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Abstract 

Parkinson's Disease (PD) is a neurodegenerative disorder that impacts movement, 

speech, dexterity, and cognition. Clinical assessments primarily diagnose PD, but 

symptoms' variability often leads to misdiagnosis. This study examines ML algorithms 

to distinguish Healthy People (HP) from People with Parkinson's Disease (PPD). Data 

from 106 HP and 106 PPD participants, who underwent the Parkinson’s Disease Sleep 

Test (PDST), Hopkin’s Verbal Learning Test (HVLT), and Clock Drawing Test (CDT) 

from the Parkinson's Progression Markers Initiative (PPMI) were used. A custom 

HYBRID dataset was also created by integrating these 3 datasets. Various Machine 

Learning (ML) Classification Algorithms (CA) were also studied: Random Forest (RF), 

Naïve Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR). 

Multiple feature sets: the first quartile (Q1: 25 % most important features), second 

quartile (Q2: 50 % most important features), third quartile (Q3: 75 % most important 

features), and fourth quartile (Q4: All 100 % features) were generated using various 

Feature Selection (FS) algorithms and ensemble mechanisms. Results showed that all 

the ML CA achieved over 73±8.4 % accuracy with individual datasets, while the 

proposed HYBRID dataset achieved a remarkable accuracy of 98±0.6 %. This study 

identified the optimal quantity of non-motor features, dataset, the best FS and CA in 

hierarchical approach for early PD diagnosis and also proved that PD may be 

diagnosed with great accuracy by analyzing non-motor PD parameters using ML 

algorithms. This suggests that extended data collection could serve as a digital 

biomarker for PD diagnosis in the future. 

1. INTRODUCTION 

Parkinson’s disease is the second most prevalent neurodegenerative disorder after 

Alzheimer’s disease and over 6 million people worldwide got affected with PD (De Lau & 

Breteler, 2006). The symptoms of Parkinson's disease gradually worsen, causing a 

significant decrease in quality of life (Schrag et al., 2000) and life expectancy. Although 

there is no cure, pharmacological and surgical treatments can effectively manage PD 
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symptoms (Connolly & Lang, 2014). Diagnosing PD is challenging due to its symptom 

overlap with other movement disorders and the fluctuating nature of PD symptoms (Pahwa 

& Lyon, 2010). ML approaches have been steadily used over the past few years for early 

diagnosis of PD. This has improved prediction accuracy significantly employing a variety 

of data types. These modalities include handwritten patterns (Drotár et al., 2014), audio 

signals (Sakar et al., 2013), neuroimaging methods (Nuvoli et al., 2020), and biofluids (Adeli 

et al., 2016). There is still a lack of studies utilizing non-motor symptoms for PD diagnosis 

using ML approaches. From the recent works applying ML it has been observed that out of 

211 publications, 170 focused on distinguishing PPD from HP. Prashanth et al. (2014) and 

Mabrouk et al. (2018) used exclusively non-motor symptoms of PD resulting in accuracy of 

85.48 %, 82.2 % respectively. The study proposed by Armañanzas et al. (2013) aimed to 

assess PD severity rather than diagnosis. The use of ML algorithms based on non-motor 

symptoms in clinical settings may be encouraged to support general practitioners in making 

decisions as their influence on the healthcare system will be enhanced by designing the 

models that are understandable and clear (Vellido, 2020). 

1.1. Contributions 

The major contributions made by this research for improving prediction accuracy are as 

follows: 

− Development of Biomarker for PD Diagnosis: The authors developed a model that 

combines qualitative and quantitative feature selection methods with ML, enhanced 

the accuracy of PD diagnosis and also validated with the Bayesian Correlated t-test 

(BCT), thus devising a biomarker for PD diagnosis. 

− Hierarchical approach: The authors designed a hierarchical approach that identifies 

the best feature selection algorithm generating qualitative non-motor features in the 

first level, the best ML model in the next level that could better differentiate PPD from 

HP using the result of level-1 and finally identifying the best dataset in level-3.  

− Evidence Aggregation Model (EAM): This novel Evidence Aggregation Model 

integrates diverse symptom assessments from multiple test types into a unified 

diagnostic score. This approach improves differentiating PPD from HP. 

− Enhanced Predictive Efficacy: The proposed methodology achieved substantial 

improvements in predictive accuracy compared to several robust baseline models. 

These findings are crucial for clinical practice, offering clinicians more precise 

diagnostic tools for PD diagnosis. 

These contributions highlight the efficacy of this approach in leveraging ML and FS 

techniques to advance the diagnosis and management of PD. 

