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Abstract  

In today's digitalized and technology-driven society, where the number of IoT devices 

and the volume of collected data is exponentially increasing, the use of sensor data has 

become a necessity in certain fields of activity. This paper presents a concise history of 

sensor evolution and specialization, with a focus on the sensors used for localization, 

particularly those present in microelectromechanical systems (MEMS) that make up 

inertial measurement units. The study starts with a general overview and progresses 

towards a more specific analysis of data sets collected from an accelerometer. In the 

materials and methods section, it emphasizes the imperfect nature of sensor 

measurements and the need to filter digital signals. Three different digital signal 

filtering techniques belonging to distinct filter categories are comparatively analyzed, 

with each technique having its own particularities, advantages and disadvantages. The 

analysis considers the effectiveness in reducing measurement errors, the impact of the 

filtering process on the original signal, the ability to highlight the underlying 

phenomenon, as well as the performance of the analyzed algorithms. The ultimate 

purpose of this article is to determine which filtration method is best suited for the 

signal at hand in the context of an indoor localization application. 

1. INTRODUCTION 

The concept of sensors is tightly coupled to the evolution of technology and the 

reinterpretation of daily activities. They are widely used in numerous contexts, both 

implicitly and explicitly, ranging from the medical field, where they are essential for 

monitoring patients' vital signs, to domestic settings, where they are integrated into mobile 

phones and other electronic devices to identify location, measure environmental parameters 

and even gauge a person's current state, physical activity progress and other relevant 

indicators of effort or sleep quality, having these functionalities offered by the emergence of 

smart components in recent years. Despite being predominantly associated with the digital 

revolution, the history of sensors or their precursors can be traced back several centuries to 

the works of Leonardo da Vinci, who developed temperature and pressure measurement 

techniques, and Jacques Curie's documentation of materials that can generate voltage. The 

 
* Bucharest University of Economic Studies, Faculty of Cybernetics, Statistics and Economic Informatics, 

Department of Economic Informatics, Romania, alexandru.obretin@csie.ase.ro, andreea.cornea@csie.ase.ro 

mailto:alexandru.obretin@csie.ase.ro


140 

use of sensors gained further traction during the World Wars when they were employed in 

the detection of enemy elements through radar or sonar. This historical background laid the 

foundation for the development of components used across various industries to gather 

crucial data for proper operation. The literature identifies practical use cases for sensors in 

fields such as food, medical, automotive, air, and military, among others, highlighting their 

indispensable role in facilitating the functioning of the economy. 

Sensors constitute a fundamental component of data extraction in the food industry, 

enabling the implementation of Big Data concepts by facilitating efficient management of 

large volumes of data (Dinakar & Vagdevi, 2017). The information obtained through sensors 

is integrated into all stages of production, processing, distribution, transport and marketing. 

The accuracy of this information ensures industry workers can rely on it to implement 

processes that maintain business continuity and comply with regulations imposed by the 

legislation in force. Sensors provide an easy way to obtain environmental details during the 

stages mentioned above. For example, they can provide information on temperature 

throughout the entire product chain management process to guarantee food safety. Sensors 

can also monitor agricultural growth levels, directing workers towards production that is 

ready for harvest and can be sent forward in accordance with the predefined flow of 

operations. 

In the medical field, sensors find diverse applications, ranging from monitoring vital 

functions in various settings such as the hospitals or even household devices (Mohamed et 

al., 2023). This wide applicability enables the detection of anomalies and the diagnosis of 

diseases (Ahlawat et al., 2024). Moreover, sensors are integrated into tools used for imaging 

purposes, where image sensors provide visual differences between healthy and affected 

surfaces, aiding in overall analysis (Yadav et al., 2024). Notably, sensors also play a critical 

role in treatments, with applications in implantable devices and providing support for 

monitoring conditions (Xie et al., 2017). 

In the automotive industry, technological advancements have revolutionized the way cars 

are viewed and used, offering a more enjoyable and safer driving experience. Sensors are a 

modern approach to monitoring vehicle conditions, improving performance and increased 

safety (Bloecher et al., 2009; Karpinski et al., 2023). They support driver-assistance systems, 

enabling braking and parking assistance while constantly detecting obstacles, thus avoiding 

possible accidents and providing a personalized experience. The integration of sensors into 

vehicle operation is not a recent implementation but dates back to the past, having such 

components used to monitor liquid temperature or tire pressure. With technological 

advancements, the automotive industry has implemented new functionalities to attract 

customers, including a friendlier relationship with the environment, through sensors that 

measure discharged polluting substances. 

