
 

Applied Computer Science, vol. 19, no. 4, pp. 136–150 

doi: 10.35784/acs-2023-40 

 

136 

Submitted: 2023-11-01 | Revised: 2023-12-01 | Accepted: 2023-12-13 

Keywords: Vibroacoustic signal, VAG, Osteoarthritis, knee joint, kinetic chain, Artificial Neural 

Network, Multilevel Perceptron, MLP, Radial Basis Function, RBF, SVM, naive Bayes classifier 

Robert KARPIŃSKI [0000-0003-4063-8503]*,  

Przemysław KRAKOWSKI [0000-0001-7137-7145]**, ***, 

Józef JONAK [0000-0003-4658-4569]*, Anna MACHROWSKA [0000-0003-3289-2421]*, 

Marcin MACIEJEWSKI [0000-0001-9116-5481]**** 

COMPARISON OF SELECTED CLASSIFICATION 

METHODS BASED ON MACHINE LEARNING AS A 

DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE 

DAMAGE BASED ON GENERATED 

VIBROACOUSTIC PROCESSES 

Abstract 

Osteoarthritis is one of the most common cause of disability among elderly. It can affect 

every joint in human body, however, it is most prevalent in hip, knee, and hand joints. 

Early diagnosis of cartilage lesions is essential for fast and accurate treatment, which 

can prolong joint function. Available diagnostic methods include conventional X-ray, 

ultrasound and magnetic resonance imaging. However, those diagnostic modalities are 

not suitable for screening purposes. Vibroarthrography is proposed in literature as a 

screening method for cartilage lesions. However, exact method of signal acquisition as 

well as classification method is still not well established in literature. In this study, 84 

patients were assessed, of whom 40 were in the control group and 44 in the study group. 

Cartilage status in the study group was evaluated during surgical treatment. Multilayer 

perceptron - MLP, radial basis function - RBF, support vector method - SVM and naive 

classifier – NBC were introduced in this study as classification protocols. Highest 

accuracy (0.893) was found when MLP was introduced, also RBF classification showed 

high sensitivity (0.822) and specificity (0.821). On the other hand, NBC showed lowest 

diagnostic accuracy reaching 0.702. In conclusion vibroarthrography presents a 

promising diagnostic modality for cartilage evaluation in clinical setting with the use 

of MLP and RBF classification methods. 
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1. INTRODUCTION  

Degenerative joint disease, known as osteoarthritis, is a chronic joint disorder 

characterized by the gradual deterioration of joint cartilage and damage to other joint 

structures. Symptoms include pain, stiffness, limited joint mobility, and cracking. Causes 

include factors such as age, genetics, obesity, injuries, and excessive joint stress (Williams 

& Pierre-Louis, 2024). Joint replacements are one of the most commonly performed 

surgeries around the world with increasing numbers of patients receiving total (TKA) or 

unicompartmental (UKA) knee arthroplasty. It is well known that knee replacement surgery 

reduces pain, improves function and increases quality of life (W-Dahl et al., 2022), but some 

studies show that up to a quarter of patients suffer from surgery-related pain after UKA or 

TKA (Ashoorion et al., 2023). Moreover, there is a risk of endoprosthesis loosening over 

time and 15 year survivorship is estimated at 90% (Barnett & Toms, 2012). This means that 

with increasing number of joint replacements which is even estimated to rise 400% by the 

2040 year (Singh et al., 2019) more and more patients will be subjected to revision TKA in 

which results are not as favorable as in primary joint replacement. Therefore early stage 

osteoarthritis (OA) treatment is gaining more and more interest in research and clinical field 

in order to prolong joint preservation time. To be able to treat OA at early stages fast and 

accurate diagnosis have to be established. Currently, the gold standard for the diagnosis of 

OA is conventional X-ray with a Kellgren-Lawrence score of 0-4 for disease progression. 

