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Abstract 

The aim of the article is to analyze and compare the performance and accuracy of 

architectures with a different number of parameters on the example of a set of 

handwritten Latin characters from the Polish Handwritten Characters Database 

(PHCD). It is a database of handwriting scans containing letters of the Latin alphabet 

as well as diacritics characteristic of the Polish language. Each class in the PHCD 

dataset contains 6,000 scans for each character. The research was carried out on six 

proposed architectures and compared with the architecture from the literature. Each 

of the models was trained for 50 epochs, and then the accuracy of prediction was 

measured on a separate test set. The experiment thus constructed was repeated 20 times 

for each model. Accuracy, number of parameters and number of floating-point 

operations performed by the network were compared. The research was conducted on 

subsets such as uppercase letters, lowercase letters, lowercase letters with diacritics, 

and a subset of all available characters. The relationship between the number of 

parameters and the accuracy of the model was indicated. Among the examined 

architectures, those that significantly improved the prediction accuracy at the expense 

of a larger network size were selected, and a network with a similar prediction 

accuracy as the base one, but with twice as many model parameters was selected. 

1. INTRODUCTION 

Character recognition using image analysis techniques is a crucial area of study in 

computer vision. It is also closely related to natural language processing, as it enables the 

understanding of the recognized text in the post-processing stage (Islam et al., 2017). 

Nowadays, the digital form of documents enables the automation of business processes and 

improves work efficiency, allowing employees of enterprises to effectively focus on their 

key tasks. Many methods have been developed to efficiently carry out numerous tasks 

automatically, such as searching for phrases according to given criteria, classifying text 

according to the subject of its content or improving grammar and text style. Automatic text 
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translation systems and speech synthesis systems deserve a special place here. Recently, the 

Transformer architecture (Vaswani et al., 2017) has made it possible to automate previously 

difficult or impossible tasks using natural language processing methods such as text 

summarization or generating new text on a given topic. Currently, the recognition of printed 

text written in the Latin alphabet is easy to perform using widely available programs on 

personal computers, and the accuracy of their prediction exceeds 98% (Łukasik & 

Zientarski, 2018). Even so, documents written in natural language do not always exist in 

computer-accessible form. Most exist only in the traditional paper version, especially in the 

form of handwritten notes such as historical sources, personal notes written on paper or with 

a stylus on tablets. This can also include tests written by students, such as colloquia or exams. 

The use of image recognition techniques allows to check tests faster, allowing to do it using 

a computer, and using them in research on documents that are historical sources allows not 

only for more efficient storage and sharing of them, but also for a more in-depth analysis or 

reading and discovering features invisible to the naked eye. 

Despite all the methods and possibilities mentioned above, recognizing handwritten text 

is still a difficult task due to the variability and heterogeneity of handwritten text. This 

requires specially adapted models and algorithms that are able to learn and recognize 

different writing styles. Recognition of individual handwritten characters is even more 

demanding, because compared to printed writing, the quality of the handwriting in individual 

cases is not high, and at the same time it has a much greater variety and lower contrast. 

Often, individual lines of handwritten text do not lie in one straight line, as in printed writing. 

An additional problem in variants of the Latin alphabet is the presence of diacritics in 

languages such as Dutch, French, German and Czech - and in this case of Polish, the 

characters Ą,Ę,Ć,Ł,Ó,Ś,Ń,Ż,Ź. The software in scanning devices usually does not support 

diacritical marks, omitting them (Gu et al., 2018). This causes that the scanned text is often 

incomprehensible. The use of advanced image recognition techniques based on deep 

learning (DL) methods, such as convolutional neural networks, is successful in this field 

(Idziak et al., 2021; Sharma et al., 2020; Gajoui et al., 2015). The same problem is present 

in other alphabets with diacritical marks such as Arabic, and the usage of DL methods is 

documented in (Lutf et al., 2014) where authors used network on Handwritten Arabic 

Characters Database (HACB) consisting of 52 classes of characters. In Arabic, a different 

variant of diacritical mark is used depending on whether a diacritical mark is used at the 

beginning of the sentence, at the end or in the middle. Because of this, the problem of 

handwriting recognition is still an active and challenging area of research. In the publication 

by E. Lukasik et al. from 2021, authors trained several such models on a set of scans of 

handwriting from the Polish Handwritten Characters Database (PHCD) (Tokovarov et al., 

2020) and then presented the results of the most promising of them on the test part of subsets 

of lowercase and uppercase letters with characters diacritics as well as a subset of all 

available characters.  