In the fields of aerospace and military technology, the use of state-of-the-art and accurate 

devices is imperative to ensure the highest level of safety (Azam et al., 2023; Anwar et al., 

2023). The Inertial Measurement Unit (IMU) sensor, which consists of an accelerometer, 

gyroscope and magnetometer, is particularly crucial for both domains, as it enables the 

orientation of an object in space and the determination of its direction of movement 

(Gujarathi & Bhole, 2019). 

In the aviation industry, the IMU plays a crucial role in ensuring safe flight management 

and is an extension of the pilot. The IMU monitors the speed, orientation, and position of 

the aircraft in space, enabling it to continue transport under adverse environmental 
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conditions and maintain a safe distance from other obstacles in the airspace. Additionally, 

just as sensors are used in the automotive field for driving assistance systems, they can also 

be integrated into aircraft to facilitate flights with automatic pilot or assistance during take-

offs, landings, emergencies or unforeseen situations, relying on accurate navigation data to 

calculate the plane's position and determine the risks of each possible trajectory (Zhang et 

al., 2005). 

In the realm of military operations, similar to the airfield, the IMU serves multiple 

purposes, intersecting with previous examples in military aviation. Additionally, it can be 

used in land or sea operations to track vehicle movement, monitor devices, ensure movement 

in adverse weather or environmental conditions and detect unknown, potentially hostile 

objects that may be situated near devices monitored by IMU sensors. To comprehensively 

understand the IMU's mode of operation, it is necessary to synthesize the functionalities of 

each integrated sensor at the assembly level. 

The accelerometer is used to calculate acceleration and is based on inertial forces to 

determine an object's speed of movement, by measuring movement on the tridimensional 

axis system and converting it into electrical signals, which then transmits to the component 

to which it is integrated (Promrit et al., 2018). 

Similarly, the gyroscope is based on inertial forces, aiming to determine the orientation 

and rotation of an object, and is represented by a rotor that goes around an axis. The 

gyroscopic effect is also used at the gyroscope level to allow for the identification of 

orientation and the preservation of direction in the situation where the sensor is in motion, 

in space, thus determining the angle of displacement (Olivares et al., 2009). 

The magnetometer is based on the magnetic properties of materials and their interaction 

in space, with the sensor's functionality provided by the measurement of magnetic fields. 

Based on this principle, the position of the device containing this sensor can be determined 

in relation to magnetic North, due to the induction of electric voltage in the direction of the 

magnetic field in which the device is oriented. Practically, in the context of using a mobile 

phone, the magnetometer is based on the Hall Effect, which generates a magnetic field when 

a magnet is placed near the device, thus determining the orientation (Poulose et al., 2019). 

In the domain of mobile devices, a set of components known as microelectromechanical 

systems (MEMS) are combined to provide the necessary sensors for the phone's key 

functions. The MEMS include the accelerometer, magnetometer and gyroscope, as well as 

pressure, light, and proximity sensors. They allow the development of complex 

functionalities and enable users to access intelligent applications that extract data from the 

sensors (Sung et al., 2014). 

Given the increasing reliance on mobile phones for daily activities, such as making phone 

calls, accessing social media, determining distance, and measuring environmental factors 

like temperature, it is imperative that the information provided by the phone is accurate. 

Consequently, the precision offered by these sensors has been evaluated and found to have 

measurement errors, requiring correction methods to improve accuracy of the application. 

Even under static conditions, where the device is placed on a flat surface and exposed to 

no external forces except for gravity, the sensors in smart mobile devices record 

measurement errors. These errors can be attributed to manufacturing defects, physical 

limitations imposed by the device specifications, calibration errors, physical damage to the 

device, software component errors responsible for processing signals collected from the 

sensors, improper use of the device during measurements, environmental factors such as 
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humidity, pressure, temperature or magnetic field interference and the degree of wear and 

charge of the battery or external electrical noise, which can interfere with the measured 

phenomenon (Truzman et al., 2021; Bentler & Chiou, 2006; Tan & Jiang, 2018). 

It is imperative to consider all the factors that may influence the collection and 

measurement of digital signals. Despite taking meticulous precautions to minimize the 

impact of external factors, the measurements obtained from sensors, such as those found in 

smartphones, are susceptible to noise and errors. Moreover, these measurements tend to 

accumulate offset over time, leading to a drifting state. Therefore, it is essential to implement 

a calibration process to ensure the accuracy of the collected data (Vaseghi, 2008). 