Conventional X-rays are also used for planning of the procedures and following up the 

results of the treatment. However, this radiological modality have no capacity to actually 

visualize hyaline cartilage, and is based on bone remodeling due to its overstrain after 

cartilage damage. Therefore, the conventional X-rays have little potential for early OA 

diagnosis. Other modalities that are implemented in the diagnostic protocol are ultrasound 

(US) and magnetic resonance imaging (MRI). Ultrasound stands out from the other methods 

mentioned above in that it is the only dynamic diagnostic method, but the bone is 

impenetrable to ultrasound waves, so a large area of the knee joint is inaccessible to this 

examination and the ultrasound results are not significantly different from those obtained 

with an AP radiograph in the standing position (Riecke et al., 2014). Therefore, for cartilage 

lesions most commonly MRI is utilized. MRI is by far the most sensitive and specific 

diagnostic tool, however, literature shows that its sensitivity is widely spread ranging 45% 

up to 94% (Figueroa et al., 2007). Moreover, MRI was shown to grossly underestimate the 

cartilage lesion grade especially in early stages of OA (Krakowski et al., 2021a). Moreover, 

evaluation of cartilage in magnetic resonance imaging requires specialized radiologists, its 

costly and time consuming. Therefore, examination awaiting time can be prolonged. 

Solivetti et al. (2016) showed that up to 20% of patients referred for MRI did not receive 

proper physical examination prior to MRI. Those referrals were mainly made by general 

practitioners, who are not trained in orthopaedic examination (Krakowski et al., 2021b; 

Krakowski et al., 2021c). Given the information above it seems that orthopaedic community 

requires additional examination tools that can be implemented in clinical practice. 

Vibroacoustic diagnostics is a scientific field that deals with the study of vibrations and 

sounds in various structures, such as machinery, vehicles, buildings or electronic devices. It 

is used to determine the technical condition of these structures and identify possible 

problems or damage. Vibroacoustic machine diagnostics is a method used to assess the 

technical condition of machinery and equipment. It relies on the analysis of vibrations and 
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sounds emitted by machines during their operation. By monitoring and analyzing these 

signals, it is possible to detect problems early, such as uneven wear, malfunctioning 

components, or the need for lubrication. Vibroacoustic diagnostic methods are widely used 

in industry, especially in areas related to safety, reliability and operational efficiency of 

machinery and equipment, and in recent years it has also been applied in medicine (Jonak et 

al., 2019). 

Vibroarthrography (VAG) seems to fulfill this examination gap (Nalband et al., 2018). 

Healthy cartilage is capable of almost frictionless motion, therefore it generates little 

vibration, with the advance of surface fibrillation and cartilage loss more and more acoustic 

signals can be obtained from affected joint (Prior et al., 2010; Schlüter et al., 2019). Those 

acoustic signals generated by change in stress distribution can be recorded from knee joint 

surface (Nevalainen et al., 2021). Vibroarthrography is inexpensive, reproducible, fast and 

does not require use of radiation, therefore it can be a proposed method for patient screening 

in suspicion of OA (Karpiński et al., 2021b; Karpiński et al., 2021a). The first to introduce 

examination of acoustic changes in the knee joint was Blodgett in 1902, when he showed 

changes in generated knee sounds depending on cartilage status. Over the course of last 

century, VAG showed in preclinical evaluation to be effective in determining cartilage loss 

with accuracy surpassing 90 percent (Andersen et al., 2016). Both acoustic and vibration 

emission have been proposed and evaluated in the research (Emadi Andani & Salehi, 2024; 

Łysiak et al., 2020). However, up to this date there is no specific examination nor acquisition 

protocols that are widely accepted by the research society. What is also important is the fact 

that most of published studies used imaging modalities or a simple physical examination as 

a reference for cartilage examinations, which obviously poses a high risk of bias in these 

studies. Computer-Aided Diagnosis (CAD) plays a pivotal role in contemporary medicine, 

providing significant support to physicians in the process of diagnosing various ailments. It 

contributes substantially to the advancement of medical practices, offering assistance in the 

analysis of medical images from various modalities, such as MRI, CT, and mammography. 

CAD is exceptionally beneficial in the early detection of diseases, including cancer, due to 

its ability to identify subtle abnormalities that may escape the human eye. It aids doctors by 

offering a second opinion, assists in the quantification of changes, which is crucial for 

monitoring disease progression, and utilizes advanced algorithms for pattern recognition 

indicative of specific illnesses. Furthermore, it is applied in personalized medicine and 

serves as an educational tool. 

