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Abstract  

This paper presents the application of a task scheduling algorithm called Fan based on 

artificial intelligence technique such as genetic algorithms for the problem of finding 

minima in objective functions, where equations are predefined to measure the return 

on investment. This work combines the methodologies of population exploration and 

exploitation. Results with good aptitudes are obtained until a better learning based on 

non-termination conditions is found, until the individual provides a better predisposi-

tion, adhering to the established constraints, exhausting all possible options and satisfying 

the stopping condition. A real-time task planning algorithm was applied based on 

consensus techniques. A software tool was developed, and the scheduler called FAN 

was adapted that contemplates the execution of periodic, aperiodic, and sporadic tasks 

focused on controlled environments, considering that strict time restrictions are met. 

In the first phase of the work, it is shown how convergence precipitates to an evolution. 

This is done in a few iterations. In the second stage, exploitation was improved, giving 

the algorithm a better performance in convergence and feasibility. As a result, a population 

was used and iterations were applied with a fan algorithm and better predisposition 

was obtained, which occurs in asynchronous processes while scheduling in real time. 

1. INTRODUCTION AND MOTIVATION  

Genetic algorithms were proposed as an alternative to solve problems that are difficult to 

solve in linear programming (Sreedhar, et al., 2020). In this work, a software tool was 

developed where genetic, heuristic, metaheuristic, and bioinspired algorithms were 

implemented and tested. One of the implemented algorithms was the Differential Evolution 

Algorithm (DEA) (Storn and Price, 1997; Cheng and Hwang, 2001), while others included 

the Harmony Search (HS) (Geem and Loganathan, 2001), the Whale Optimization 

Algorithm (WOA) (Nasiri and Khiyabani, 2018; Seyedali and Andrew 2016), among others. 
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Additionally, a genetic algorithm was implemented with the adaptation of the fan task 

planner proposed in Larios et al. (2019), which describes the task scheduling problem with 

processes and is expressed in the following point: 

 Maintaining a communication path between nodes vi → vj is very complicated, 

considering that i ≠ j and vj, vj ϵ V. Where V is the set of nodes in a mobile network, 

which can be in a neighborhood L (Bertuccelli et al., 2010; Lim et al., 2016; Jeong, 

Simeone and Kang 2017; Wu and Zhang, 2018; Kim, Jung, Min, and Heo, 2021). 

 The decentralization of objects and services is complex, i.e., by creating an object 

space between drones to obtain a mobile distributed environment (Soria, Schiano, and 

Floreano, 2021; Nouiri et al., 2018). 

 The organization of the MDS is instable by not obtaining the best candidate as 

coordinator or leader (Saffre et al., 2022; Ramasubramanian, Haas and Sirer, 2003), 

this due is to the limited time in communication. 
 

First, the genetic algorithm (GA) is presented as follows: given an initial population  

X = (x1, x2,…,xn), where each individual's attributes from the i-th to the n-th element are 

different, ensuring that no individual repeats. 

The generation of the population is in accordance with the Upper and Lower ranges 

marked as Li, Hi, with Li in the Lower set, Hi in Upper, in addition to Li, Hi and xi with  

i = 0, n attributes. The goal is to obtain a minimum element in the population using mutation, 

cloning, and genetic alteration operations where applicable. 

The authors propose the implementation of a genetic algorithm by selecting the best 

fitness values, applying the real-time fan-out task scheduling algorithm (APTTRA), which 

helped to select tasks that can achieve better results based on the search for better fitness 

values. The communication required in one or more neighborhoods is within a set of 

processes that must be performed using a dynamic topology, which presents the problems 

established in Larios et al., (2019). 

Section 2 presents the function used in the HSW and the results in the work of Portilla 

(Portilla et al., 2017; Barbosa et al., 2019), with the indicated constraints and respecting the 

Lower and Upper range specifications. The application of this algorithm provides 

asynchronous acceleration of results, while ensuring the timing of the task. 

Finally, section 3 highlights the results of the proposed function applications and shows 

the results in the HSW and the Java application of the functions. The analysis and 

development of the proposed algorithm implemented in the HSW are also discussed. 

Additionally, the results with the convergence and feasibility graphs based on the 

exploration-exploitation of a given population are presented. 

2. PROBLEM FORMULATION AND ANALYSIS 

The authors' goal is to obtain a minimal element in the population using mutation, cloning 

and genetic alteration surgery, if necessary. Communication required between one or more 

neighborhoods within a set of processes must be performed using dynamic topology. It starts 

with the application of the functions:  

𝑓1(𝑋⃗ ) = (𝑥1 − 10)3 + (𝑥2 − 20)3        (1) 
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with restrictions: 

𝑔1(𝑋⃗) = −(𝑥1 − 5)2 − (𝑥2 − 5)2 + 100 ≤  0          (2) 

𝑔2(𝑋⃗) = (𝑥1 − 6)2 + (𝑥2 − 5)2 − 82.81 ≤  0 

The optimal solution established in Portilla et al. (2017) is in equation (1), Lower and 

Upper thresholds are applied, resulting in x = -6961.81387558, where  

x = (14.09500000000000064, 0.8429607892154795668), and the applied constraints are 

g1(x) and g2(x) (see equation 2). 