For illustrative purposes, this article will focus on a 3-axis accelerometer, which is 

commonly found in mobile phones. Fig. 1 graphically depicts the related triaxle system, 

which will be referred to throughout this article, when discussing acceleration values on 

specific axes. 

 

Fig. 1. 3D coordinates system relative to a mobile device 

Offset refers to the non-zero measurement value that a sensor indicates even in the 

absence of acceleration. In the case of a smartphone placed horizontally on a flat surface, 

ignoring the effects of gravity, the values related to the OX and OY axes should ideally be 

zero. However, in such circumstances, the measured values may deviate from zero, as shown 

in Tab. 1. 

Tab. 1. Accelerometer values collected in a static context 

Timestamp Roll (X) Pitch (Y) Yaw (Z) 

1677182050544 -0.6987 -1.4534 -9.8387 

1677182050561 -0.0007 -0.7920 -10.7154 

1677182050578 -0.1232 -0.7684 -10.2666 

1677182050595 -0.5406 -0.9493 -9.6350 

 

The phenomenon of offset, which is also known as bias, is attributable to a variety of 

sources, including manufacturing defects, temperature fluctuations and external 

environmental factors. Offset can cause the sensor to produce inaccurate or imbalanced 

readings which, if not addressed correctly, can significantly compromise the intended 

outcomes. To mitigate the impact of offset, it is typically advisable to calibrate the 

accelerometer and eliminate its values by applying correction factors. 

Drift is a gradual and unintended shift in the readings of the accelerometer over time. It 

results in a slight, constant tendency to deviate, even when the user is moving in a straight 
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line, which can lead to readings that indicate a left or right deviation from the actual path. 

Drift is determined by factors such as mechanical stress, electrical noise and temperature 

changes, and it can considerably affect the accuracy of the accelerometer readings, even 

causing it to depart from the reference plane on small surfaces. Mechanical stabilization 

techniques and signal processing algorithms are employed to minimize the drift tendency of 

the accelerometer. The subsequent chapter is focused on the use of correction filters to this 

end. 

2. MATERIALS AND METHODS 

Digital filters are systems designed to process digital signals through the manipulation of 

the amplitude and phase of the signal at various frequencies, by using sets of mathematical 

operations. The fundamental principle of digital filtering involves the convolution of the 

input signal with a kernel filter - a set of coefficients that define the frequency response of 

the filter. 

There are various ways to classify digital filters, but they will be categorized based on 

the type of impulse response into finite impulse response (FIR) filters and infinite impulse 

response (IIR) filters. FIR filters convolve the input signal with a finite number of 

coefficients, producing a weighted sum of past and present samples of the input signal. The 

name finite is used to denote that the impulse response of these filters reaches zero within a 

finite time interval. These properties of FIR filters make them inherently stable, in contrast 

to IIR filters, where the presence of feedback can impact stability. FIR filters are typically 

employed when linear phase characteristics are desired, such as in audio equalization or 

digital signal processing. 

On the other hand, IIR filters use feedback to generate an impulse response that extends 

infinitely in time. The output of an IIR filter is created based on both the current and past 

samples of the input signal, as well as the previous results of the filtering process. This 

feedback component represents the essential part of filtering in IIR filters. IIR filters are 

generally used when a sharper frequency response, with a narrow transition band and sharp 

cutoff, is required. 

2.1. Simple moving average filter 

One of the most widely known and effective filtering techniques is the moving average 

filter, which is a type of signal processing filter that utilizes the average of a set of 

neighboring values to smooth the overall representation of a wave and remove high and low 

frequency noise. The algorithm for a simple moving average filter involves operating on a 

data collection of size M and a predetermined size N, where the mathematical relationship 

M greater or equal than N must hold. The first filtered value is obtained by calculating the 

arithmetic mean of the first N terms in the collection. Starting with the second filtered value, 

the reference subset of size N is shifted to the upper bound of the data set, excluding the first 

element of the series and including the next available instance. Based on the new subset, the 

average of the observations in the window is determined, resulting in a smoothed version of 

the original signal, with the degree of smoothing being determined by the size of the window. 

This type of filter is commonly used in conjunction with time series datasets to eliminate 

short-term fluctuations and emphasize long-term trends or cycles. The distinction between 
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short-term and long-term may differ depending on the scenario and the parameters of the 

moving average will be adjusted accordingly. The literature suggests that, when utilizing a 

moving average filter, the window size, impact on the limits, frequency response, 

computational complexity, and delay induced in the processed signal and inability to 

maintain abrupt signal transitions should all be considered (Johnston et al., 1999; Hansun & 

Kristanda, 2017; Ellis & Parbery, 2005). 