Artificial intelligence methods, such as artificial neural networks, are now one of the most 

important and widely used tools in classification and regression tasks. They are used in 

various fields of life and industry due to their ability to learn and adapt to complex patterns 

in data (Machrowska et al., 2020a; Machrowska et al., 2020b; Rogala et al., 2019; Szabelski 

et al., 2022).  Due to their ability to automatically learn and recognize complex patterns in 

data, they are widely used in various medical fields including medical diagnosis in cases, 

where typical statistical methods do not work. These methods allow the discovery of 

complex relationships, the explanation of observed trends and the possibility of prospective 

use seem to be extremely helpful in clinical practice. 

Therefore, a study was carried out in which the cartilage status is visually verified during 

surgical treatment of the knee joint. The purpose of this study was to create a testing and 

acquisition protocol for vibroacoustic joint testing, and then to compare selected 

classification methods using machine learning, and to evaluate the usefulness of the various 
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tools in diagnosing articular cartilage damage of the knee based on recorded vibroacoustic 

signals. 

This article consists of the following four parts: an introduction, which describes the 

theoretical basis of VAG and possible clinical applications, the second paragraph describes 

the study and control group in detail, as well as the signal acquisition and extraction protocol. 

The third paragraph presents the results with a discussion and summary of the results of 

other study groups. The fourth paragraph provides conclusions based on the results.  

2. MATERIALS AND METHODS 

2.1. Participants 

The study involved 84 participants, of whom 40 were allocated to the control group and 

44 to the study group. Healthy control group was enrolled from volunteers without any 

previous history of knee trauma or pain and proved negative during physical examination. 

Any positive finding during physical examination e.g. positive meniscal tests have been 

considered as an exclusion rule. The study group have been enrolled out of patients 

scheduled for surgical treatment of knee joint due to intraarticular lesions. If only 

ligamentous or meniscal lesions, without cartilage chondromalacia was found during the 

surgery, the patient was excluded from the study group. Each patient signed written consent 

for participation in this study. Control group consisted of 13 males and 27 females and OA 

group 21 and 23 respectively. OA group showed higher base BMI (30.72) than control group 

(22.98). Also, in this study there was a discrepancy in age between HC with mean age 24.63 

and 57.23 in OA group. This discrepancy is justified by the fact that osteoarthritis affects 

mostly elderly. A detailed description of the group of participants in the study, including 

mean values and standard deviation (SD) values, is presented in Table 1. The study was 

conducted in accordance with the Declaration of Helsinki, and approved by the Institutional 

Ethics Committee of the Medical University of Lublin consent number KE-0254/261/2019 

on 26/09/2019. 

Tab. 1. Characteristics of study participants. 

Study group N 
Males/ 

Females  

Age  

(years ± 

SD) 

Heigh  

(m ± 

SD) 

Weight  

(kg ± 

SD) 

BMI 

Tegner-

Lyshom 

score 

Healthy control 

(HC) 
40 13/27 

24.63  

± 5.52 

1,72  

± 0.08 

69,15  

± 15.58 

22,98  

± 3.57 

98,55  

± 3.95 

Osteoarthrisis 

(OA) 
44 21/23 

57,23 

± 13.24 

1,70  

± 0.09 

88,39 

± 14.06 

30,72  

± 4.71 

43,50 

± 15.14 

2.2. Study protocol and signal acquisition 

Recording of vibroacoustic signals generated by the moving knee joint was performed 

using the author's measurement system built on a typical commercially available knee 

orthosis, the block diagram of which is presented in Figure 1. The measurement system was 

based on the Arduino Mega2560 R3 module. A CM01B piezoelectric contact microphone 

connected to an analog input located on the patella was used for signal acquisition. The 
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sampling rate used was 1400 Hz with 10-bit resolution. In addition, an EMS22A50-D28-

LT6 Bourns digital encoder built into the axis of rotation of the orthosis was used to measure 

the position of the knee, which made it possible to determine the angular position of the 

joint. A galvanic barrier was used on the USB connector to ensure patient safety, and the 

device itself was powered by an 11.1V lithium-ion battery. Data were recorded using 

RealTerm software and transferred to a computer in ASCII format. 

The recording of vibroacoustic signals was conducted for repetitive sequences of knee 

joint straightening and bending movements in the range of 90° - 0° - 90°. The study was 

carried out for sequences performed in a closed kinetic chain (Machrowska et al., 2019). The 

procedure adopted in recording the signals involved rising from a seated position in a chair 

with knee flexion to 90° until reaching a fully upright standing position (knee flexion angle 

was 0°), and then descending to return to a seated position (90° knee flexion) in about 2s. 

