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Abstract 

In recent times, there has been a notable increase in interest surrounding the integration 

of Un-manned Aerial Vehicle (UAV) technology and vehicle routing problems (VRP) for 

package delivery purposes. While existing studies have explored various types of package 

deliveries utilizing VRP, limited attention has been given to on-demand food delivery. 

This study aims to develop a VRP model that incorporates practical constraints such as 

payload capacity and maximum flying range, with the primary objective of minimizing 

travel distance in food delivery operations. A comparative analysis is conducted among 

three delivery methods, including UAV delivery, to determine the most effective approach 

and assess the feasibility of each method. Through a case study analysis focused on a 

pizza delivery service in Sri Lanka, it was observed that implementing VRP in a motorbike 

delivery system resulted in reduced travel distance, time, cost, and CO2 emissions 

compared to the existing delivery system. Furthermore, the utilization of UAVs in 

conjunction with VRP yielded even greater improvements across all parameters. Based 

on a comprehensive cost analysis considering long-term operations, the UAV-based 

delivery system was identified as the most cost-effective method, followed by the VRP-

incorporated motorbike delivery method. Although the VRP-incorporated motorbike 

delivery system exhibited a slightly higher average time per route compared to the 

existing method, the total travel time required to complete all routes remained lower. 

Consequently, the study concludes that the VRP-incorporated motorbike delivery system 

outperforms the existing delivery method for food delivery, with the use of UAVs 

incorporating VRP identified as the optimal delivery method among the three 

alternatives. The findings contribute valuable insights to the optimization of food delivery 

logistics, emphasizing the potential of VRP and exploring the feasibility of UAVs for 

sustainable and efficient long-term delivery solutions. 
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1. INTRODUCTION 

The logistics and transportation industry is currently experiencing notable expansion, 

primarily driven by the widespread adoption of e-commerce and online shopping 

(Thibbotuwawa et al., 2023). This surge has resulted in a substantial increase in package 

shipments worldwide. Extensive research indicates that global parcel volume is projected to 

reach a range of 220 to 262 billion by 2026, underscoring the sustained growth of the 

industry (Pitney Bowes Inc., 2020). Concurrently, the global food delivery market, a 

prominent sector within package delivery, is also witnessing rapid growth each year. 

However, this exponential growth and development in the logistics and transportation 

industry has given rise to challenges, including the escalation of greenhouse gas (GHG) 

emissions, road congestion, longer travel time, high operating cost and accidents. 

The delivery sector is confronted with a significant and pressing challenge concerning 

the substantial increase in GHG emissions, particularly carbon dioxide (CO2). This challenge 

holds significant importance as the transportation industry is accountable for approximately 

25% of the global CO2 emissions (United Nations, 2021), (Vichova et al., 2021) with road 

transportation contributing a considerable 75% to this emission profile (Leather, 2009). In 

addition to emissions, research conducted in countries such as Korea has highlighted the 

association between the food delivery industry and a considerable number of injuries and 

fatalities during the delivery process (Lee, 2019). 

To address the challenges in logistics and transportation, UAVs, commonly known as 

drones, are increasingly being utilized for last mile delivery in various industries 

(Thibbotuwawa et al., 2019; 2020). Due to emerging importance in delivery logistics, 

extensive global studies have been conducted to assess the feasibility of employing drones 

for last mile delivery, revealing their effectiveness in reducing travel distance, delivery costs, 

time, accidents, and CO2 emissions (Thibbotuwawa et al., 2019; 2020). Notably, prominent 

organizations have undertaken pilot projects to evaluate the viability of drone-based food 

delivery (Sorooshian et al., 2022). Building upon these initiatives, this study aims to assess 

the extent to which drones can significantly minimize travel distance, time, cost, and CO2 

emissions in the context of food delivery. Moreover, it will compare drone delivery with two 

alternative delivery methods, namely the existing motorbike delivery system and a 

motorbike delivery system modified with a VRP model. Additionally, the study will evaluate 

the total cost implications to determine the viability and potential success of drones as an 

investment in the food delivery industry. 

This study aims to fill a significant research gap by focusing on the optimization of 

delivery routes for fast food meal services using drones during peak hours (Benarbia & 

Kyamakya, 2022). Specifically, it aims to develop a customized VRP model tailored for 

UAV-based food delivery, with a specific emphasis on serving customers within a restricted 

geographical area during peak hours. The study further evaluates the impact of VRP 

techniques and UAVs on crucial variables, including travel distance, time, cost, and emission 

reduction. To assess the cost effectiveness of the proposed method, it is compared to existing 

approaches, enabling a comprehensive evaluation of its effectiveness and practicality. 

Accordingly, the study has two main objectives, 

1. Testing the research hypothesis, 

− UAVs and motorbikes in VRP settings for food delivery will reduce travel distance, 

time, cost, and emissions in transportation planning. 
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2. Evaluating the viability of implementing UAV food delivery concerning its total cost 

implications. 

