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Abstract 

Multi-object tracking is a crucial aspect of perception in the area of computer vision, 

widely used in autonomous driving, behavior recognition, and other areas. The 

complex and dynamic nature of environments, the ever-changing visual features of 

people, and the frequent appearance of occlusion interactions all impose limitations on 

the efficacy of existing pedestrian tracking algorithms. This results in suboptimal 

tracking precision and stability. As a solution, this article proposes an integrated 

detector-tracker framework for pedestrian tracking. The framework includes a 

pedestrian object detector that utilizes the YOLOv8 network, which is regarded as the 

latest state-of-the-art detector, that has been established. This detector provides an 

ideal detection base to address limitations. Through the combination of YOLOv8 and 

the DeepSort tracking algorithm, we have improved the ability to track pedestrians in 

dynamic scenarios. After conducting experiments on publicly available datasets such 

as MOT17 and MOT20, a clear improvement in accuracy and consistency was 

demonstrated, with MOTA scores of 63.82 and 58.95, and HOTA scores of 43.15 and 

41.36, respectively. Our research highlights the significance of optimizing object 

detection to unleash the potential of tracking for critical applications like autonomous 

driving. 

1. INTRODUCTION 

Multi-object tracking (MOT) refers to the detection and identification of the trajectories 

of multiple targets in a video sequence, such as pedestrians, vehicles, animals, drones, etc. 

(Yu et al., 2016; Xu et al., 2019; Ciaparrone et al., 2020). Different targets are assigned 

unique identifiers to enable trajectory prediction, accurate search and other subsequent 

processing. Multi-object tracking is an important technology in the field of computer vision, 

widely used in autonomous driving, intelligent video surveillance, behavior recognition and 

other applications (Kamal et al., 2020; Ess et al., 2010). 

Multi-object tracking not only faces the challenges of occlusion, deformation, motion 

blur, crowds, scale and illumination changes already present in simple object tracking, but 
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also complex problems such as trajectory initiation and termination, and mutual interference 

between similar targets (Behrendt et al., 2017). Multi-object tracking therefore remains a 

challenging area of research in image processing, attracting the sustained interest of many 

researchers (Bewley et al., 2016; Bochinski et al., 2017; Zhang et al., 2022; Zeng et al., 

2022). Visual object tracking has developed particularly over the last ten years. Initial 

classical methods such as particle filters (Okuma et al., 2004) and Mean shift (Cheng, 1995) 

were of limited accuracy and focused on tracking simple objects, struggling to meet the 

demands of complex scenes. In recent years, the rapid development of deep learning has 

improved the accuracy of these methods. 

Upon examining current methods, it is evident that tracking pedestrians in intricate 

settings remains a present-day research challenge. The frequent obstructions encountered 

during tracking hinder the precise location of objects. Furthermore, visually similar targets 

complicate the preservation of their unique identifiers. Interactions between objects may also 

lead to deviations in the tracking frame. 

To overcome these limitations, the authors suggest an integrated detector-tracker 

framework that is specifically designed for pedestrian tracking in autonomous vehicles. The 

key contributions of this paper are as follows: 

− The utilization of YOLOv8 as a detector is crucial for real-time detection due to its 

faster speed compared to its predecessors YOLOv5x/m/l/s, while still maintaining a 

high level of precision. 

− To evaluate the effectiveness of multi-object tracking algorithms by detection, namely 

SORT and Deep-SORT, a performance assessment is conducted. 

− In order to evaluate the robustness of our method in handling occlusions and its 

capability to track pedestrians in real-time scenarios involving obstructions caused by 

objects or other individuals, we carried out experiments using the MOT17 and 

MOT20 public benchmarks. 

The current paper is organized as follows: Section 2 provides a review of similar works, 

Section 3 presents a detailed explanation of the fundamental algorithms used, Section 4 

presents the results and discussion, and Section 5 concludes the discussion. 

2. RELATED WORK 

The extensive research and development work that accompanies deep learning 

applications has generated a significant amount of interest. Deep learning-based methods 

have been applied to various tasks, including object detection and tracking (Girshick et al., 

2014; Wojke et al., 2017). 