Signals were recorded for 10 complete repetitions of the procedure described above. 

 

Fig. 1. Block diagram of the measurement system 

2.3. Signal Preprocessing 

Traditional signal analysis methods, such as the Fourier transform, assume that a signal 

is stationary, that is, has constant characteristics over time. However, many real signals, such 

as biomedical signals or vibroacoustic signals, change over time, making traditional analysis 

methods less effective. A solution to this problem may be to use the Ensemble Empirical 

Mode Decomposition (EEMD) procedure. This procedure is one form of adaptive modal 

decomposition EMD (Empirical Mode Decomposition). The fundamental idea of techniques 

using EMD-derived algorithms is to decompose complex signals into a finite number of 

components representing the signal in a selected frequency row. The process of such filtering 

is called "sifting," and the result is the obtaining of a set of IMFs (Intrinsic Mode Functions). 

A variation of EMD used in the presented research is EEMD (Wu & Huang, 2009). The 

EEMD variant makes it possible to reduce the occurrence of the unfavorable phenomenon 

known as mode mixing, which manifests itself in the leakage of the spectrum between 
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separate components. An important difference between the base algorithm and EEMD is the 

addition of Gauss white noise, which allows to reduce the mentioned undesirable effect. In 

each of the techniques that fall into the "xEMD" group of methods, an iteration is carried out 

to extract individual IMFs based on envelopes built on the occurrence of local extremes. The 

result of EEMD, unlike the classical procedure, is to obtain a frequency-filtered signal with 

the addition of white noise of finite amplitude. The included component allows to fill the 

time-frequency space thus helping to properly separate the individual frequency components 

and thus reduce the phenomenon of spectrum leakage. The result of the presented research 

was a set of frequency components of the signal and a trend signal, which is the remainder 

of the waveform after the extraction of IMFs. For further analysis, a signal stripped of the 

monotonic trend was used so that it would not affect further results. The procedure used in 

this study was described in detail in the authors' previous studies (Jonak et al., 2019; 

Karpiński et al., 2022a; Karpiński et al., 2022b). 

2.4. Feature extraction 

A number of signal features (parameters), referred to as state indicators, are used in 

vibroacoustic diagnostics. The following is a summary of the parameters determined for the 

discrete signals used in this study. These parameters were chosen on the basis of literature 

data and previous studies by the authors, who selected the optimal signal features. Based on 

the results of preliminary research  and literature analysis, eight indicators were determined 

for the recorded acoustic signals (Karpiński, 2022; Karpiński et al., 2019; Karpiński et al., 

2022a; Karpiński et al., 2022b): 

− The root mean square (RMS) value is one of the most widely used parameters 

determined in machine diagnostics. The RMS value takes into account the time history 

of the waveform and contains information about the magnitude of the amplitude, but 

is not sensitive to singular impulse in the signal. 

  

𝑥RMS = √
1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1             (1) 

where: 𝑥𝑖 – is the value of the discrete signal at the nth point, n = 1, ..., N;, 

𝑁 – is the number of samples in the signal. 

  

− Peak value (PV), also known as maximum signal value, unlike RMS, is an indicator 

that is very sensitive to rapid changes in the state of the objects under study. 

𝑥 = 𝑚𝑎𝑥|𝑥𝑖|             (2) 

− The crest factor (CF) is a measure that gives the ratio of the peak value (PV) to the 

RMS value of a signal. In other words, this factor indicates how extreme the peaks are 

in a waveform. 

𝑥CF =
𝑥

𝑥RMS
              (3) 

− The form factor (FF) is a measure that gives the ratio of the RMS value to the 

straightened average value (SA). 
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𝑥SF =
𝑥RMS

�̅�
              (4) 

− Variance (VAR) is a measure of the dispersion of sample results around the center of 

the distribution; it is the expected value of the square of the variance of a random 

variable minus its population mean. 