2.  LITERATURE REVIEW 

This chapter provides an overview of the previous studies conducted on UAV package 

delivery, emphasizing the need for additional research, and investigating the extant 

knowledge in this field. 

In recent years, there has been rapid advancement in drone technology, with frequent 

development and integration of new features into UAVs. These UAVs come in various 

specifications tailored for different applications, and their potential to over-come challenges 

associated with traditional delivery methods has made them a valuable tool in modern 

logistics (Ghelichi et al., 2021). Originally designed for military purposes, including 

surveillance and espionage, drones are increasingly being explored for civilian applications 

by businesses (Mathew et al., 2021). With their versatile nature, drones find utility in diverse 

fields such as agriculture, firefighting, national defense, search and rescue operations, 

medical applications, and delivery logistics (Hwang et al., 2019; Li et al., 2023). Delivery 

logistics applications of drones can be categorized into four main areas: retail and e-

commerce, postal services and mail delivery, food and beverage delivery, and healthcare and 

emergency services, as identified by Moshref-Javadi and Winkenbach (2021). Each of these 

categories has numerous real-world examples in current practice. 

The optimization of the VRP has emerged as a central focus in the transportation and 

logistics sector. With the introduction of UAVs, researchers have turned their attention 

towards investigating the adaptability of VRP variants to address UAV routing challenges. 

UAVs have presented the delivery industry with a compelling opportunity, offering a more 

efficient, cost-effective, and environmentally sustainable alternative to conventional ground-

based transportation methods. Consequently, there has been a noticeable surge in interest 

surrounding the development of practical routing algorithms specifically tailored for UAVs. 

Previous studies have predominantly centered on the examination of various VRP types that 

can be suitably modified to address UAV routing concerns. 

In a study by Yadav and Narasimhamurthy (2018), the focus was on developing an 

efficient delivery schedule for UAVs in a UAV delivery system. The primary objective was 

to minimize the completion time for a given set of delivery orders. The problem 

encompassed specific characteristics of the VRP, requiring the utilization of heuristic-based 

techniques for solving due to its large-scale nature. Another investigation conducted by 

Sundar and Rathinam (2014) presented a problem related to the Unmanned Aerial Vehicle 

Routing Problem (UAVRP) for a single UAV. The objective of this challenge was to 

determine an optimized route that ensures each location is visited at least once, while 

satisfying the fuel constraint and minimizing fuel consumption. Addressing the issue of 

perishability in the distribution network, Zhang and Li (2023) introduced the Collaborative 

Vehicle Drone Distribution Network (CVDDN) optimization problem. Their study proposed 

a bi-objective model that aims to minimize the total cost of product distribution while 

reducing the loss of value.  
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Tab. 1. Summary of literature focused on the application of UAV routing problem for delivery logistics 

Citation Research Objective Key Contributions 

(Yadav & Narasimhamurthy, 

2018) 

Minimize the completion time 

for a given set of delivery 

orders. 

Two heuristic based 

techniques (Cost Optimized 

Scheduling Heuristic (COSH) 

and Cost Optimized 

Intermediate Replenishment 

Scheduling Heuristic 

(COIRSH)) with look ahead 

mechanisms and appropriately 

defined costs. 

(Sundar & Rathinam, 2014) Determining an optimized 

route that ensures each 

location is visited at least once, 

while satisfying the fuel 

constraint and minimizing fuel 

consumption. 

Develop an approximation 

algorithm for the problem and 

propose fast construction and 

improvement heuristics to 

solve. 

(Zhang & Li, 2023) Minimizing the total cost of 

product distribution while 

reducing the loss of value. 

Two-phase hybrid heuristic 

algorithm based on the 

improved K-means clustering 

and the extended Non-

dominated Sorting Genetic 

Algorithm-II is proposed to 

solve the investigated CVDDN 

optimization problem 

 

The existing body of literature on the VRP and drone delivery has predominantly focused 

on optimizing delivery time, cost, and fuel consumption. However, there is a noticeable 

research gap when it comes to the application of these concepts specifically to perishable 

items and fast-food delivery. This study aims to fill these research voids by exploring the 

unique challenges and potential optimization opportunities in the context of drone-based 

delivery for perishable and fast-food items. Consequently, this research holds significant 

academic importance in advancing the understanding and practical implementation of 

efficient and effective drone delivery systems for perishable and fast-food items. 

3. METHOD 

In this study, the existing pizza delivery system of a prominent pizza delivery service in 

Sri Lanka is utilized as an application for food delivery. The process is then modified to 

incorporate the use of VRP and UAVs to calculate and compare the effectiveness of different 

delivery methods. 