The aim of the article is to analyze and compare the performance and accuracy of 

architectures with a different number of parameters on the example of a set of handwritten 

Latin characters from the Polish Handwritten Characters Database (PHCD). Due to the fact 

that among all the subsets of the examined characters they achieved very high accuracy (over 

95% in all but the set of all characters from the PHCD database, where accuracy was above 

85%), the focus was on improving the network performance in terms of the size of the model 

measured by the number of parameters, disk size, and the number of floating-point 
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operations performed by the network during prediction. Both of these parameters are crucial 

as presented in Hadidi et al. (2019), whether when it comes to the effective use of computing 

power in the cloud (which is a common solution when implementing neural networks for 

business applications) or during edge computing implementations. In the latter case the 

model is uploaded to microcontrollers or small computers based on processors ARM 

architecture represented by Raspberry Pi and Nvidia Jetson. Computers of this type have 

low computing power and their components can be optimized specifically for prediction on 

ready-made models, which allows the creation of various intelligent devices in factories, 

offices or homes that do not need communication with a central server or internet coverage. 

This makes predictions much faster, which is extremely important in many applications, 

such as automatic image recognition or motion detection. It also protects the privacy of their 

users, due to the fact that there is no need to send data to the outside world, for example from 

home cameras. 

2. RESEARCH EXPERIMENT 

2.1. Created architectures 

Six convolutional network architectures have been tested. Each of them is based on the 

basic architecture described in publication by Lukasik et al. (2021). It consists of 4 

convolutional layers extracting features from the input images and is completed with a 2-

layer multilayer perceptron which finds relationships between them during learning. Its 

structure is shown in Table 1. 

Tab. 1: Layers of baseline architecture 

Layer type Layer output shape 

Conv2D None, 30, 30, 32 

Conv2D None, 28, 28, 32 

MaxPooling2D None, 14, 14, 32 

Dropout None, 14, 14, 32 

Conv2D None, 12, 12, 64 

Conv2D None, 10, 10, 64 

MaxPooling2D None, 5, 5, 64 

Dropout None, 5, 5, 64 

Flatten None, 1600 

Dense None, 256 

Dropout None, 256 

Dense None, 89 

 

Architecture A, presented in Table 2, is an architecture consisting of 2 convolutional 

layers containing 32 and 64 filters, each of them is followed by the ReLU activation function 

and the MaxPool2D layer.  
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Tab. 2: Layers of architecture A 

Layer type Layer output shape 

Conv2D None, 30, 30, 32 

MaxPooling2D None, 15, 15, 32 

Conv2D None, 13, 13, 64 

MaxPooling2D None, 6, 6, 64 

Flatten None, 2304 

Dense None, 5376 

Dense None, 256 

Dense None, 128 

Dense None, 89 

 

The output is then transferred to 4 fully connected layers - having 5376, 256, 128 and 89 

neurons in turn. Relative to the base network, it extracts less detailed features, due to having 

less convolutional layers while being able to model more complicated interactions between 

them by having more neurons (He et al., 2016). 

Architecture B is based on architecture A with the difference that it has 3 fully connected 

layers with a total of fewer neurons 512, 256 and 89, respectively. Thanks to this, it is much 

smaller. Its layers are shown in Table 3. 