𝑉𝐴𝑅 =
1

𝑁−1
∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1            (5) 

− Skewness (SKW) is an asymmetry coefficient used to determine what the distribution 

looks like, i.e. whether the data is distributed on both sides of the mean. It is expressed 

by the formula: 

𝑆𝐾𝑊 =
�̅�−𝑑

𝑠
             (6) 

where:  𝑑 – is the dominant, or value with the highest probability of occurrence, or the 

value most frequently occurring in the sample, while s is the value of the standard 

deviation, 

�̅� – average value.  

 

− The M6A parameter is the sixth central moment normalized by the variance raised to 

the third power. It is defined as: 

𝑀6𝐴 =
1

𝑁
∑ (𝑥𝑖−�̅�)

6𝑁
𝑖=1

[
1

𝑁
∑ (𝑥𝑖−�̅�)

2𝑁
𝑖=1 ]

3            (7) 

− The parameter M8A is called the eighth central moment, normalized by the variance 

to the fourth power. It is defined as: 

𝑀8𝐴 =
1

𝑁
∑ (𝑥𝑖−�̅�)

8𝑁
𝑖=1

[
1

𝑁
∑ (𝑥𝑖−�̅�)

2𝑁
𝑖=1 ]

4            (8) 

2.5. Classification tools 

In machine learning, there are many types of classifiers that are used to predict categories 

or labels for input data based on its features. Below are some common types of 

classifiers/classification methods in machine learning: 

− Logistic regression - a basic classifier used for binary classification problems. It 

predicts the probability of belonging to one of two classes (Lemon et al., 2003). 

− Decision trees - a graphical way of representing a set of decision rules. It works by 

dividing the data into subgroups until an explicit classification is obtained (Kotsiantis, 

2013). 

− Random forest - a collection of decision trees. Each tree in the forest is trained on a 

different subset of the data, and the result is averaged, leading to more stable and 

accurate predictions (Shaik & Srinivasan, 2019). 
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− Support Vector Machines (SVM) - an algorithm that finds optimal hyperplanes 

separating different classes in the feature space. It is used for both classification and 

regression problems (Zhang, 2012). 

− K-NN (k nearest neighbors) - a method which assigns a new data point to a class based 

on most of the k nearest neighbors of that point in the feature space (Zhang et al., 

2017). 

− Naive Bayes classifier - based on a probability theory and assumes independence 

between features. Despite its simplicity, it often gives good results, especially for 

small data sets (Huang & Li, 2011). 

− Gradient Boosting Machines (GBM) - a technique that builds multiple weak models 

(usually decision trees) and combines them into a strong model by iteratively 

correcting the errors of previous models (Aziz et al., 2020). 

− Deep learning and Neural Networks - deep learning, uses neural networks to solve 

complex classification problems. These networks consist of multiple layers of neurons 

that learn data representations at different levels of abstraction (Goodfellow et al., 

2016). 

− Cascade classifier - a classifier that consists of a series of simple classifiers, each of 

which is responsible for a specific part of the feature space (Bennasar et al., 2014).  

In this study, multilayer perceptron - MLP, radial basis function - RBF, support vector 

method - SVM and naive classifier - NBC were used to solve classification issues. All 

calculations were carried out using the Statistica 13.3 package. These classifiers differ in 

their operating principle, learning method, as well as layout structure. For this reason, when 

making assignments of cases to different classes, they make errors corresponding to different 

positions of the data (Ghahramani & Kim, 2003). 

Multilayer Perceptron (MLP) is one of the basic models used in machine learning. It is a 

type of artificial neural network that consists of at least three layers: an input layer, one or 

more hidden layers, and an output layer. MLP is an example of a supervised deep learning 

model that can be applied to both classification and regression problems. This type of neural 

network has been widely and extensively described in the literature (Bose, 2007; Rogala et 

al., 2021) . 

A radial basis function (RBF) network is a type of artificial neural network that, like an 

MLP-type network, consists of three layers: an input layer, a hidden layer and an output 

layer. It is a machine learning model used for both classification and regression. RBF 

networks have the ability to model complex relationships in data, especially when those 

relationships are nonlinear and local. They are used in various fields such as pattern 

recognition, signal processing, and forecasting (Meng Joo Er et al., 2002). 

Support Vector Machines (SVM) is a supervised machine learning algorithm applied to 

both classification and regression problems. SVM is popular for its effectiveness in the 

machine learning field and its ability to handle both linear and non-linear problems. A key 

advantage of SVM is its ability to deal with complex relationships in data, even for high-

dimensional data (Chih-Wei & Chih-Jen, 2002).  