This project involves establishing mechanisms for object detection and tracking, and as 

such, the current documentation on this topic is addressed in this context. Initially, the object 

detection process based on machine learning can be classified into two categories, You Only 

Look Once (YOLO) (Redmon et al., 2016) and SSD (single shot multibox detector) (Liu et 

al., 2016) Both approaches treat detection as a regression problem and operate as single-

stage networks. 

Conversely, algorithms such as Region-Based CNN (RCNN) (Abbas & Singh, 2018) first 

establish the region of interest before classifying it. The R-CNN model implements a 

selective search algorithm to determine the number of candidates for object-bounding 
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regions, which are then used as features in a CNN acting as a feature extractor. To determine 

the presence of an object in a given region, an SVM (Support Vector Machine) is employed 

using the extracted features. Even though the R-CNN model is proficient in detecting objects 

in different scenarios, it demands an extensive period of training and has a restricted 

detection speed (Mao et al., 2019). 

Object tracking, as per (Luo et al., 2021), can be classified into two categories: single 

object tracking (SOT) and multiple object tracking (MOT). The tracking of multiple objects 

(MOT) is an active field of research in computer vision. Recently, two main approaches have 

been the focus of research: tracking by detection (Bergmann et al., 2019; Pang et al., 2020; 

Peng et al., 2020; Wang et al., 2020;) and joint detection and tracking (Munjal et al., 2020; 

Feng et al., 2023; Wang et al., 2021). Joint detection and tracking methods detect and track 

objects within a single model, utilizing visual appearance to locate objects within images. 

(De Rosa & Papa, 2022) are frequently used in this approach.  When MOT uses tracking 

by detection, the framework process is as follows: First, the algorithm identifies objects in 

each video sequence frame, separates them using bounding boxes, and finds all objects in 

the frame. The problem is then transformed into a correlation problem between previous 

images and objects in the current image. It construct a similarity matrix using indicators such 

as intersection and union (IoU) and appearance features, and then use algorithms such as 

Hungarian (Kuhn, 1955) algorithm for analysis. The efficiency of this tracking algorithm 

depends on the performance of its object detection network. 

The most widely used recognition network is the YOLO series, which includes YOLOv5 

(Zhang et al., 2022) and YOLOv8 (Jocher et al., 2023). The most commonly used tracking 

algorithms are MOTDT (Chen et al., 2018), SORT (Bewley et al., 2016) and DeepSORT 

(Wojke et al. 2017). SORT uses Kalman (1960) to predict the location of a target and then 

associates the result of this prediction with detections from an object detection network, such 

as YOLO, using the Hungarian matching algorithm. However, due to the variability of target 

movements and frequent occlusions in real-world scenarios, SORT can lead to a large 

number of identity changes. For this reason, the author implemented features such as cascade 

matching and developed DeepSORT, which offers better performance. The techniques of 

object tracking have been employed in a wide range of fields, including the tracking of 

pedestrians (Sun et al., 2021). 

3. METHODOLOGY 

The purpose of this task is to meticulously track pedestrians in a video, which requires 

assigning unique identifiers to individuals and corresponding tracks that remain consistent 

throughout the entire sequence of tracks. By achieving a flawless tracking result, the authors 

can ensure that the movements of pedestrians are precisely tracked and analyzed. 

The algorithm's workflow is illustrated in (Fig. 1). First, the algorithm identifies the 

individuals in each frame of the video sequence, separates them using bounding boxes, and 

finds all the individuals in the frame. Each individual within every image is tracked using 

the DeepSORT algorithm, which is an extension of the Simple Online Realtime Tracking 

algorithm (SORT). DeepSORT employs appearance descriptors to minimize identity 

changes, thus enhancing tracking efficiency. In cases that involve predicting temporal or 

time series data, we utilize the Kalman filtering algorithm. 
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Fig. 1. Flowchart of online tracking-by-detection with YOLOv8 and DeepSort 

3.1. Object detection algorithms 

After the publication of "You Only Look Once: Unified, Real-Time Object Detection, 

the YOLOv1 object detection algorithm gained popularity due to its straightforward 

approach and high speed, as well as its comparatively high mean average precision (mAP) 

at the time. YOLO's main innovation was formulating object detection as a single-pass 

regression, using a single neural network to predict both bounding boxes and associated class 

probabilities. 