Despite its limitations, such as its inability to preserve sudden transitions in the signal, 

this filter is frequently used due to its simplicity, effectiveness in reasonable data volumes 

and ease of implementation and comprehension (Hidayat et al., 2015; Thinh et al., 2018; 

Purnama et al., 2022; Ahn & Ko, 2009). The time complexity of this algorithm is linear and 

it is a robust and effective noise removal tool, with a reduced sensitivity to data anomalies 

and sudden transitions. By changing the window size or using variations such as weighted, 

exponential or adaptive averages, this filter becomes a highly flexible tool for filtering digital 

signals. 

To map displacement using an inertial measurement unit, three sets of accelerometer data 

were collected, each containing acceleration values for all three axes. For ease of 

comprehension, subsequent plots were generated using a subset of Y-axis acceleration 

values. To identify the most effective filtering technique, multiple instances of the simple 

moving average filter were empirically tested using different window sizes.  

 

Fig. 2. Simple moving average filter run on different window sizes 

Fig. 2 illustrates the recorded accelerometer values and the results of the filtering process 

for three cases, selected based on the representativeness criteria. The figure demonstrates 

that a filter with a window size of 7 is insufficient in eliminating all accelerometer 

measurement errors, as it graphically highlights sinusoids with multiple local extrema points. 

In contrast, a filter with a window size of 37 elements fails to accurately capture the 

movement trend. For the analyzed subset, comprising ten steps surrounded by rest periods, 

the transition between steps 5 to 6 is not clearly highlighted and the local extrema points are 

difficult to identify, potentially leading to the exclusion of some genuine steps, such as steps 

8 and 9. 

However, using a filter with a window size of 13 units produces excellent results in terms 

of accurately and precisely identifying individual steps and smoothing secondary extrema 
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points. Comparable results can be obtained for window sizes close to 13, but the observed 

differences do not justify the selection of another value over 13. 

The choice of the appropriate window size was not only based on graphical results 

obtained through successive runs, but also on a performance criterion. To this end, a 

comparison was conducted by running 10,000 simulations for the scenario described earlier, 

using different window sizes of a simple moving average filter, namely: 5, 7, 9, 11, 13, 15, 

17, 19, 21, 23, 25, 27, 29, 31, 33, 35, and 37. 

The results are presented in Fig. 3, with the horizontal axis representing the window sizes 

and the vertical axis representing the average processing time in seconds. The range of 

measurements obtained was between 0.0646 and 0.07827 seconds, with an outlier value of 

0.12163 seconds, which was eliminated due to the temporary load of the microprocessor and 

RAM memory of the used computer system, rather than any particularity of the value 11. 

 

Fig. 3. Performance analysis for the simple moving average filters presented above 

Based on a dataset of 565 points, it was observed that the obtained values tended to fall 

within the same range. Therefore, the decision to choose a certain value depended primarily 

on the fidelity of the graphical identification of the steps. However, when the dataset was 

increased experimentally to 307,360 points, the average execution time increased to a range 

between 22.11978 and 26.83928 seconds. This comparison highlights the importance of 

implementing an approach based on processing windows, where small volumes of data are 

analyzed point by point to avoid overloading computing resources and to determine filtered 

values almost in real time. 

2.2. Savitzky-Golay filter 

The Savitzky-Golay filter is a sophisticated technique specifically designed for 

processing digital signals. It is a type of digital smoothing filter that is commonly used to 

improve the accuracy of a dataset without altering or degrading its underlying structure. This 

process involves fitting a polynomial curve to a sample of neighboring observations and 

determining an estimated value for the smoothed sample. 

The filter is highly effective at removing noise from the spectrum of processed signals, 

while preserving important characteristics of the signal such as the presence and location of 
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local extrema points. To achieve this, the filter fits a polynomial curve of a specified degree, 

usually linear, quadratic or cubic, to a sample window of neighboring observed values. The 

polynomial curve fitting process is based on a regression analysis algorithm that employs 

the least squares method to minimize the error values between the fitted curve and the 

collected data. The coefficients of the polynomial involved in the smoothing process are then 

used to estimate the signal value at a given point (Schmid et al., 2022; Krishnan & 

Seelamantula, 2012; Schafer, 2011). 

