sensor sizes without the preprocessing step of 

feature extraction. Likewise, the temporal resolution of the predictions of ANN corresponds 

exactly to the transmission rate of the sensors, while classifiers have a lower resolution  

(e.g. w = 50 and o = 45 lead to a label rate of only 6 Hz). 
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Fig. 7. Validation accuracy and loss for seven different network structures  

(mean values for miniBatchSize = [15, 50, 200]) 

Tab. 2. Comparison of mean validation accuracies obtained with classifiers and ANN for SSD-  

and MSD-datasets 

Mean validation 

accuracies in % 

Classifier 

boosted 

trees 
cosine knn 

gaussian naive 

bayes 
medium tree 

SSD 94.5 94.2 96.4 88.9 

MSD 92.9 92.0 89.4 89.8 

Difference: 

MSD-SSD 
-1.6 -2.2 -7 +0.9 

Mean validation 

accuracies in % 

ANN 

LSTM_Sig LSTM_2 LSTM LSCN CNN_3 CNN BILSTM 

SSD 86.7 93.4 92.6 89.5 90.8 89.7 92.8 

MSD 79.8 92.4 91.9 93.7 92.6 93.2 91.4 

Difference: 

MSD-SSD 
-6.9 -1 -0.7 +4.2 +1.8 -3.5 -1.4 

 

In order to detect possible causes for incorrect model predictions. the performance graph 

like shown in Fig. 1 was utilized. This form of visualisation enabled a simple temporal 

localisation of deviations between ground truth and prediction. Different spatial orientation 

of the examined people was considered the dominant cause of the error, often with the 

addition of abnormal exercise performance. Similarly, very slow executions were considered 

inferior. Another problem in the classification was the transition areas between activity and 

pauses, as it was not possible to determine the exact start and end points of an activity. There 

is also reason to assume that variations in the signal characteristics due to the individual 

corporality of the subjects (condition, mobility, gender, body height) lead to person-related 

variations in the accuracy of the trained models. The comparatively small number of subjects 

whose data were used for the model training could have increased this effect. 
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4. CONCLUSION 

The article describes the steps for implementing a HAR system, from data generation 

through their preprocessing up to training and optimisation of selected classification models. 

The model structures studied were classifiers and ANNs, which both successfully performed 

sport exercise recognition based on inertial data. First, the measurement system and the 

generation of two differently scaled data sets (SSD, MSD) were described. SSD served as  

a smaller data set for the iterative optimisation of model and training parameters. Once the 

parameterisation for achieving the best possible validation accuracies was completed with 

SSD, the models were trained and validated again with the larger MSD set. The resulting 

accuracies were presented in a comparable form. In the end, occurring false assignments 

were localised in the course of time and potential causes were elaborated. The paper thus 

provides an insight into the available tools of Matlab® for processing supervised learning 

tasks. It is shown that motion classification can be performed well with simple AI methods 

without extensive expert knowledge. Differences in the use of classifiers and ANNs are also 

elaborated and model-specific advantages and disadvantages in application for HAR are 

described. 

From the presented state of the art, further research tasks can be defined. For example, 

the obtained results should be verified by a more comprehensive database with more exercise 

classes and participants. An increase in the number of classes necessitates the use of additional 

performance indices, which describe the model accuracy on a class-specific basis. Another 

research focus could be the reduction of input variables by feature selection methods. This 

could allow the application on mobile platforms (smartphones, tablets) by reducing 

computational costs as well as increasing the robustness of the classification by discarding 

irrelevant signals. Finally, the extension of the classification functions should be mentioned. 

In addition to the pure recognition of the exercise execution, counting the completed repetitions 

would be another important implementation step. Functions for training monitoring, which 

provides feedback on the correct execution of exercises, would also significantly increase 

the potential of a HAR system in practice. To this end, the investigations described in this 

paper provide the basis for further developments. 
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