3.1. Pizza delivery – existing process 

The primary mode of transportation in this process involves using motorbikes to deliver 

pizzas within a specified geographic area. The pizza delivery service operates at multiple 

locations across various regions, with a significant focus on urban areas. Additionally, the 
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company strategically establishes outlets in sparsely populated areas to ensure broad 

accessibility and nationwide coverage of its services. 

Customers have three options to place their pizza orders: through the official website, via 

telephone, or by visiting a physical retail location. Orders within an 8-kilometer radius are 

accepted or directed to the nearest outlet. However, this range may vary for certain outlets 

based on the level of traffic congestion in the area, as it directly impacts on the delivery time. 

In such cases, the range is determined by considering the distance that can be covered at an 

average speed of 40 kilometers per hour. 

During each delivery, only one package is allowed to be transported by a single 

motorbike rider. However, there is an exception where two packages can be delivered 

together if the addresses are close to each other and located on the same route and street. In 

all other cases, packages are delivered individually to ensure timely delivery. The current 

operational procedure allocates approximately 30 minutes for the delivery of each package 

to the customer. 

It is imperative to construct a robust VRP model that efficiently enables UAVs to 

accomplish deliveries within a designated timeline while minimizing the overall distance 

traveled. 

 

Fig. 1. Existing pizza delivery process 

3.2. VRP development for UAVs and motorbike delivery system 

One of the primary objectives of this study is to develop a dedicated VRP model that 

aims to minimize the total travel distance in the context of food delivery. The model's 

practical applicability is taken into consideration by incorporating various constraints, such 

as limited range and payload capacity, for both UAVs and motorbikes. To achieve this, a 

modified version of the capacitated vehicle routing problem (CVRP) is formulated to 

determine the optimal set of routes for the delivery vehicles. 
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3.2.1. Assumptions and limitations 

− All the UAVs are identical. 

− The battery is fully charged in every UAV before the start of each trip. 

− The effect of weather on travel speed and travel time is not considered. 

− The UAV can carry a maximum payload of (𝑝
𝑑

),  indicating the number of packages 

per trip. 

− The maximum delivery range (𝑟
𝑑

)  of the UAV is decided based on the payload (𝑝
𝑑

)  

and the payload is assumed to be fully occupied throughout the route. 

− The average speed of the UAV is decided based on the maximum speed of the UAV. 

− UAVs travel at constant speeds. 

− The exact location can deploy more than one UAV at the same time. 

− Service time for delivery, including UAV landing and takeoff time, is constant at 

every customer location and the depot. 

− UAVs can carry more than one package at once. 

− A single UAV services each customer on a single visit. 

3.2.2. Decision variables 

− 𝑥𝑛
𝑑  is a binary decision variable that equals 1 if delivery location n is assigned to drone 

d and 0 otherwise. Drone travels from node i to n. 

− 𝑦
𝑛
𝑑 is a binary decision variable that equals 1 if drone d travels to delivery location n 

and 0 otherwise. 

−  𝑤𝑛
𝑑 is a decision variable that gives the distance travelled by drone d from node i to 

node n. 

3.2.3. Objective function 

Z: Objective function for minimizing travel distance. 

Minimize Z = ∑ ∑ 𝑥𝑛
𝑑𝑤𝑛

𝑑

𝑛∈𝑁𝑖∈𝑁

 (1) 

The primary aim is to optimize the routing of drones with the objective of minimizing 

travel distance while accounting for constraints related to payload capacity and range. The 

objective function encompasses a variable, denoted as Z, which represents the cumulative 

distance traveled by all UAVs. The distance calculation is based on the Euclidean distance 

method, which captures the movement of UAVs. For motorbike movement road distance is 

used. 

3.2.4. Constraints 

Payload Constraint: 

For each drone d ∈ D and each delivery location n ∈ N, the total payload of items assigned 

to drone d should not exceed its maximum payload. 
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∑_ (n ∈ N) [𝑥𝑛
𝑑] ≤ 𝑝𝑑 for all d ∈ D (2) 

The cumulative payload of all delivery locations assigned to a UAV must be less than or 

equal to the drone's maximum payload. In this case, the payload is defined by the number of 

packages a UAV can carry. 

Range Constraint: 

For each drone d ∈ D, the total distance travelled by drone d should not exceed its 

maximum range: 

∑_ (n ∈ N) [𝑦
𝑛
𝑑 * 𝑤𝑛

𝑑)] ≤ 𝑟𝑑 for all d ∈ D (3) 

The range restriction ensures that the cumulative distance traversed by each UAV does 

not exceed its maximum range. It is the aggregate of the distances travelled by each UAV to 

the designated delivery locations multiplied by the binary decision variable 𝑦
𝑛
𝑑, which 

indicates whether a UAV has been assigned a particular delivery location. 

A specialized version of the VRP was devised specifically for a pizza delivery system 

that operates using motorbikes. The purpose was to assess the feasibility of this system 

compared to the existing delivery method, which lacks proper routing strategies. Although 

there are similarities between this problem and the UAVRP, there are notable differences as 

well. 