In digital signal processing, the Savitzky-Golay filter is a widely used technique for data 

smoothing. It is specifically designed to enhance the accuracy of a data set without 

compromising its structural integrity (Liu et al., 2016; Azami et al., 2012; Acharya et al., 

2016). The filter works by fitting a polynomial curve to a set of neighboring observations 

and determining a representative estimated value for the smoothed sample. To control the 

degree of smoothing, the window size and polynomial degree can be adjusted as parameters. 

However, larger window sizes or higher degree polynomials may introduce offset and 

overshoot, leading to inaccuracies in the estimated results. 

It is crucial to consider the relationship between the window length and the degree of the 

polynomial filter when using a Savitzky-Golay filter. A higher polynomial degree can result 

in overfitting, whereas a smaller degree may not provide effective smoothing. The filter uses 

a polynomial of degree N to approximate M points, where M is the size of the window. 

Therefore, choosing N+1 to be as close as possible to M results in no actual smoothing, but 

instead only interpolation. It is recommended to select a value of N that is significantly 

smaller than M, for numerical stability and effective smoothing. Typically, a polynomial 

degree between 2 and 5 is used in applications employing a Savitzky-Golay filter (Quan & 

Cai, 2012; Awal et al., 2011; Hasan et al., 2022; Schulze et al., 2008). 

The Savitzky-Golay filter is a mathematical model that utilizes a regression algorithm 

based on the least squares’ method. It has proven to be effective in removing noises with a 

specific frequency spectrum and in smoothing graphical representations over long periods 

of time. In terms of implementation, the filter is relatively easy to define, compared to more 

complex filters such as the Kalman filter. As a result, it has a wide range of applications in 

various economic fields. The filter is known for providing minimal delay and overshoot, 

which is significantly superior to other smoothing techniques. This feature is particularly 

crucial in applications that process data in real-time or require high accuracy results. 

Using the same dataset as that employed for the simple moving average filter, various 

combinations of window size and polynomial degree values were empirically tested to 

ensure that the filtering process yields accurate results, reflecting the physical displacement. 

It was observed that an excessively small window size prevents filtering out measurement 

errors, resulting in the filtered signal closely tracking the trends of the original signal. 

Specifically, for a window size of 11 elements, the filtered signal was nearly identical to the 

original one for polynomials of degree 3, 5, and 9. For window sizes around 25, the filtering 

process substantially improved, with measurement errors being corrected to a large extent 

for a polynomial of degree 3. For higher degrees, filtering accuracy decreased, with the 

processing technique failing to remove second-order local extrema points. The most accurate 

filters were obtained for a window size equal to 37 elements, according to the experiments 

conducted. The filtered values for both degree 3 and degree 5 polynomials closely followed 

the 10 steps, flattened the secondary peaks and tracked the general trend of the acceleration 

values. In other words, the pairs {37, 3} and {37, 5} resulted in no significant distortions in 
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the final values and their representation. However, a high polynomial degree automatically 

introduces secondary extrema points in the smoothed dataset, which contradicts the purpose 

of mapping a displacement process, as it adds additional steps in the representation, altering 

the final result. 

Fig. 4 illustrates the results of applying a Savitzky-Golay filter with a window size equal 

to 37 elements for 3 polynomials of different degrees 3, 5 and 9. 

 

Fig. 4. Savitzky-Golay filter run on different polynomial orders 

The Savitzky-Golay filter can become computationally intensive when dealing with large 

datasets or high-degree polynomials. The algorithm's performance heavily depends on the 

chosen window size and polynomial degree. Ideally, one should opt for the smallest window 

size and polynomial degree that yield satisfactory results, to minimize the impact on the 

data.  

 

Fig. 5. Performance analysis for the Savitzky-Golay filters presented above 

To evaluate the algorithm's performance, a suite of tests was conducted on the benchmark 

data set, filtering it with a Savitzky-Golay filter, using various configurations. Fig. 5 



148 

illustrates the results of these tests, depicting the average execution time of 10,000 

simulations. 

 In terms of the horizontal axis, each configuration is identified by labels such as W11-

D3, where W11 refers to a window size of 11 elements and D3 refers to a polynomial degree 

of 3. The resulting scatter plot illustrates an almost exponential increase in average execution 

time when the degree of the polynomial remains fixed, while the window size varies. 

However, when the window size remains constant and the polynomial degree varies, the 

average execution time exhibits a linear growth trend. It should also be mentioned that when 

the data set was experimentally increased to 307,360 points, the average execution time 

increased to an interval between 35.85593 and 111.30111 seconds, the most advantageous 

values being associated with a degree of the polynomial as low as possible. 