2. RELATED WORKS 

Govindu and Palwe (2023) explored various ML models including K-nearest neighbours 

(KNN), logistic regression, random forest regression, and SVM for classifying PD using 

audio data. Their findings indicated that the KNN model achieved the highest accuracy of 

91.83 %. Moradi et al. (2022) used SVM models to predict the start of PD in elderly people, 

with a baseline accuracy of 88.9 % using genetic data. The revised SVM model presented in 
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this work highlights the superiority of audio data over genetic data in the classification of 

PD, with an accuracy of 91.83 %. Raundale et al. (2021) utilized keystroke data to predict 

PD severity in older patients through a RF classifier. Cordella et al. (2021) focused on audio 

data to classify Parkinsonian tremor, utilizing MATLAB extensively for model 

development. Ali et al. (2022) applied ensemble techniques on voice data. Their study 

highlighted the importance of feature selection by implementing PCA to enhance the model's 

performance in detecting major speech differences relevant to PD. A decision tree was 

trained using 12 unique vocal characteristics from the dataset by Huang et al. (2021) in an 

effort to reduce the dependency on wearable technology for PD diagnosis. Wodzinski et al. 

(2019) used a Deep Learning (DL) model on audio data images for PD classification, 

focusing on capturing frequency nuances. Wroge et al. (2018) developed an unbiased ML 

model achieving a peak accuracy of 85% for predicting PD, aiming to minimize subjective 

diagnosis by doctors. Wang et al. (2020) implemented various ML models on a speech 

dataset, achieving 96.45% accuracy with a custom DL model, albeit with high memory 

requirements. Alkhatib et al. (2020) achieved 95% accuracy using linear classification to 

characterize PD patient gait, suggesting integration of audio and sleep data for improved 

diagnostics. Ricciardi et al. (2020) used decision trees, random forest, and KNN on brain 

MRI scans for Mild Cognitive Impairment detection in PD patients, utilizing artificial data 

augmentation due to dataset limitations. Haq et al. (2019) applied L1-support SVM on vowel 

phonation data from neurological disorder patients aged 46-85 years, focusing on 

classification without explicit feature identification. Mei et al. (2021) emphasized ML's role 

in detecting PD, particularly in capturing subtle non-motor symptoms often overlooked in 

subjective evaluations by doctors, based on a comprehensive review of 209 studies. Another 

study by Smyth et al. (2023) achieved high specificity in PD detection but faced limitations 

in sample size and scope regarding subcortical data and long-term outcomes. Martinez-

Eguiluz et al. (2023) analyzed nine ML models on non-motor features from PPMI and 

Biocruces databases, highlighting SVM and Multi-Layer Perceptron models with best 

performance of 87.5% and 86.9% accuracy, respectively. They advocated for combining 

datasets to improve performance but noted challenges in unified analysis due to dataset 

heterogeneity. The presented study addresses these gaps by aggregating data of multiple tests 

conducted on a group of people into a single dataset, aiming to differentiate PPD from HP, 

with enhanced diagnostic accuracy over single test dataset. The following Section describes 

the proposed model of the study, various types of datasets and their characteristics, the FS 

mechanisms and CA along with the evaluation process. Section 4 presents the results, 

discussions and comparisons of the proposed study. The paper concludes with final remarks 

and limitations in Section 5. 

3. PROPOSED SYSTEM 

In this study, a variety of clinical scales measuring non-motor characteristics, such as 

visuospatial ability, sleep activity, and memory impairment, were chosen. The authors 

aggregated data from three tests, PDST, HVLT, and CDT conducted on 106 PPD and 106 

HP participants to create a custom dataset called the HYBRID dataset. 
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Fig. 1. The complete architecture of the proposed model 

They analyzed whether this data aggregation could be beneficial to their goals. They 

evaluated the performance of four distinct CA. The proposed analysis was conducted in three 

levels with increasing granularity. Level 1 identifies the best feature selection mechanism 

from Univariate Selection (US), Recursive Feature Elimination (RFE), Recursive Feature 

Addition (RFA), Random Forest (RF) and the ensemble algorithms. Level 2 determines the 

best CA from RF, NB, SVM, and LR in combination with the FS algorithm selected in Level 

1. Finally, Level 3 identifies the best non-motor qualitative and quantitative feature dataset 

for achieving a high prediction rate. Figure1 represents the overall architecture of the 

proposed model. Phase 1 shows the data sets used in the proposed model while phase 2 is 

involved with the data preprocessing mechanisms employed on the collected data. Phase 3 

totally involves with the generation of different quantitative feature sets to be used in the 

next phase. For this purpose, four different FS mechanisms namely US, RFA, RFE and RF 

were used to generate scores for all the features. These are sorted in decreasing order of 

importance and the quartile feature sets: Q1, Q2, Q3 and Q4 respectively are generated. 