3.1.1. YOLOv8 

The newest version of the YOLO object detection model is YOLOv8. Despite sharing 

the same architecture as its predecessors (Fig. 2), this latest version features numerous 

enhancements over previous iterations of YOLO. These include a brand-new neural network 

architecture that employs both a feature pyramid network (FPN) and a path aggregation 

network (PAN), as well as a novel labeling tool that simplifies the annotation process. The 

labeling tool offers multiple useful features such as automatic labeling, labeling shortcuts, 
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and customizable keyboard shortcuts. The combination of these features makes image 

annotation for model training an easier process. The FPN method gradually decreases the 

image's spatial resolution while simultaneously increasing its feature channels, producing 

characteristic maps that detect objects at various scales and resolutions. On the other hand, 

the PAN architecture aggregates features through skip connections between different levels 

of the network. This approach is effective in capturing characteristics at different scales and 

resolutions, which is crucial for accurately detecting various objects. These techniques have 

been cited in reference (Treven et al., 2023). 

 

Fig. 2. YOLOv8 Architecture (Solawetz & Francesco, 2023) 

3.1.2. YOLOv8 vs YOLOv5 

The rationale behind comparing YOLOv8 and YOLOv5, rather than other iterations of 

YOLO, stems from their closely matched performance and metrics. Nevertheless, YOLOv8 

outshines YOLOv5 in numerous aspects, particularly in showcasing a heightened mAP, as 

evidenced in Figure 3a. This advancement also implies that YOLOv8 features fewer outliers, 

as demonstrated by Figure 3b. Moreover, it is evident that YOLOv8 yields comparable, if 

not superior, outcomes to those of YOLOv5. Regarded as a linear assignment dilemma, this 

represents a pivotal stage in resolving the tracking problem. 

 
   (a) YOLOs average mAP@.50 against RF100 categories        (b) YOLOs mAP@.50 against RF100                   

                  Fig. 3. YOLOv8 vs Previous Versions (Solawetz & Francesco, 2023) 
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3.2. Objects tracker 

3.2.1. Sort 

To keep track of objects in video footage in real-time, the Simple Online and Real-Time 

Tracking (SORT) method is frequently used. This method combines a Kalman filter with a 

Murken assignment algorithm to determine object positions and velocities and then link 

them throughout frames. By decreasing the video measurement noise to predict the object's 

positions, the Kalman filter is useful, while the assignment algorithm solves the association 

issue. SORT is effective in computer vision applications such as surveillance, autonomous 

driving, and robotics because it can handle complicated scenarios like occlusion and changes 

in appearance. It is well-known for its precision and efficiency. 

3.2.2. Deep-SORT 

DeepSORT is an enhancement to the SORT algorithm, designed for object tracking and 

tracing. To improve tracking in difficult scenarios, it incorporates appearance measures 

based on pedestrian features, as well as a cascade matching module. The feature extraction 

network is essential for the accuracy and quality of pedestrian target appearance information. 

Comprising two primary components, DeepSORT entails the branches of appearance 

descriptors and motion prediction via the Kalman filter. Spatio-temporal dissimilarity is 

measured by the Mahalanobis distance, while the cosine distance evaluates appearance 

similarity. These distances are used for cascade matching, which associates trajectories. In 

track management, tracks are updated, initialized and deleted. 

3.2.3. Data association 

The management of data associations (Korepanova et al., 2020; Vijaymeena & Kavitha, 

2016) is an integral part of computer vision object tracking, whether it is within the SORT 

algorithm or in the second step of the Deep-SORT algorithm. This management can 

be viewed as a problem of linear assignment, the crucial step of solving the tracking problem 

becomes apparent. Typically, this problem is formulated using a cost matrix, which offers 

several approaches for creating these matrices using bounding box metrics. These methods 

are at the core of developing precise and efficient object tracking systems. A comprehensive 

understanding of these techniques is imperative in the context of designing computer vision 

systems. 