Based on the results of the aforementioned tests, the pairs {37, 3} and {37, 5} were 

identified as potential optimal choices for filtering local extrema points. Since the objective 

of the filtering process is to identify extrema points in the acceleration graph that accurately 

reflect the actual displacement, rather than to determine the actual acceleration values, the 

choice of the optimal pair must also consider the average execution time. Accordingly, the 

pair {37, 3} is selected due to its 14-22% faster average execution time, which is crucial for 

a solution processing large amounts of data in real-time. 

2.3. Kalman filter 

If the two filters previously described are examples of FIR filters, then the third filter 

employed in the current analysis is an IIR implementation, as a Kalman filter simultaneously 

satisfies several sine quibus non-criteria. These criteria will be elaborated on in detail below. 

To determine the characteristics of digital noise affecting the process of measuring 

acceleration values using a standard accelerometer, such as those present in smartphones, 

values were collected when the phone was positioned on a flat surface and no force was 

exerted on it, except gravity. A subset of these values is presented in Tab. 1 from the 

introductory chapter, and their graphical representation as a probability density function is 

depicted in Fig. 6. 

 

Fig. 6. Probability density function for the stationary acceleration values 

It is apparent that the stationary acceleration values exhibit the characteristics of a normal 

distribution. The graphs previously presented also illustrate the linearity of the 

accelerometer, as the displacement recorded during the ten steps was a straight line. It is not 

feasible to make assumptions about the constancy of the acceleration values during 
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movement or compare the values recorded by the accelerometer in the mobile phone with 

reference values without an additional measurement tool. Nevertheless, the amplitude 

highlighted graphically adheres to the cadenced movement trend, with steps of comparable 

lengths distributed at relatively equal time intervals. Given that sinusoids tend to repeat in a 

uniform and realistic manner, it is reasonable to consider the accelerometer employed in the 

data collection as linear. 

The linear nature of the accelerometer, the Gaussian distribution of stationary values and 

the fact that the phenomenon being refined is time-varying, provide sufficient and necessary 

justifications for using an IIR implementation of a Kalman filter to filter the recorded 

accelerometer measurement errors. 

A Kalman filter is an algorithm that uses historical observations, referred to as estimates, 

as well as current measurements to estimate the state of a system. These estimates and 

measurements are subject to error values and noise due to interfering factors. The objective 

of a Kalman filter is to determine the current or future state of the system (Meinhold & 

Singpurwalla, 1983). 

The Kalman filtering process is composed of two stages. The first stage, the prediction 

stage, utilizes the current state estimates of the system and a mathematical prediction model 

to analyze the potential state of the system in the next moment of time. The prediction model 

represents an idealized version of the dynamic system and provides a prediction about the 

system's state in the next time interval, rather than an exact measurement. In the second 

stage, the updating stage, both the estimates obtained in the previous stage and the 

measurements empirically collected at the time associated with the next state are taken into 

consideration. The differences between the actual measurements and the estimates obtained 

from the model are used to determine a more precise estimate of the system state at the next 

time interval. This algorithm is iterative, utilizing the estimate obtained in the previous 

processing stage and a random estimate for the subsequent time interval (Welch, 2014). 

The Kalman filter also has configurable parameters that can be adjusted depending on 

the specifics of the problem. If the estimation methods, used to analyze the system, are 

precise and provide results that are close to reality, then the Kalman gain can be set to a 

value as close to 1 as possible. Conversely, if the estimation methods used are imprecise, the 

Kalman gain will tend towards 0 (Chen et al., 2011). 

Kalman filters are primarily used with time series data that describes time-varying 

processes. These values that characterize the process are often collected through means that 

induce uncertainty and measurement errors. Kalman filters are frequently used in a variety 

of fields, including collected data from sensors in radar, IMU or GPS applications, control 

systems, robotics, autonomous vehicles, financial-banking sectors, for estimating the price 

of shares or exchange rates, and real-time image processing, such as identifying the position 

and speed of a moving object in a video data stream (Li et al., 2015; Deep et al., 2018; Farhad 

et al., 2023; Zhang & Yu, 2022). 

One of the key advantages of Kalman filters is their computational efficiency. The 

recursive approach used by the algorithm only considers the values determined in the 

previous step and new estimates, enabling it to operate efficiently within large systems, with 

numerous parameters. The versatility of the algorithm is demonstrated by its wide 

applicability across numerous economic fields. Furthermore, the system is adaptive, closely 

following changes that impact the state of the system over time and providing optimal 
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estimators of the real state of a system despite the presence of noise and uncertainty (Kwon 

& Park, 2020). 