The primary objective remains the reduction of the total travel distance. However, the 

model in this study considers only the constraint of payload capacity, while disregarding the 

range limitation associated with motorbikes due to their ample fuel capacity and range 

capabilities. 

3.3. Model implementation 

3.3.1. Programming language and tools 

The implementation made use of the subsequent software tools and libraries: 

1. Programming Language: Python 3.7.9 

2. Libraries: 

− NumPy (version 1.19.5) for numerical computations and array operations. 

− Pandas (version 1.3.0) for data manipulation and analysis. 

− Requests (version 2.26.0) for making HTTP requests to external APIs. 

− Geographiclib (version 1.52) for geodesic calculations and distance computations. 

− OSRM API for road distance computations. 

− OR-Tools (version 9.1.9490) for solving the CVRP. 

3.3.2. Distance between locations 

The primary input required for the VRP model is a distance matrix encompassing the 

distances between all locations or nodes, aiming to optimize the selection of routes with 

minimal travel distance. This study computed the distances between locations using two 

different APIs. Firstly, the GeographicLib API (Karney, 2022) was utilized to calculate the 



92 

Euclidean distance between locations for UAV routing. Secondly, the OSRM API (Fernando 

et al., 2022a) was employed to determine the road distance between locations for motorbike 

routing and to assess distances within the existing delivery system. 

3.3.3. Optimization algorithm 

Using hybrid algorithms for optimization produce near optimal solutions within a 

reasonable computational time, adaptability to a variety of problem types and the potential 

to improve solution quality and computational efficiency (Fernando et al., 2022b, 2024). 

Based on the results of the study conducted by Abdirad, Krishnan and Gupta (2020) the 

initial solution method used in the designed VRP model is “Global cheapest arc”, and the 

improvement algorithm selected is “Guided local search”. According to the empirical 

observations, the combination of algorithms yields the most favorable computational 

outcomes. 

3.4. Sensitivity analysis 

A sensitivity analysis is performed to evaluate the influence of vehicle capacity and 

vehicle speed on the performance of the VRP models. This analysis aims to enhance the 

overall efficiency of the models and furnish decision makers in the food delivery system 

with valuable insights by examining the effects of alterations in these variables. 

Tab. 2. Available sensitivity analysis variables and their effect 

Variable Test on how it affects 

Vehicle capacity Total travel distance/ Total travel time 

Vehicle speed Total travel time 

3.5. Scenario comparison 

This comparative study examines three scenarios to assess the feasibility of integrating 

VRP and UAVs in food delivery logistics. The aim is to validate research hypothesis by 

comparing the travel distance, travel time, CO2 emissions and travel cost for three scenarios. 

The three scenarios are as follows: 

− The existing pizza delivery system in which a Motorbike serves a single location at 

once to ensure timely delivery, hereafter referred to as a Motorbike delivery system 

(MB-DS). 

− Use VRP to deliver pizza using a motorbike by modifying the existing system to serve 

multiple locations per motorbike, hereafter referred to as the Motorbike VRP delivery 

system (MBVRP-DS). 

− Use of UAVs for pizza delivery applying the VRP to reduce the total distance 

travelled, hereafter referred to as the UAVRP delivery system (UAVRP-DS). 

To ensure accuracy in the comparison, the study utilizes the same dataset comprising 

customer orders, including their locations and demand, for all three scenarios. The VRP 

model is employed in these scenarios to determine optimal and feasible routes, and the 

evaluation of total distance, time, cost, and CO2 emissions is conducted for each route and 

dataset. There are slight variations in parameter values between the two VRP models. The 
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data and information pertaining to the existing system are primarily gathered through 

discussions with industry professionals involved in the pizza delivery process. Essential data 

types include average demand, motorbike capacity, delivery time allocation, and preferred 

delivery speed. Parameters associated with UAVs are established based on an available 

UAV specifically designed for package delivery, as per the information provided by Edel 

(2020). The service time for delivery, including the landing and takeoff time for UAVs, is 

assumed to be consistent for both motorbikes and UAVs. The delivery speed of motorbikes 

and UAVs is employed to calculate the delivery time for each route. 

The selection of batch order deliveries is determined by considering the average hourly 

customer order rate observed during peak periods. To facilitate the delivery process, both 

motorbikes and UAVs are deployed at 15-minute intervals, wherein VRP models are applied 

to determine the most optimal routes for delivering packages to designated locations. 