3.3. Evaluation netrics for multiple targets tracking 

Given the intricate nature of multi-object tracking, a single standard falls short in grasping 

its inherent efficiency. Thus, a comprehensive quantitative evaluation of dedicated 

algorithms requires multiple indicators capturing diverse perspectives. In this context, the 

Multi-Object Tracking Accuracy (MOTA) Index notably gauges object relevance in video 

sequences. MOTA (Kasturi et al., 2009), is pivotal in assessing multi-object tracking 

algorithm efficacy. 
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MOTA = 1 −
∑  
|𝑡|
𝑡=1 (𝐹𝑁𝑡 + 𝐹𝑃𝑡 + 𝐼𝐷𝑠𝑡)

∑  
|𝑡|
𝑡=1 𝐺𝑇𝑡

 
(1) 

where: 

Ground Truth (GT), False Positive (FP), ID switch (IDs), and False Negative (FN). 

An important indicator Objects Identification Accuracy (IDF1): 

𝐼𝐷𝐹1 =
2|𝐼𝐷𝑇𝑃|

2|𝐼𝐷𝑇𝑃| + |𝐼𝐷𝐹𝑃| + |𝐼𝐷𝐹𝑁|
 (2) 

Distinct from MOTA, IDTP, IDFP, and IDF1 in Equation (2) correspond to true 

positives, false positives, and false negatives tied to object identity. These convey a nuanced 

insight into the multi-object tracking algorithm's prowess in identity preservation. While 

often encompassing operational performance, these measures acknowledge inherent biases 

in MOTA and IDF1 (Ristani et al., 2016), favoring detection precision. Designers of 

MOTchallenge introduced innovative metrics like Higher Order Tracking Accuracy 

(HOTA) to counterbalance. HOTA (Luiten et al., 2021) stands as a pivotal measure among 

their tailored evaluations for video-based multi-object tracking algorithms. 

HOTA𝛼 = √
∑  𝑐 𝐴(𝑐)

|𝑇𝑃| + |𝐹𝑁| + |𝐹𝑃|
 (3) 

𝐴(𝑐) =
|𝑇𝑃𝐴(𝑐)|

|𝑇𝑃𝐴(𝑐)| + |𝐹𝑁𝐴(𝑐)| + |𝐹𝑃𝐴(𝑐)|
 (4) 

When presented with a pair of complete trajectories, whether they are observed and 

predicted or not, the True Positive Association (TPA(c)) refers to the accurately predicted 

segment of the trajectory. False Negative Association (FNA(c)) pertains to the recorded 

authentic path that was not predicted. Conversely, False Positive Association (FPA(c)) 

occurs when a negative trajectory is wrongly predicted as a positive trajectory by the model. 

4. RESULTS AND DISCUSSION 

This document outlines an integrated framework for detection and tracking, with the 

experiment divided into two distinct groups. The first group combines the YOLOv5 detector 

with the SORT and DeepSORT trackers to assess the impact of the MOT algorithm. The 

second group also utilizes the YOLOv8 detector in conjunction with the same SORT and 

DeepSORT trackers to evaluate the efficacy of the MOT algorithm.  

The hardware environment for this experiment consists of an NVIDIA GeForce RTX 

3050 graphics card with 8 GB of video memory, an Intel Core i3-12100K processor clocked 

at 3.30 GHz and 16 GB of RAM memory. 
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The evaluation was conducted on all combinations of detectors and trackers for sequences 

02, 04, 05, 10, 11, and 13 of the MOT17 challenge (Milan et al., 2016), as well as sequences 

01, 03, and 05 of the MOT20 challenge (Dendorfer et al., 2020). The parameters of SORT 

or DeepSORT methods in each combination were meticulously standardized to ensure a fair 

comparison. 