To implement a Kalman filter, the most crucial step is to select a suitable model that 

describes the evolution of the analyzed system. The filter requires the choice of a 

mathematical model that captures the evolution and transition of the system's dynamics, as 

well as an appropriate measurement process. It is essential to invest sufficient time and 

resources in selecting the optimal variables since this stage cannot be superficially treated. 

The filter also assumes that the processed signals follow a Gaussian distribution, and if the 

collected values do not meet this requirement, a preprocessing step is mandatory. 

Additionally, it is often necessary to adjust and match some parameters of the model, such 

as the covariance of the estimation and measurement errors. Finally, it is crucial to validate 

the Kalman filter in relation to factual, concrete evidence to obtain accurate and reliable 

estimates. 

In the case of the other two analyses presented earlier, the input data set underwent a 

filtering process, using a Kalman filter with four different configurations. The four 

configurations used were the result of repeated tests carried out to adjust the parameters 

described in the previous paragraphs. The modifications aimed to efficiently filter the input 

digital signal and optimize resource consumption. The changes impacted both the number 

of decimal places used in the definition of Δt, process noise covariance, measurement noise 

covariance, as well as the accuracy of the approximation. In configuration C1, the time 

interval Δt is 0.017, the process noise covariance matrix is a 2D matrix with values of [[0.01, 

0], [0, 0.01]] and the measurement noise covariance matrix is [[1]]. In configuration C2, Δt 

is 0.01, the process noise covariance matrix is a 2D matrix with values of [[0.01, 0], [0, 

0.01]] and the measurement noise covariance matrix is [[2]]. In configuration C3, Δt is 0.1, 

the process noise covariance matrix is a 2D matrix with values of [[0.1, 0], [0, 0.1]] and the 

measurement noise covariance matrix is [[1]]. In configuration C4, Δt is 0.017, the process 

noise covariance matrix is a 2D matrix with values of [[1, 0], [0, 1]] and the measurement 

noise covariance matrix is [[2]]. All other parameters remain constant across all 

configurations. The results obtained are illustrated in Fig. 7. 

 

Fig. 7. Kalman filter run on different configurations 

From the standpoint of filtering efficiency and performance, two out of the four 

configurations produced satisfactory results in detecting the recorded steps during the 
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journey, exhibiting significant differences from the others. The outcomes of the performance 

tests carried out, similar to those performed for the FIR filters, are shown in Fig. 8. These 

tests demonstrate that configuration C1 yields the most encouraging results in terms of 

performance. 

 

Fig. 8. Performance analysis for the Kalman filters presented above 

3. RESULTS AND DISCUSSION 

The findings presented in the preceding chapter may be examined and interpreted from 

multiple perspectives. Depending on the intended analysis objective, the current matter and 

how the use of a filter fits in with other components of a prospective solution, certain 

viewpoints may be more favorable than others and vice versa. 

For instance, if the digital signal filtering stage is a constituent of a broader solution that 

aims to determine movement within an indoor area, using Physics theory-based means 

through double integration of acceleration values, then an approach that preserves 

acceleration values as accurately as possible, without modifying the magnitude and 

dynamics of the waves, is preferable to one that substantially changes the digital signal's 

representation. Nevertheless, such an approach is highly challenging and the filter 

calibration phase is crucial, necessitating extensive testing to validate the filtering process's 

impact and intensity, as well as the accuracy of the outcomes (Benoussaad et al., 2015). 

Conversely, if the filtering stage is just one part of a more complex algorithm, designed 

to accurately identify moments when a target passes by, while another component that uses 

different techniques determines the distance without relying on double integration of 

acceleration, filtering techniques that minimize noise and errors are more appealing in 

achieving this objective (Dhanalakshmi et al., 2023). 

The choice of which technique to use must simultaneously consider several factors. The 

most important of these factors is the nature and type of digital signal being processed. 

Specific characteristics such as amplitude, frequency, collection method and error intensity 

must be considered when deciding which filter to use. The filtering approach is also critical. 

Is the filter applied in real-time to a continuous data stream or is it retrospectively applied to 

past data? What is the purpose of using a filter: is it integrated into an application that needs 



152 

to provide a real-time response or is the response's accuracy and correctness more critical 

than speed? What is the order of magnitude of the dataset being filtered: is it hundreds of 

observations or a large volume of hundreds of thousands or millions of observations? What 

hardware resources are available for a solution that will incorporate the filter? 

The incorporation of sensor data processing methodologies into Internet of Things 

applications is crucial for improving both the reliability and precision of these systems. 