The comparison of scenarios consists of two distinct components. The first part entails 

evaluating the scenarios based on travel distance, travel time, travel cost, and emissions to 

assess their feasibility for food delivery. The main objective is to examine how each scenario 

optimally utilizes vehicle capacity and minimizes total travel distance. The second part of 

the comparison focuses on assessing the overall cost associated with package delivery in the 

three scenarios. This assessment considers various cost components such as capital 

expenses, vehicle maintenance and service, operational costs, and travel expenses. By 

calculating the cost per package, considering these factors, the aim is to analyze the 

feasibility of implementing the scenarios in terms of their long-term cost implications over 

the lifespan of the vehicles. 

 

Fig. 2. Senario comparision breakdown 

3.6. Calculations 

3.6.1. CO2 emissions calculation 

In calculating CO2 emission for motorbikes and UAVs, two approaches are used 

depending on the vehicle's energy source. Since here we consider battery-powered UAVs, 

the energy consumption of the UAV battery in kilo-watt hours per kilometer and CO2 

emission during the electricity production in kilograms per kilowatt hour is used to calculate 

the CO2 emission per km from UAVs during the delivery process.  
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𝑈𝐴𝑉 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑤ℎ)

𝑅𝑎𝑛𝑔𝑒 (𝑘𝑚)
 (4) 

 
𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟 =  𝑈𝐴𝑉 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑤ℎ 𝑘𝑚⁄ ) 

× 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑘𝑤ℎ⁄ ) (5) 

 

CO2 emission calculation for the motorbike involved fuel efficiency of the motorbike and 

CO2 emission per one liter of gasoline combustion during the motorbike journey. The CO2 

emission per km is calculated. 

𝑀𝑜𝑡𝑜𝑟𝑏𝑖𝑘𝑒 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙/𝑘𝑔) =  
1

𝐹𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑘𝑚/𝑙)
 (6) 

 

𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑒𝑟 𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟 = 𝑀𝑜𝑡𝑜𝑟𝑏𝑖𝑘𝑒 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑙 𝑘𝑚⁄ )

× 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑏𝑦 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 (𝑘𝑔 𝑙⁄ )
 (7) 

3.6.2. Travel cost calculation 

The travel cost analysis for each mode of transportation in this study focuses solely on 

fuel and energy expenses associated with the operations. Other operational costs, including 

rider charges, drone operator charges, and vehicle maintenance costs, are not considered in 

this part of the calculation. 

To determine the travel cost for UAVs, the energy consumption, and the electricity cost 

per kilowatt hour for battery charging are considered. 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑈𝐴𝑉 (𝐿𝐾𝑅) =  UAV energy consumption(kWh km)⁄

× electricity charge (LKR kWh)⁄

× Travel distance (km)
 (8) 

In calculating motorbike travel costs, the analysis considers the motorbike's fuel 

consumption and the price per liter of gasoline (petrol) in Sri Lanka. 

Travel cost for Motorbike (LKR) = Motorbike fuel consumption (l km)  ×⁄  

Gasoline price (LKR l)⁄  × Travel distance (km)
 (9) 

3.7. Total cost comparison 

The pricing of each package delivery is determined through the consideration of multiple 

factors, including initial vehicle investment, maintenance costs, operator or driver wages, 

and travel expenses encompassing fuel or energy consumption associated with the delivery 

process. 
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3.7.1. Vehicle (UAV and motorbike) requirement 

The determination of the required number of vehicles is based on the average travel time 

per route. Considering that orders are dispatched at regular 15-minute intervals, the decision 

regarding the number of vehicles is influenced by the time it takes for dispatched vehicles 

to return during peak hours. The calculation of the number of vehicles entails multiplying 

the minimum requirement to serve a single set by the ratio of the average route time to the 

dispatching time interval. In cases where the resulting value is a decimal, it is rounded to the 

nearest whole number. 

Number of vehicles required = Minimum requirement to serve single set  ×

(Average route time Dispatching time interval) ⁄
 (10) 

3.7.2. Per package cost for UAV deliveries 

The determination of capital investment in the delivery service is based on the required 

fleet size of vehicles. The primary objective of investment costs is to cover expenses 

associated with acquiring the vehicles. In the case of UAVs there are additional factors to 

consider, including costs related to software, maintenance, and operations. It is assumed that 

a single operator can manage and supervising the required number of UAVs. 

𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 × 𝐷𝑟𝑜𝑛𝑒 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = No: of 𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠
 

 (11) 

Capital cost × #Drones + Operating cost × #Drones

#Packages
+ Travel cost per package =  

Cost

Package
 (12) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑎𝑘 ℎ𝑜𝑢𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠
=  𝑇𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 (13) 

3.7.3. Per package cost for Motorbike deliveries 

The cost calculations for motorbike deliveries follow the same methodology as that used 

for UAV deliveries. However, there is a differentiation in the calculation of operating costs. 