In the software tool, the population with Upper and Lower ranges was created. With this 

tool, the population with its dimensions and ranges can be represented by taking each 

element of the matrix with dimensions by attributes for each xi,j. The attributes of the 

individuals such as the i-th values and the dimension of the population as the j-th values are 

randomly selected, only if Li ≤ xi,j ≤ Hi in a defined range. 

These candidate individuals are sorted so that the value of the objective function 

corresponding to the first solution vector is minimized. In other words, feasible solutions are 

sorted in descending order according to their objective function value. However, it should 

be mentioned that the only feasible elements are those that satisfy the constraints established 

by the algorithm and it is inserted into a vector called Aptitude, where unfeasible candidates 

are discarded from the process. 

(𝑥1
1  ⋯ 𝑥𝑛

1 , 𝐹𝑎𝑐𝑔  ⋮ ⋱ ⋮  𝑥1
𝐷𝑖𝑚  ⋯ 𝑥𝑛

𝐷𝑖𝑚, 𝐹𝑎𝑐𝑔  )      (3) 

Having the initial population matrix (see equation 3), where [x1i, x2i, . . ., xni] (i = 1, 2, …, g) 

is a candidate solution in the g-th generation, Facg is also represented as an indicator of the 

number of constraint violations. In the creation of a population, everyone is evaluated.  

In case it violates the constraints of functions g1 and g2 as a set V, the condition shown in 

algorithm 1 is satisfied: v1, v2, vt in V are taken to show feasibility for everyone in the initial 

population. 
 

 



46 
 

3. METRIC DESIGN AND APPLICATION 

The algorithm of Fan used for the application of the metric (see Fig. 1), highlights the 

management, creation, and escalation of processes within a specific time. The processes 

fulfill the task of sending messages at a certain moment, creating a process per message,  

in this way the metric is obtained as a function of time. Each process was identified by an 

identifier, if the value is different from zero, then the creation of child processes is extended, 

and task scheduling is improved with the fan algorithm. If this is not the case, the processes 

are suspended. 

 
 
 
 
 
 
 

 
 
 

 

 

Fig. 1. Creation and scaling of processes with a specific deadline 

In the planning of each process, they are identified as ready processes with a set of  

Jn tasks, then the creation of Pm processes is extended, avoiding entering the error state (E), 

if the deadline is met. 

In equation (4), we have the following condition: if the slack time (lost time) Xj of each 

process is greater than the sum of the absolute constrained times di, then the process will be 

on hold. 

𝐸 = ∑ (𝑑𝑖)𝑛
𝑖=1 ≤ 𝑋𝑗         (4) 

where:  Xj – time which the task can be delayed in its activations to complete its deadline, 

di – absolute deadline. 

It is expected to avoid the planning problem that is the domino effect, by defining a real-

time scheduler σ(t) whose processes are generated in a spanning tree, such as a set of 

processes P, a set of resources R, and a set of tasks J, as shown in the equation (5). 

Supposing that the solution is using a related acyclic graph reduces these planning errors, 

as is proposed in Larios-Gómez et al., (2019), where this work was the main source for the 

article. 

G < P, R, J, A >           (5) 

 

Pi = {ji, ji+1, ji+2, ...} 
 

Ready 

 

  

Running  

Error 

Laxity Li  
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4. APTTRA APPLICATION IN A GENETIC ALGORITHM  

When applying the genetic algorithm, an initial population is given in a lower range L 

and upper range H. In this algorithm, a stage of selection of an individual from the population 

called Ip is proposed. In this stage, Deb's rules (Deb, 2000) are applied, with the condition 

of the smallest number of violations with respect to the constraints g1(x), g2(x). 
 

 
 

In algorithm 2, there is a cloning stage of an agent called NX, which is compared to a 

previously selected individual. The clone NX is genetically modified, that is, it must comply 

with the ranges Li and Hi, which will be bounded depending on the solutions in several 

generations or iteration that is equal to a percentage in which the simple comparisons are 

made. This proposal makes it possible to apply exploitation in the initial population, 

changing the way in which NX and Ip are compared. After bounding the ranges L and H, 

new generations are improved by combining individuals with modified clones within those 

ranges. In the same way, cloning is improved in a percentage of generations due to iterations. 

Before ending the algorithm, it sends the best solutions or fitnesses as a subset of the 

population called VIPX. First, the ranges are bounded depending on the best fitnesses sent in 

the vector Fit(x) as shown in algorithm 3. 