These systems are progressively being utilized in essential domains, including health 

monitoring, smart urban development, and industrial automation (Al-Fuqaha et al., 2015; 

Ray, 2018). The intrinsic variability present in IoT settings, marked by an array of sensor 

types, deployment magnitudes, and application-specific demands, requires an adaptable 

strategy towards data filtering. For example, within the context of health monitoring 

systems, the simplicity and reduced computational requirements of the Simple Moving 

Average (SMA) technique render it a favorable option for systems dedicated to real-time 

patient surveillance, where there are typically constraints on power usage and processing 

capacity (Majumder et al., 2017). 

Nonetheless, the tendency of the Simple Moving Average (SMA) to excessively smooth 

data might render it inadequate for applications that demand precise signal analysis, like gait 

analysis or fall detection. In these instances, the use of Savitzky-Golay filters could offer a 

more optimal equilibrium between data smoothing and the preservation of signal 

characteristics (Li et al., 2020). 

Conversely, Kalman filters, characterized by their greater computational complexity, are 

more apt for scenarios where precision and the capacity to forecast future states through a 

model of the system's dynamics hold supreme importance. Their application in navigation 

and tracking systems within smart urban environments underscores the crucial balance 

between computational expenditure and filtering efficacy, particularly when managing 

extensive datasets and the necessities of real-time processing (Oteafy & Hassanein, 2018). 

The conversation regarding the optimization of filtering methods for particular IoT 

applications should also consider the scalability of these approaches. With the expansion of 

IoT devices, leading to the production of immense quantities of data, the computational and 

energy expenses linked to data processing grow more consequential (Zanella et al., 2014). 

Methods such as the Savitzky-Golay filter, which allow for the adjustment of window size 

and polynomial degree, present a way to equilibrate the computational burden with the 

effectiveness of filtering, an essential factor in deployments on a large scale. 

Tab. 2. Relevant performance indicators of presented methods 

C1 C2 C3 C4 C5 C6 

SMA W7 L L M NO 0.06019 

SMA W13 L M H YES 0.06325 

SMA W37 L VH M NO 0.08229 

SavGol W37 D3 M H H YES 1.82758 

SavGol W37 D5 M M H YES 1.66104 

SavGol W37 D9 M L M NO 1.85805 

Kalman C1 H H H YES 220.00 

Kalman C2 H H H YES 220.69 

Kalman C3 H L M NO 228.56 

Kalman C4 H L M NO 232.88 
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Tab. 2 summarizes the measured values from the Materials and Methods section, where 

column names represent: C1 - Filter name, C2 - Implementation complexity, C3 - Impact on 

original signal, C4 - Capacity to effectively reduce noise, C5 - Correctly identified the 

number of steps and C6 - 10000 iterations duration in seconds. 

4. CONCLUSIONS 

By means of a comparative analysis of the tabular values from Tab. 2, it is evident that 

for an application that seeks solely to accurately identify the number of steps taken during a 

journey, with separate time intervals for populations of 500 observations, one may choose 

between a simple moving average (SMA) filter with a window size of 13 entities, a Savitzky-

Golay (SavGol) filter with a window size of 37 and a polynomial degree of 3 or 5, or a 

Kalman filter with a configuration similar to C1 or C2. If real-time processing that does not 

significantly distort the signal is desired, then the number of viable options is reduced to 2: 

SMA with window size 13 and SavGol W37 D5. 

In contrast, if the intention is to perform double integration of the acceleration, the options 

to consider are: SMA W7, SavGol W37 D9, Kalman C3 and Kalman C4. However, 

depending on the size of the sample being processed, certain implementations may become 

unsatisfactory. It is important to note that there is no single technique that is universally 

applicable to all possible scenarios. 

In the context of this work, where the filtered signal was obtained using an accelerometer 

available in a smart mobile phone, that presents significant measurement errors when 

collecting data in a stationary frame, with a mean square deviation of 0.687934, achieving 

the double integration of the acceleration values is difficult. Instead, a more feasible 

approach is to use models to estimate the average step and stride length based on the subject's 

height, gender and weight. Furthermore, since real-time monitoring of movement is 

necessary, a Savitzky-Golay filter with a window size of 37 and a polynomial degree of 5 

would be a viable option for this specific scenario. 

Such a module for collecting data from a sensor and filtering digital signals to identify 

the steps taken can be integrated into future developments of an application designed for 

indoor localization in large buildings with frequent points of interest. The application can 

monitor the subject's position in real-time and serve as a personal assistant that provides 

suggestions and contextual recommendations tailored to the situation. 
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