For motorbike deliveries, the operating cost includes not only motorbike maintenance and 

service costs but also rider wages. Unlike UAVs, each motorbike is assigned a dedicated 

rider for the purpose of its operation. 
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4. RESULTS AND DISCUSSION 

4.1. Sensitivity analysis 

4.1.1. Sensitivity to capacity 

 

Fig. 3. Changes of distance with UAV capacity 

 As capacity increases, there is a consistent reduction in travel distance. This indicates 

that the availability of greater transportation capacity allows for the planning of more 

efficient routes, leading to shorter distances traveled. However, it is important to note that 

there exists a point of diminishing returns, where the decrease in distance becomes less 

significant beyond a specific capacity threshold. 

 

Fig. 4. Changes of time with UAV capacity 

As the capacity of the UAV increases, there is a corresponding progressive decrease in 

travel time. This reduction in travel time can be attributed to the UAV's ability to 

accommodate a greater number of packages in a single trip, thereby enabling it to cover more 

delivery locations along the designated route before returning to the depot. Consequently, 

the overall time required for completing the deliveries is reduced. 
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4.1.2. Sensitivity to vehicle speed 

 

Fig. 5. Average travel time change with speed 

The average travel time consistently decreases as the speed increases from 40 to 100. 

This suggests that higher speeds enable faster deliveries, reducing travel times. 

Tab. 3. Percentage time reduction with speed variation 

Speed variation (kmph) Percentage time reduction 

40→60 25% 

60→80 17% 

80→100 12% 

 

As the speed of delivery vehicles increases, the percentage of time reduction in travel 

time decreases. This declining trend indicates that the effect of higher speeds on reducing 

travel time diminishes. This observation can be attributed to the presence of service time at 

each delivery node. It suggests that surpassing a certain threshold of speed may not lead to 

significant additional reductions in travel time. 

4.2. Scenario comparison 

This section provides a detailed analysis and comparison of three scenarios involving the 

utilization of VRP for route planning in the context of Motorbike and UAV deliveries. The 

three scenarios are evaluated and contrasted based on various crucial factors, namely travel 

distance, travel time, travel cost, and emissions. 

The optimal set of routes recommended by the VRP model for both UAV and motorbike 

deliveries is illustrated through route maps, serving as visual representations for a singular 

dataset. These maps showcase the most efficient routes as determined by the VRP model, 

highlighting the effectiveness of the proposed approach in optimizing delivery operations 

for both types of vehicles. 
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Fig. 6. VRP route map for UAV 

 

Fig. 7. VRP route map for motorbike 

4.2.1. Distance comparison 

The total travel distance to serve customers during 20 delivery instances (20 data sets) 

are analyzed to identify the nature of travel distance for each delivery method. 

 

Fig. 8. Travel distance comparison for 20 delivery instances 

A descriptive analysis is conducted to summarize and describe the main characteristics, 

patterns and trends present in the analysis. 
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Tab. 4. Statistics analysis for distance comparison 

Parameter Distance (MBVRP-

DS) 

Distance (UAVRP-

DS) 

Distance (MB-DS) 

Mean 97.75 67.67 164.72 

Min 74.33 45.94 132.06 

Max 126.39 87.72 205.62 

Std deviation 11.64 9.14 20.83 

 

The average distance covered by the MB-DS is greater than that of the UAVRP-DS and 

MBVRP-DS. The calculations demonstrate that the MBVRP-DS method achieves a 

noteworthy reduction of 40.66% in distance compared to the MB-DS. In contrast, the 

UAVRP-DS achieves a higher percentage re-duction of 58.92% in distance compared to the 

MB-DS. Additionally, the UAVRP-DS achieves a 30.77% reduction in distance compared 

to the MBVRP-DS. This analysis reveals that both the MBVRP-DS and UAVRP-DS 

significantly decrease the distance compared to the MB-DS. However, the UAVRP-DS 

method exhibits a more substantial percentage reduction in distance, indicating a more 

significant improvement in reducing the total distance traveled for deliveries. 

4.2.2. Time comparison 

The total travel time to serve customers during 20 delivery instances (20 data sets) are 

analyzed to identify the nature of travel time for each delivery method. 

 

Fig. 9. Travel time comparison for 20 delivery instances 

A descriptive analysis is conducted to summarize and describe the main characteristics, 

patterns and trends present in the analysis. 

Tab. 5. Statistics analysis for time comparison 

Parameter Time (MBVRP-DS) Time (UAVRP-DS) Time (MB-DS) 

Mean 169.44 83.40 247.10 

Min 131.51 62.49 198.12 

Max 213.61 101.86 308.46 

Std deviation 18.83 9.25 31.24 



100 

The mean values of the time parameters indicate that MB-DS has the highest average 

time, followed by Total time for MBVRP-DS, while UAVRP-DS has the lowest average 

time. The calculations demonstrate that the MBVRP-DS method achieves a time reduction 

of 31.43% compared to MB-DS. In contrast, UAVRP-DS achieves a higher percentage time 

reduction of 66.25% compared to MB-DS. Additionally, UAVRP-DS achieves a time 

reduction of 50.78% compared to MBVRP-DS. These findings suggest that integrating 

UAVs with the VRP model represents the most efficient approach for delivery. 