Algorithms 2 and 3 are dedicated to exploiting the subpopulation, obtaining the best 

results from the initial population, which is approximately 10%. These individuals form a 

special subset called the VIP population. The process they undergo is drastic and fully 

exploitative, using a task scheduling to improve solutions to the limit. APTTRA is applied 

concurrently so that each thread is responsible for finding an optimal solution. 
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5. RESULT 

The software tool was applied to function (1) when only exploring and not enforcing 

constraints (2). The tool produced better results, but we reiterate that constraints were not 

applied at this time. Thanks to this tool, the genetic algorithm can be tested, and its 

convergence and feasibility graphs can be displayed.  

The parameter values are: 

 Dimension D = [50 to 100], 

 Attributes = 2, 

 Iterations G = [200 to 500], 

 Exploration within the range [1-,1]. 

Constraints are applied, and exploration-exploitation is performed on a subpopulation 

with better fitness. Convergence with exploitation is shown in Fig. 1, where the hybrid work 

is evident after more than 900 iterations with a population of 100 solutions or individuals. 

 

Fig. 1. Exploration-Exploitation Convergence of Function (1) with Constraints 
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The exploitation part provides us with a more complete result and if exploitation is not 

applied to the population, then the desired result will not be achieved. Because it is in this 

part where an algorithm must be applied that allows searching through intervals and genetic 

alteration or substitution, that is, some modification is applied in the creation of individuals, 

in this case it is range adaptation through the properties RRMa and RRMe applied in 

algorithm 3. 

In the feasibility part, we worked in the same way as convergence, through exploration 

and exploration-exploitation.  

Taking the parameter values as: 

 Dimension D = [50 to 100], 

 Attributes = 2, 

 Iterations G = [200 to 500], 

 Exploration-Exploitation, 

 Range between [1-,1]. 

Restrictions are applied and forced exploitation is given to the subpopulation. 

 

Fig. 2. Feasibility with Exploration-Exploitation with Constraints 

The Exploration-Exploitation approach with APTTRA. Applying the restrictions and the 

hybrid Exploration-Exploitation approach, we have different results starting by applying 

Function (1) and restrictions with the attributes taken from the work of Portilla (Portilla et 

al., 2017; Barbosa et al., 2019): X = {14.09500000000000064,0.8429607892154795668} 

with several iterations Iter = 1000 and a population of 1000 individuals, the HSW gives us 

the result f(x) = -6961.813875580138 with g1(x) ≤ 0.0, g2(x) ≤ 0.0 

The results we have so far do not improve upon those obtained in Function (1), even 

when applying the hybrid method proposed in the GA. However, we do have better fitness 

values, so this algorithm still needs to be further improved, detailed, and tested with more 

populations. 

For example, we have the fitness in Figure 3, where better fitness values are obtained in 

a short time, if the APTTRA algorithm is applied. 
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Fig. 3. Convergence of GA with exploration of the VIP population 

 

 

Fig. 4. AG with Exploration-APTTRA 

 
Maximum iteration number for a search process: 2147483647. 

Aptitude:  

 x = {13.25345222386948, 0.15710759348131223}, 

 g1(𝑥⃗) = -8.42691952718755 Fulfills, 

 g2(𝑥⃗) = -6.743823974926528 Fulfills. 
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Another function where AG with APTTRA was applied is equation (6) with constraints 

and attributes obtained from the work of Portilla (Portilla et al., 2017; Barbosa et al., 2019). 

The result was x = {2.17199634142692, 2.3636830416034, 8.77392573913157, 

5.09598443745173, 0.990654756560493, 1.43057392853463, 1.32164415364306, 

9.82872576524495, 8.2800915887356, 8.3759266477347} with a maximum iteration 

number Iter = 2000 and a population of 10 individuals. 

𝑓4(𝑥⃗) = 𝑥1
2 + 𝑥2

2 + 𝑥1 𝑥2 − 14 𝑥1 − 16 𝑥2 + (𝑥3 − 10)2 + 4(𝑥4 − 5)2 +   (6) 

+(𝑥5 − 3)2 + 2(𝑥6 − 1)2 + 5 𝑥7
2 + 7(𝑥8 − 11)2+ 

+2(𝑥9 − 10)2 + (𝑥10 − 7)2 + 45 

With restrictions 

𝑔1(𝑥⃗) = −105 + 4 𝑥1 + 5 𝑥2 − 3 𝑥7 + 9 𝑥8  ≤ 0       (7) 

𝑔2(𝑥⃗) = 10 𝑥1 − 8 𝑥2 − 17 𝑥7 − 2 𝑥8  ≤  0 
𝑔3(𝑥⃗) = −8 𝑥1 + 2 𝑥2 + 5 𝑥9 − 2 𝑥10 − 12 ≤ 0 