Tab. 3: Layers of architecture B 

Layer type Layer output shape 

Conv2D None, 32, 32, 32 

MaxPooling2D None, 16, 16, 32 

Conv2D None, 14, 14, 64 

MaxPooling2D None, 7, 7, 64 

Flatten None, 3136 

Dense None, 512 

Dense None, 256 

Dense None, 89 

 

In Architecture C the number of convolutional layers is limited to 2 containing 32 and 64 

filters followed by ReLU activation and batch normalization, and in the classification layers 

it has 128 and 64 neurons respectively. The last layer contains 89 neurons as in other 

architectures. It is presented in Table 4. 

Tab. 4: Layers of architecture C 

Layer type Layer output shape 

Conv2D None, 30, 30, 32 

BatchNormalization None, 30, 30, 32 

Conv2D None, 28, 28, 64 

BatchNormalization None, 28, 28, 64 

Flatten None, 50176 

Dense None, 128 

Dense None, 64 

Dense None, 89 
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Architecture D, which layers are presented in Table 5, includes 4 convolutional layers 

(two containing 16 and two containing 32 filters) and two fully connected layers consisting 

of 512 and 89 neurons. In addition, convolutional layers are arranged in pairs where the first 

layer has batch normalization and the second has MaxPool2D and Dropout operations. 

Tab. 5: Layers of architecture D 

Layer type Layer output shape 

Conv2D None, 30, 30, 16 

BatchNormalization None, 30, 30, 16 

Conv2D None, 28, 28, 16 

MaxPooling2D None, 14, 14, 16 

Dropout None, 14, 14, 16 

Conv2D None, 12, 12, 32 

BatchNormalization None, 12, 12, 32 

Conv2D None, 10, 10, 32 

MaxPooling2D None, 5, 5, 32 

Dropout None, 5, 5, 32 

Flatten None, 800 

Dense None, 512 

BatchNormalization None, 512 

Dropout None, 512 

Dense None, 89 

 

Architecture E contains 2 convolutional layers with 16 and 32 filters - each is followed 

by Batch Normalization and MaxPool2D operation. The flattening layer is followed by batch 

normalization again before the output layer. Its layers are shown in Table 6. 

Tab. 6: Layers of architecture E 

Layer type Layer output shape 

Conv2D None, 28, 28, 16 

BatchNormalization None, 28, 28, 16 

MaxPooling2D None, 14, 14, 16 

Conv2D None, 10, 10, 32 

BatchNormalization None, 10, 10, 32 

MaxPooling2D None, 5, 5, 32 

Flatten None, 800 

BatchNormalization None, 800 

Dense None, 89 

 

Architecture F includes 3 convolutional layers (16, 32 and 64 filters) and two fully 

connected layers consisting of 256 and 89 neurons. In addition, after each convolutional 

layer, it contains a SpatialDropout layer, deactivating one of the feature maps randomly in a 

given layer for one iteration, which has a regularizing effect. Its structure is presented in 

Table 7. It is the smallest tested network, more than two times smaller than the base one. 
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Tab. 7: Layers of architecture F 

Layer type Layer output shape 

Conv2D None, 30, 30, 16 

MaxPooling2D None, 15, 15, 16 

SpatialDropout2D None, 15, 15, 16 

Conv2D None, 13, 13, 32 

MaxPooling2D None, 6, 6, 32 

SpatialDropout2D None, 6, 6, 32 

Conv2D None, 4, 4, 64 

MaxPooling2D None, 2, 2, 64 

SpatialDropout2D None, 2, 2, 64 

Flatten None, 256 

Dense None, 256 

Dense None, 89 

2.2. Research scenario 

The research was carried out on a set of characters from the PHCD database (Tokovarov 

et al., 2020), a Polish database of handwriting scans containing letters of the Latin alphabet 

and diacritics characteristic of the Polish language. Each class in the PHCD dataset contains 

6 000 scans for each character. The research is carried out on the entire set of characters as 

well as subsets with the specification of lowercase letters, uppercase letters, lowercase letters 

without diacritics. In each subset, the data set was divided into training, validation and test 

sets in the proportions of 70%:15%:15%. For each subset, the network was trained from the 

beginning 20 times, for a more reliable comparison due to the influence of initialization of 

the weights (Bouthillier et al., 2021). The Weights & Biases service was used to track the 

experiment and create graphs, and the training was carried out on a Deep Learning virtual 

machine available on the Google Cloud platform with an Nvidia Tesla V100 graphics card. 