In terms of average time per route, the three delivery methods exhibit different patterns. 

MB-DS has an average time per route of approximately 21.69 minutes, MBVRP-DS has an 

average time per route of approximately 34.94 minutes, and UAVRP-DS has an average 

time per route of approximately 17.16 minutes. UAVRP-DS emerges as the most time-

efficient method with the lowest average time per route. MB-DS shows longer average times 

per route, while MBVRP-DS exhibits the longest average times per route. These findings 

emphasize the potential time-saving benefits of integrating UAVs into the delivery process. 

4.2.3. Travel cost comparison 

The travel cost to serve customers during 20 delivery instances (20 data sets) are analyzed 

to identify the nature of travel cost for each delivery method. 

 

Fig. 10. Travel cost comparison for 20 delivery instances 

A descriptive analysis is conducted to summarize and describe the main characteristics, 

patterns and trends present in the analysis. 

Tab. 6. statistics analysis for travel cost comparison 

Parameter Cost (MBVRP-DS) Cost (UAVRP-DS)  Cost (MB-DS) 

Mean 347.00 46.60 584.76 

Min 263.87 31.64 468.81 

Max 448.69 60.40 729.95 

Std deviation 41.33 6.29 73.95 

 

The results indicate that the average travel cost is highest for the MB-DS method, 

followed by the MBVRP-DS method, while the UAVRP-DS method exhibits the lowest 
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average travel cost. This suggests that the UAVRP-DS method is the most cost-effective 

option, followed by the MBVRP-DS method, whereas the MB-DS method incurs higher 

average travel costs. The calculations reveal that the MBVRP-DS method achieves a 40.66% 

reduction in cost compared to the MB-DS method. In contrast, the UAVRP-DS method 

achieves a significantly higher percentage cost reduction of 92% compared to the MB-DS 

method. Furthermore, the UAVRP-DS method demonstrates a substantial reduction in time, 

with an 86.57% decrease compared to the MBVRP-DS method. 

4.2.4. CO2 emission comparison 

The CO2 emission to serve customers during 20 delivery instances (20 data sets) are 

analyzed to identify the nature of emission for each delivery method. 

 

Fig. 11. Emission comparison for 20 delivery instances 

Tab. 7. Statistics analysis for emission comparison 

Parameter CO2 emission 

(MBVRP-DS) 

CO2 emission 

(UAVRP-DS) 

 CO2 emission (MB-

DS) 

Mean 2.49 0.60 4.19 

Min 1.89 0.41 3.36 

Max 3.22 0.78 5.23 

Std deviation 0.30 0.08 0.53 

 

The UAVRP-DS method demonstrates the lowest average CO2 emissions, with the 

MBVRP-DS method following closely behind. Conversely, the MB-DS method exhibits the 

highest average CO2 emissions. The calculations reveal that the MBVRP-DS method 

achieves a significant 40.57% reduction in emissions compared to the MB-DS method. In 

contrast, the UAVRP-DS method achieves an even higher percentage reduction of 85.68% 

compared to the MB-DS method. Furthermore, the UAVRP-DS method achieves a 

substantial 75.90% reduction in emissions compared to the MBVRP-DS method. These 

findings indicate that the UAVRP-DS method is the most environmentally friendly option, 

emitting considerably less CO2 than the other methods. It is worth noting that the MBVRP-

DS method also exhibits relatively lower emissions compared to the MB-DS method. The 

potential to decrease CO2 emissions showcased in this study reflects its alignment with 
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United Nations Sustainable Development Goal 13 (Climate Action) and the Paris 

Agreement's objective to curb global warming by achieving a 45% reduction in CO2 

emissions by 2030 compared to 2010 levels (Figueres, 2015). 

Tab. 8. Travel distance, time, cost, and emission reduction summary 

Parameter MB-DS vs MBVRP-

DS 

MB-DS vs UAVRP-

DS 

MBVRP-DS vs 

UAVRP-DS 

Distance 40.66% 58.92% 30.77% 

Time 31.43% 66.25% 50.78% 

Cost 40.66% 92% 86.57% 

Emission 40.57% 85.68% 75.90% 

 

The summary findings indicate that both the VRP-based motorbike and UAV delivery 

systems offer substantial advantages over the existing delivery system in terms of travel 

distance, time, cost, and emissions. However, it is noteworthy that the UAV with VRP 

system demonstrates superior performance compared to the motorbike with VRP system. 

Specifically, the utilization of UAVs enables significantly greater reductions in travel 

distance (59% vs. 41%), travel time (66% vs. 31%), travel cost (92% vs. 41%), and emissions 

(86% vs. 41%). These results highlight the potential of UAVs in achieving more efficient 

and environmentally friendly food delivery operations, thereby emphasizing their 

significance in the logistics and transportation industry. 