Naive Bayes classifier is a probabilistic classification algorithm that is based on Bayes' 

theorem and the assumption of mutual independence between features (hence the name 

"naive"). Despite its simplicity, it often produces satisfactory results, especially for large 

data sets and text classification problems. It is often used in email spam classification tasks, 

sentiment analysis in texts or document categorization (R. Liu et al., 2018). 
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In summary, the main differences between these classifiers lie in their structure, mode of 

operation, application scope, and approach to solving classification problems. MLP and RBF 

are neural networks that differ in structure and functions, SVM is a technique based on 

hyperplanes and margins, while the naive Bayes classifier is a simple probabilistic approach 

based on feature independence. 

2.6. Evaluation of classification accuracy 

Typical indices such as ROC (Receiver Operating Characteristic) curves and F1 and 

MCC (Matthews correlation coefficient) were used to assess the accuracy of the selected 

classification methods. These are measures that allow comparison of classification quality 

also in groups where unbalanced data sets are analyzed. 

ROC curves are a popular way to assess the quality of classification models. They are a 

tool for assessing the correctness of a classifier's performance, especially for assessing the 

quality of a model that predicts membership in two classes. An ROC curve is a graph that 

shows the relationship between the degree of true positives and the degree of false positives 

for different decision thresholds. The closer the ROC curve is to the upper left corner, the 

better the model is, as it has a lower value of false positives and a higher value of true 

positives. It is a graph showing sensitivity versus the proportion of false positives (1-

specificity) for each cutoff point. The ROC curve is a commonly used tool for evaluating 

and cross-comparing classification models. A very popular approach is to determine the area 

under the graph of the ROC curve, denoted as AUC (area under curve), and treat it as a 

measure of the classification accuracy of a given model. The value of the AUC index takes 

values in the range [0,1], the larger it is, the better the model. 

An effective solution to the class imbalance problem is the Matthews correlation 

coefficient, which is a special case of the ϕ - phi coefficient (Chicco & Jurman, 2020). It is 

one measure of the quality of binary classification that takes into account both the predictive 

accuracy of positive and negative class labels. MCC is a linear measure, taking values from 

-1 to 1. A value of +1 indicates excellent agreement between actual and predicted 

classification results, a value of 0 indicates no relationship, a value of -1 indicates full 

disagreement (Luque et al., 2019). 

Another measure used to assess the accuracy of binary classification is the F1 score. This 

measure combines precision and sensitivity into a single value. F1 is the harmonic mean 

between precision and sensitivity. Precision measures how many of the positive cases 

detected are true positives, and sensitivity measures how many of the true positives are 

detected. The F1 value ranges from 0 to 1, where 1 represents perfect classification accuracy. 

In practice, as with the value of the area under the ROC curve, the higher the F1 score, the 

better the binary classifier performs (Chicco & Jurman, 2020; Luque et al., 2019). 

3. RESULTS AND DISCUSSION  

Details of the classification results obtained in the analyzed problem using multilayer 

perceptron (MLP) neural networks, radial basis function (RBF) networks, support vector 

machine (SVM) method and classification using naive Bayes classifier (NBC) are presented 

below. Table 2 summarizes the details of classification accuracy for each method. The 

highest overall accuracy of almost 90% was achieved using MPL-type networks with 85.5% 
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and 95.45% correct classifications in the HC and OA groups, respectively. Classification 

accuracy for RBF networks was 82.14%. The lowest accuracy of 70.24 was obtained for the 

naive Bayes classifier, with only 50% accuracy in the OA group. To the best of the authors' 

knowledge, the MLP classification method was only tested by their group (Karpiński et al., 

2022a; Karpiński et al., 2022b). Therefore, the authors are not able to compare their results 

with other researchers. On the other hand, RBF classification have been studied in detail by 

Rangayyan et al. (2013). In their research high values of AUC ranging 0.711up to 1 could 

be found. In the present study, the AUC using RBF was 0.821, which is lower than that 

reported in most of Rangayyan's work. This high accuracy can be attributed to fractal data 

analysis, which was implemented in those studies. The authors state that their results also 

differ from those published by Shidore et al. (2021) in regard to SVM classification. In their 

study, the reported AUC reached 0.926, while in the present study it was only 0.756 and the 

lowest accuracy was found using NBC. This classification method showed highest 

sensitivity reaching 0.88, however, its specificity was only 0.627. Different results were 

presented by Wu et al. (2013) and Yang et al. (2014). Both authors presented that, using 

NBC, the specificity was 0.936 and 0.979, respectively. The authors' results, unlike those of 

other researchers, were validated using intraoperative cartilage visualisation. The authors 

believe that such differences in their and other researchers' results are due to different 

methods of cartilage validation.  