The networks were built and trained using Tensorflow library (Abadi et al., 2016) version 

2.11, using its Sequential API. 

Steps carried out before conducting experiments: 

1. Design neural network architectures that will be trained. 

2. Creation of a model repository that will contain both data and trained models 

alongside their results. 

Steps carried out during conducting experiments for each model and character subset: 

1. Download of train set of data subset. 

2. Training of the model. 

3. Saving of training results. 

4. Download of test set of data subset. 

5. Model evaluation and saving the test set results.   

6. Model serialization and upload into repository for future reference. 

3. RESULTS 

With such a research scenario, it was possible to obtain detailed results for the base 

architecture and 6 selected architectures, obtained separately for each of the data subsets. 
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Each of the models was trained for 50 epochs, and then the accuracy of prediction was 

measured on a separate test set. The experiment thus constructed was repeated 20 times for 

each model to obtain more reliable results. The Table 7 presents the characteristics of 

researched networks, which do not change between the tested subsets of characters. 

Tab. 7: Network characteristics obtained for individual architectures for the set of all available characters 

from the PHCD database. 

Architecture Param. (mln) FLOPs (mln) Disk size [Mb] 

Baseline 0.484 14.394 1.817 

A 13.824 17.216 51.855 

B 1.765 5.699 6.633 

C 6.452 21.183 23.949 

D 0.447 3.976 1.672 

E 0.045 1.640 0.170 

F 0.098 1.298 0.369 

 

After plotting the relationship between the number of parameters and model accuracy on 

Fig. 1, the network efficiency can be observed. On the PHCD dataset, after using more than 

2 million parameters in network, models see diminished improvement in accuracy results, 

as the network B is only marginally worse than A and shows very similar results as C. 

 

Fig. 1: Relationship between number of parameters and model accuracy. 
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Tab. 8: Results for the set of lowercase characters with no diacritics. 

Architecture Mean test acc. 

Baseline 0.9829 

A 0.9951 

B 0.9930 

C 0.9959 

D 0.9779 

E 0.9280 

F 0.9382 

Tab. 9: Results for the set of lowercase characters with diacritics. 

Architecture Mean test acc. 

Baseline 0.9738 

A 0.9957 

B 0.9959 

C 0.9977 

D 0.9836 

E 0.9432 

F 0.9528 

Tab. 10: Results for the set of uppercase characters with no diacritics. 

Architecture Mean test acc. 

Baseline 0.9945 

A 0.9971 

B 0.9964 

C 0.9976 

D 0.9901 

E 0.9675 

F 0.9709 

Tab. 11: Results for the set of all characters from PHCD database. 

All characters Test acc. Baseline % diff. 

Baseline 0.8575 0% 

A 0.9719 13% 

B 0.9484 11% 

C 0.9484 11% 

D 0.8780 2% 

E 0.8361 -2% 

F 0.8228 -4% 

 

The complete accuracy results on the test set for each class (letters) are shown on Figures 

2-8. 
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Fig. 2: Digits accuracy comparison. 

 

Fig. 3: Lowercase letters accuracy comparison. 
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Fig. 4: Lowercase letters accuracy comparison. 

 

Fig. 5: Uppercase letters accuracy comparison. 
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Fig. 6: Uppercase letters accuracy comparison. 

 

Fig. 7: Lowercase diacritics accuracy comparison. 
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Fig. 8: Uppercase diacritics accuracy comparison. 