Tab. 1. Tracking results on the mot17 challenge. Comparing the tracking performance of yolov8-sort and 

yolov5(s/m/l/x)-sort 

 MOTA↑ IDF1↑ HOTA↑ MT↑% ML↓% FP↓ FN↓ IDs↓ 

YOLOv5s 

YOLOv5m 

YOLOv5l 

YOLOv5x 

YOLOv8 

39.52 

39.25 

41.05 

41.95 

44.82 

53.42 

52.02 

53.81 

54.35 

56.56 

29.22 

29.03 

30.11 

30.65 

32.90 

18.23 

18.55 

21.21 

22.12 

22.36 

38.22 

34.17 

31.22 

31.12 

30.19 

6655 

6719 

6708 

6632 

5538 

47689 

47895 

45654 

45658 

43258 

596 

612 

526 

569 

496 

Tab. 2. Tracking results on the mot17 challenge. Comparing the tracking performance of yolov8-deepsort 

and yolov5(s/m/l/x)-deepsort 

 

The results obtained provide compelling evidence that the improvements made to the 

detector in this document are indeed effective. The combinations of detectors and trackers 

are thoroughly assessed on the widely recognized MOT17 and MOT20 datasets. Every result 

from these exhaustive experiments is thoughtfully presented in Tables 1, 2, 3, and 4. 

The first chart, Tab.1, demonstrates that the YOLOv8 detector plays an important role in 

the proposed tracking algorithm, resulting in the most favorable outcomes in terms of 

MOTA, IDF1, HOTA, and IDS. In comparison to the algorithm that employs the YOLOv5x 

detector, MOTA increases by 2.7%, IDF1 increases by 2.21%, HOTA increases by 2.25%, 

and the number of IDS decreases by 100. The second chart, Tab 2, shows that the proposed 

tracking algorithm, YOLOv8_DeepSORT, achieves the best results in terms of MOTA, 

IDF1, HOTA, and IDS. Compared to the base algorithm YOLOv8_SORT (as seen in Tab 

1). When comparing SORT and DeepSORT algorithms across all Tables 1, 2, 3, and 4, it is 

evident that the MOTA, IDF1, and HOTA of SORT without feature extraction networks is 

significantly lower than that of the DeepSORT pedestrian tracking algorithm that employs 

such networks. Furthermore, the number of IDS is much higher in the SORT algorithm 

compared to that of DeepSORT. It is clear that the inclusion of feature extraction networks 

has a considerable impact on the enhancement of tracking. 

 

 

 

 MOTA↑ IDF1↑ HOTA↑ MT↑% ML↓% FP↓ FN↓ IDs↓ 

YOLOv5s 

YOLOv5m 

YOLOv5l 

YOLOv5x 

YOLOv8 

54.70 

54.36 

57.32 

58.18 

63.82 

60.42 

60.02 

66.55 

67.35 

72.56 

35.72 

35.15 

38.43 

39.56 

43.15 

21.58 

20.75 

24.98 

25.09 

27.36 

37.22 

33.62 

31.41 

30.35 

29.02 

6632 

6687 

6508 

5932 

5238 

45758 

46192 

43325 

42788 

40125 

556 

569 

491 

455 

403 
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Tab. 3. Tracking results on the mot20 challenge. Comparing the tracking performance of yolov8-sort and 

yolov5(s/m/l/x)-sort 

 

Tab. 4. Tracking results on the mot20 challenge. Comparing the tracking performance of yolov8-sort and 

yolov5(s/m/l/x)-DeepSORT 

 MOTA↑ IDF1↑ HOTA↑ MT↑% ML↓% FP↓ FN↓ IDs↓ 

YOLOv5s 

YOLOv5m 

YOLOv5l 

YOLOv5x 

YOLOv8 

52.64 

50.95 

54.81 

55.98 

58.95 

57.97 

56.02 

63.84 

65.97 

71.32 

34.39 

33.52 

36.59 

38.76 

41.36 

20.82 

20.36 

23.67 

23.96 

26.23 

36.09 

37.32 

33.21 

32.20 

29.11 

6985 

7082 

6130 

5987 

5396 

47552 

48561 

45252 

44563 

42255 

625 

642 

522 

496 

410 

 

The comparison of YOLOv8-DeepSORT's performance on the MOT17 and MOT20 

databases yields significant insights. This examination highlights the algorithm's robustness 

and versatility in different contexts, including variations in lighting, object movements, and 

crowd density. The MOT17 database demonstrates superior performance with noteworthy 

increases in MOTA, IDF1, and HOTA by 4.87, 1.24, and 1.79 respectively compared to 

MOT20. This study underscores the impact of each database's unique characteristics on the 

algorithm's efficacy and practical applications in real-world tracking scenarios. 