𝑔4(𝑥⃗) = 3(𝑥1 − 2)2 + 4(𝑥2 − 3) + 2 𝑥3
2 − 7 𝑥4 − 120 ≤  0 

𝑔5(𝑥⃗) = 5 𝑥1
2 + 8 𝑥2 + (𝑥3 − 6)2 − 2 𝑥4 − 40 ≤  0 

𝑔6(𝑥⃗) = 𝑥1
2 + 2(𝑥2 − 2)2 − 2 𝑥1 𝑥2 + 14 𝑥5 − 6 𝑥6 ≤  0 

𝑔7(𝑥⃗) = 0.5(𝑥1 − 8)2 + 2(𝑥2 − 4)2 + 3 𝑥5
2 − 𝑥6 − 30 ≤  0 

𝑔8(𝑥⃗) = −3 𝑥1 + 6 𝑥2 + 12(𝑥9 − 8)2 − 7 𝑥10 ≤  0 
  

The HSW yields the result f(x) = 24.30620906817991 with g1(x), g2(x) less than zero, 

compared to the results in Portilla of 24.30620906818. It is mentioned that the recorded 

results may suffer from rounding errors that can cause slight infeasibility sometimes in the 

best solutions given with six active constraints g1, g2, g3, g4, g5, and g6, and in this work, 

eight active constraints are achieved. 

Search process iteration number: 104531. 

Fitness: 24.30620906817991 Meets requirement. 

Attributes x = {2.1855839721698693, 2.309316372623711, 8.625018811507283, 

5.0471897772421155, 0.8678245864139478, 1.2978045356201755, 

1.0039750892086519, 9.670233173002996, 8.177772543738563, 8.190078280631027} 

 
g1(𝑥⃗) = -0.6909089588009465  Fulfills 

g2(𝑥⃗) = -33.02673412184407  Fulfills 

g3(𝑥⃗) = -0.35733287468077535  Fulfills 

g4(𝑥⃗) = -9.20783972031191   Fulfills 

g5(𝑥⃗) = -0.8452383156983103  Fulfills 

g6(𝑥⃗) = -0.7635621691254668  Fulfills 

g7(𝑥⃗) = -6.4179068691661065  Fulfills 

g8(𝑥⃗) = -49.652164717497186  Fulfills 
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1. #include <sys/socket.h> 
2. #include <sys/time.h> 
3. #include <arpa/inet.h> 
4. #include <unistd.h> 
5. struct sockaddr_in serverSocketAddr; 
6. struct sockaddr_in clientSocketAddr; 
7. typedef struct{ 
8.     char * message; 
9.     char * ip; 
10.     int port; 
11. }ToNodo; 
12. void sendToMessage(char * message, char * ip, int port){ 
13.     struct sockaddr_in toAddress; 
14.     toAddress.sin_family = AF_INET; 
15.     toAddress.sin_addr.s_addr = inet_addr(ip); 
16.     toAddress.sin_port = htons(port); 
17.     bzero( &(toAddress.sin_zero), 8); 
18.     sendto(idServerSocket, message, sizeof(message), 0, (struct sockaddr*)&toAddress, 

sizeof(toAddress)); 
19. } 
20.  
21. void receiveToMessage(char * message){ 
22.     int clientSocketAddrLen = sizeof(clientSocketAddr); 
23.     int receive = recvfrom(idServerSocket, message, sizeof(message), 0, (struct sockaddr 

*)&clientSocketAddr, &clientSocketAddrLen); 
24. } 

Fig. 5. Methods for the realization of a P2P network  

in a dynamic distributed mobile environment 

To develop an aerial mobile distributed system applying a network connection based on 

p2p nodes, where each peer is represented as a distributed mobile device (see Fig 4). Taking 

this into account, novel real-time scheduling algorithms were designed and implemented to 

observe the delay quality in a real use case. For example, it is contemplated to design and 

implement an embedded system with drones to report the help of people in environments 

that are difficult to access or in a natural disaster. 

6. CONCLUSIONS AND FUTURE WORKS 

In this paper, the application of a task scheduling algorithm called Fan was presented; 

where an algorithmic approach for the field of artificial intelligence adjusts to the ranges of 

the best fitness values through automatic random range changes and task planning 

exploitation, seeking a solution until the resource is exhausted.  

This approach was applied to planning algorithms such as APTTRA, leading to improved 

results overall. Furthermore, techniques, methods, and algorithms of distributed mobile 

systems were studied; therefore, a methodology and a metric capable of satisfying the 
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objectives and the goal in the distributed environment were proposed. Finally, a proposal for 

future work is to decentralize the planning work in a hybrid Exploration-Exploitation way 

and create processes called Miners, which would provide a Hard-Exploitation, synchronized 

with APTTRA. 
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