 

Fig. 9: Special characters accuracy comparison. 
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4. DISCUSSION AND FUTURE WORK 

For the set of lowercase characters with no diacritics (Tab. 8) accuracy of architecture A, 

B and C is higher than 0.990, D achieves accuracy 0.970 but E and F achieves the accuracy 

below 0.940. For the baseline architecture it was 0.983. Adding diacritics to the analysed set 

of lowercase (Tab. 9) keeps these architectures in the same order in terms of the obtained 

accuracies. For the set of uppercase characters with no diacritics (Tab. 10) the first four 

architectures give an accuracy above 0.990. The remaining two were below 0.971. Tab. 11 

shows the most important results achieved, which directly compares new architectures to the 

baseline on the same dataset used in publication by Lukasik et al. (2021). It presents a more 

challenging task for each network than only uppercase or only lowercase letters, and it also 

contains special characters. Three of the tested architectures (A, B, C) gave a result above 

0.94 and three below 0.88. Given the set of all characters the best result was obtained for the 

network with architecture A. The obtained prediction accuracy is 0,9719. Two more tested 

architectures B and C gave the same result of 0,9484. The result for the D network was 

0.878. For the remaining two, i.e. E and F, it was 0.8361 and 0.8228, respectively. 

By looking at accuracy for each letter on Fig. 2-9, we can see that the special characters 

are not as challenging. Among the worst performing letters are lowercase letter e and 

uppercase letters R, K, T. In few cases, such as letters ń, ś, Q, the largest networks A, B, C 

had similar accuracy to the rest of the letters while smaller networks show significant 

problems with accurately recognizing these letters. The letter which shows the most 

significant accuracy improvement from Baseline architecture is the letter K. It is usually 

misclassified as lowercase letter x, h, number 4 or 0, or uppercase letter Q.   

According to the presented results, one can distinguish between architecture A, which is 

the most efficient network in question, and architecture B, which achieves an average 

accuracy of 2 percentage points lower, while being more than 7 times smaller. Based on the 

results, it was observed that the more parameters the network contains, the more accurate 

the results. This was consistent with the findings of Belkin et al. (2019), as models with a 

large number of parameters perform better than small or medium models. The greater the 

number of parameters, the faster the network achieved the convergence, at the expense of 

the larger size of the network on the disk and the number of operations needed for 

calculations. However, the networks see a diminishing return in accuracy improvement after 

using more than 2 million parameters, so architectures B and C are the most efficient of those 

tested. 

In addition to the tested total accuracy, the accuracy of prediction for each character was 

improved, which is particularly visible for the uppercase letter K (from 0.33 in the base 

network to 0.89 in the A architecture), thanks to which the error rate for this letter is similar 

as to the rest of them. This is also the letter for which all architectures have the largest 

number of errors.  

The hypothesis that increasing the number of convolutional layers above 2 has no impact 

on further increasing the accuracy of the model has been proven. The studied architectures 

were divided into two groups: those having two convolutional layers and the second group 

having a larger number of these layers. For a statistical comparison of these two groups, a 

one-sided T-student test was used. A p value of <0.001 was obtained. 

Optimization of network architectures A and B can be an interesting topic for future 

work, for example by using quantization, which consists of representing network weights as 
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16-bit floating-point variables instead of the default 32-bit, (Choi et al., 2016) or using such 

method as network pruning, which in addition to regularization, usually results in reduced 

size of the compressed network, by setting the parameters close to zero to zero (Blalock et 

al., 2020; Wang et al., 2022). These solution are often found in the implementation of 

efficient networks for mobile devices and IoT, for example in advanced scanners in libraries. 

Presented  results are the next step of research the effectiveness of convolutional neural 

networks in handwritten character recognition. Architectures from this article could be also 

evaluated on other handwritten character datasets, such as English EMNIST (Cohen et al., 

2017) or already mentioned Arabic HACB to rule out any inconsistencies and inaccuracies 

in researched data set. The measurement of effectiveness of adding more convolutional 

layers against more fully connected could also be more tested more rigorously using 

statistical methods. Similarly, effectiveness of different regularisation layers such as 

MaxPool, Dropout and SpatialDropout can be tested. 
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