 Based on Tables 1, 2, 3, and 4, it is evident that YOLOv8-DeepSORT outperforms 

YOLOv5s/m/l/x-DeepSORT in terms of MOTA, IDF1, and HOTA, indicating a superior 

tracking accuracy. Overall, YOLOv8-DeepSORT has significantly enhanced tracking 

precision compared to YOLOv5s/m/l/x-DeepSORT. 

 

5. QUALITATIVE ANALYSIS 

 Figure 3 exemplifies the proficiency of the proposed algorithm in managing intricate 

traffic situations, showcasing the tracking. The detector-tracker integrated framework, as 

evidenced by qualitative test outcomes on real-world data, is capable of executing multi-

pedestrian target tracking and preserving robustness, even in demanding environments. This 

underscores the scientific rigor and practical applicability of the proposed system. 

Figure 4a: The lighting in this image appears to be that of an ideal daytime sun, greatly 

facilitating object detection and tracking. The level of congestion is moderate, with several 

pedestrians present. The size of the objects varies, with both close and distant pedestrians. 

Partial occlusions can be observed, caused by vegetation, buildings, and other pedestrians. 

 

 MOTA↑ IDF1↑ HOTA↑ MT↑% ML↓% FP↓ FN↓ IDs↓ 

YOLOv5s 

YOLOv5m 

YOLOv5l 

YOLOv5x 

YOLOv8 

36.76 

36.52 

39.12 

40.78 

42.98 

50.14 

49.02 

51.09 

52.05 

54.32 

28.35 

27.42 

29.74 

30.07 

31.98 

17.20 

16.28 

21.13 

21.56 

22.02 

37.14 

39.02 

35.03 

34.28 

31.26 

7189 

7712 

6989 

6896 

5956 

48965 

49542 

46212 

45899 

43985 

718 

775 

613 

589 

501 
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Fig. 4. Tracking results for various datasets 

Figure 4b: The lighting conditions in this image appear to be cloudy, which could 

potentially decrease the contrast. The level of clutter is moderate, with several pedestrians 

to track. The size of objects varies. There are occasional occlusions caused by pedestrians 

and urban elements. 

Figure 4c: The brightness of this image seems low, indicating a nighttime scene or public 

lighting. A significant crowd can be observed, with numerous pedestrians moving in various 

directions. The objects present vary in size. Frequent obstructions are visible, caused by 

vehicles, vegetation, and urban elements. 

In summary, these images demonstrate the performance of the proposed algorithm under 

a variety of complex traffic conditions, with different levels of illumination, object sizes, 

clutter and occlusions. Further analysis of these aspects is essential to fully evaluate the 

effectiveness of the system. 
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6. CONCLUSION AND OUTLOOK 

The problem of tracking pedestrians in complex traffic environments is a challenging 

one, but this article presents a practical and effective solution. Our approach involves the 

integration of YOLOv8 into DeepSORT, resulting in an innovative and efficient multi-object 

tracking algorithm called YOLOv8-DeepSORT. The authors conducted experiments to 

determine the optimal detector (including YOLOv5s/l/m/x and YOLOv8) and multi-object 

tracking (SORT and Deep SORT) combinations. The quantitative analysis of public datasets 

MOT17 and MOT20 revealed that YOLOv8-DeepSORT outperformed the other 

combinations in terms of tracking accuracy, as measured by evaluation metrics such as 

MOTA, HOTA, and IDF1. Despite the more challenging target tracking and complex scenes 

presented in MOT20, the integrated pedestrian detection and tracking framework proved to 

be more robust in such environments in summary, the algorithm presented in this article 

offers an efficient method for tracking pedestrians in complex scenes. 

The incorporation of advanced sensors such as lidars and radars in autonomous vehicles 

offers a promising perspective for training a custom object detection and tracking model. By 

adapting the model, which is based on YOLOv8, to the unique characteristics of these 

sensors and autonomous driving scenarios, its performance could be significantly improved. 
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