4.2.5. Total cost comparison 

The cost per package is a crucial factor in determining a delivery system's feasibility and 

long-term cost-effectiveness. 

Tab. 9. Cost per package comparison 

Parameter MB-DS MBVRP-DS UAVRP-DS 

Number of vehicles 12 12 12 

Cost per package LKR 140.50 LKR 116.70 LKR 83.60 

 

Significantly, all three systems maintain an equal number of vehicles, with 12 vehicles 

assigned to each system. This ensures uniformity in terms of vehicle capacity and fleet size, 

enabling a fair and unbiased comparison of cost-effectiveness. 

The cost per package is determined over a five-year period, considering the anticipated 

lifespan of the employed vehicles. By considering this long-term perspective, it becomes 

evident that the UAVRP-DS system demonstrates the lowest cost per package, indicating its 

potential to facilitate more economical package deliveries. 

5. CONCLUSION 

The optimization of routing strategies for fast food delivery is particularly crucial due to 

the limited geographical areas and strict delivery time windows within which these services 

operate. Despite the limited adoption of UAVs for food delivery by a small number of 
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companies globally, research on the implementation of UAVs in this context remains largely 

unexplored locally and globally providing an opportunity to investigate this area. 

This study facilitates a comparison of the effectiveness and efficiency of three distinct 

food delivery systems. The first system follows the traditional approach of delivering meals 

using motorbikes, with each customer being served individually by a single motorbike. The 

second system implements VRP optimization specifically designed for motorbikes, aiming 

to optimize the delivery process by combining multiple parcels into a single motorbike trip. 

The third system concentrates on UAV-based food delivery, utilizing VRP-driven 

optimization techniques to enhance the overall delivery procedure. 

Comparing the traditional motorbike delivery system to the modified version 

incorporating VRP showed substantial reductions in four key factors: total travel distance, 

cost, and CO2 emissions, accompanied by a decrease in travel time. However, the VRP-

implemented motorbike system had a longer average route time, potentially affecting timely 

deliveries. Despite this, it demonstrated overall efficiency gains. Additionally, when 

comparing the VRP-implemented motorbike system to the VRP-implemented UAV system, 

the UAV system showed significant reductions in distance, travel time, cost, and CO2 

emissions, affirming the hypothesis from the first research objective. 

Comparatively, the VRP-implemented motorbike delivery system reduced the cost per 

package by 17%, while the VRP-implemented UAV delivery system achieved an additional 

28% reduction. This represents an overall cost reduction of approximately 40% compared 

to the existing method, establishing the VRP-implemented UAV delivery system as the most 

cost-effective option for long-term considerations. 

The sensitivity analysis conducted on the developed VRP model for motorbike and UAV 

delivery systems revealed that an increase in capacity leads to reductions in travel distance, 

time, cost, and CO2 emissions. However, this reduction reaches a point of diminishing 

returns, necessitating the optimization of capacity selection considering the constraints 

imposed by UAVs due to their current technological limitations in payload capacity. 

Additionally, higher vehicle speeds were found to decrease travel time, but the impact was 

gradually diminished by fixed service times at nodes. Therefore, when determining the 

optimal speed for vehicles, all factors, including energy consumption, reduced travel range, 

and vehicle safety, must be carefully considered, particularly for UAVs. 

In conclusion, among the three delivery systems, the VRP-implemented UAV delivery 

system emerged as the most suitable choice for food delivery, demonstrating substantial 

reductions in travel distance, time, cost, and CO2 emissions. Furthermore, its feasibility was 

confirmed by having the lowest cost per package compared to the other systems analyzed in 

the feasibility study. 

In this study the model development is based on specific assumptions, such as using 

identical and fully charged UAVs, disregarding weather effects, assuming a fully occupied 

payload, and maintaining constant service times. These assumptions are chosen to simplify 

computational processes of model development. In future research, researchers have the 

opportunity to improve the practicality of studies by investigating various UAV types with 

different battery capacities and charges, considering diverse weather conditions, adjusting 

payloads, and incorporating variable service times. 

Implementing UAVs in the delivery industry faces challenges including obstacles in 

urban areas (trees, power lines, structures), restricted zones limiting service area, weather 

impacts, and concerns about misuse in monitoring. Addressing these issues, alongside 
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comprehensive regulations, is crucial for overcoming obstacles and marking a significant 

milestone in the delivery industry. 

As a contribution to the logistics industry, this research study presents a novel VRP model 

tailored to the dynamics of on-demand food delivery, incorporating practical constraints to 

enhance real-world applicability. The study underscores the consequential implications of 

employing the VRP in optimizing food delivery operations. Furthermore, the investigation 

assesses the viability of integrating UAVs for food delivery, elucidating its feasibility as a 

long-term solution. 
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