Tab. 2. Summary of classification accuracy for all analyzed methods. 

Classification method  HC OA Total 

MLP 

Total 40.00 44.00 84.00 

Correct 33.00 42.00 75.00 

Incorrect 7.00 2.00 9.00 

Correct (%) 82.50 95.45 89.29 

Incorrect (%) 17.50 4.55 10.71 

RBF  

Total 40.00 44.00 84.00 

Correct 32.00 37.00 69.00 

Incorrect 8.00 7.00 15.00 

Correct (%) 80.00 84.09 82.14 

Incorrect (%) 20.00 15.91 17.86 

SVM 

Total 40.00 44.00 84.00 

Correct 33.00 30.00 63.00 

Incorrect 7.00 14.00 21.00 

Correct (%) 82.50 68.18 75.00 

Incorrect (%) 17.50 31.82 25.00 

NBC 

Total 40.00 44.00 84.00 

Correct 37.00 22.00 59.00 

Incorrect 3.00 22.00 25.00 

Correct (%) 92.50 50.00 70.24 

Incorrect (%) 7.50 50.00 29.76 

 

Figure 2 presents a summary of the ROC curves for the classifiers analyzed. The highest 

value of the area under the curve was obtained for the MLP-type network (0.875), while the 

lowest value was obtained for the naive Bayes classifier (0.754). 
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Fig. 2. Comparison of ROC curves for all classification methods. 

A detailed analysis of the obtained classification parameters is presented in Table 3. The 

obtained results show that the MLP-type neural classifier coped with the analyzed 

classification problem best, obtaining MCC- 0.790 and F1 - 0.903, respectively. In the case 

of RBF-type networks, the results were slightly lower and amounted to MCC - 0.642 and 

0.831, respectively. On the other hand, the naive Bayes classifier coped with the analyzed 

problem weakest, obtaining MCC - 0.464 and F1 0.638, respectively. 

Tab. 3. Comparison of classification parameters for the analyzed methods. 

Classification 

method  

Accuracy 

(%) 
Sensitivity Specificity AUC Precision  Recall 

F1 

score 
MCC 

MLP 0.893 0.857 0.943 0.875 0.955 0.857 0.903 0.790 

RBF 0.821 0.822 0.821 0.837 0.841 0.822 0.831 0.642 

SVM 0.750 0.811 0.702 0.756 0.682 0.811 0.741 0.510 

NBC 0.702 0.880 0.627 0.754 0.500 0.880 0.638 0.464 

 

Vibroarthrography (VAG) as a method for joint assessment has certain limitations, 

including subjective result interpretation dependent on the operator, lack of visual imaging 

of joint structures, absence of standardized assessment criteria, variable sensitivity and 

specificity, constraints in cases of obese or elderly patients, and the need for specialized 

equipment. Despite these limitations, VAG can be a useful tool in joint evaluation, especially 
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when combined with other diagnostic methods. However, consulting with a physician for an 

accurate diagnosis and treatment plan is always recommended. 

4. CONCLUSIONS 

The study showed high diagnostic accuracy for MLP and RBF classification methods. 

Specificity of 0.943 and sensitivity of 0.857 provides sound grounds for implementing this 

examination protocol in clinical practice. NBC proved to have little value in diagnostics, 

therefore its use in clinical setting is highly questionable. The results confirm that 

vibroarthrography can be an inexpensive, non-invasive, safe, and, most importantly, 

effective tool for detecting degenerative changes occurring in the knee joints. Further studies 

are necessary to establish golden standard in VAG examination, as well as signal extraction 

and acquisition. The authors plan to conduct extensive research to determine the best method 

of signal processing, as well as the appropriate clinical indications for the use of VAG in 

patients. 
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