UNION of sets is applied on the respective quartile sets obtained from the four FS algorithms 

to generate four new quantitative sets, thus giving importance to each and every feature. An 

ensemble mechanism is applied on the scores of the respective feature generated by the FS 

algorithms to calculate the Mean and Weighted Mean values. These are also sorted in 

decreasing order of importance and the quantitative feature sets of Q1, Q2, Q3 and Q4 

respectively are generated using mean and weighted mean. This entire process can be seen 

from phase 3 of Fig.1. Finally, phase 4 represents various ML algorithms used for training 

the collected data using various quantitative feature sets obtained in phase 3. The ability to 

identify PD is assessed and final conclusions are drawn. 

3.1. Dataset 

Discovering biomarkers for PD detection and progression is the goal of the large, multi-

centre, long-term PPMI investigation, aiming towards improving analytical and clinical 

research. People who were considered early PD patients (with duration of no more than two 

years) and drug- naïve at the time of enrolment were included in the study. 



175 

Tab. 1. Dataset features and description 

Dataset Feature Meaning 

CDT 

Pat_ID Unique number assigned to patient 

Age Age of the person 

Clck2hnd exactly 2 hands 

Clckalnu all 1-12 present 

Clcknmrk absence of marks 

Clcknusp equally spaced from each other 

Clcknuin Positioning of numbers inside 

Clcknued numbers equally distributed 

Clckpii one hand points to 2 

HVLT 

Pat_ID Uniqu number assigned to patient 

Hvltvrsn Version number 

Hvltrt1 Immediate Recall Trial 1 

Hvltrt2 Immediate Recall Trial 2 

Hvltrt3 Immediate Recall Trial 3 

Hvltrdly Delayed Recall Trial 4 

Hvltrec Total count of true positives 

Hvltfprl Total false positives, related 

Hvltfpun Total false positives, unrelated 

Age_Assess_Hvlt Age at Assessment 

Dvt_Total_Recall Derived-Total Recall T-Score 

Dvt_Delayed_Recall Derived-Delayed Recall T-Score 

Dvt_Retention Derived-Retention T-Score 

Dvt_Recog_Disc_Index Derived-Recognition Discrimination Index T-Score 

PDST 

Pat_ID Uniqu number assigned to patient 

Slept_Well sleep quality 

Dfclty_Fall_Asleep difficulties initiating sleep 

Dfclty_Stay_Asleep staying asleep 

Pain_Post_Of_Limbs, Urge_Move_Limbs nocturnal restless legs syndrome 

Distrssing_Dreams vivid distressing dreaming 

Pdss_Dstrss Halluc Hallucinations 

Pass_Urine nocturnal urinary urgency 

Immobile immobility at night 

Pain_In_Limbs, Sleep related pain 

Cramps_In_Limbs muscle cramps 

Tired_On_Wake painful posture on wakeup 

Tremor_On_Wake tremor on waking 

Rstlss_Leg lack of repose from sleep 

Snoring_Woke sleep apnea 

 

Data from 106 PPD and 106 HP participants who have undergone PDST, HVLT, and 

CDT were collected from PPMI. The criteria considered is Bradykinesia being identified as 

the core motor feature along with at least one of the following features: stiffness, resting 

tremors or postural instability. All patients gave written informed consent before beginning 

the study while taking medication to complete all assessments, as required by the Declaration 

of Helsinki. Small sample size may limit the generalizability of the classification models. 

But our study is a small approach to know how far the individual tests of a PD patient can 

be used to diagnose the disease efficiently compared to the collection of tests i.e., the hybrid 

data. In view of this, we were able to gather only 106 PD patient’s data which is available 

across all the three tests namely HVLT, PDST and CDT from PPMI database. This limited 
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our collection of Healthy people too, to 106 to maintain balance between PD and Healthy 

People count. We hope that this study will help the future researchers to study on a large-

scale data with various other economy tests available, to diagnose PD. Hoehn and Yahr (HY) 

scale was used to grade the severity of the disease. The demographic and clinical 

characteristics of the HC and PD patients are shown in tab. 2. 

Tab. 2. Characteristics of the research group 

Class Criteria Description 

PPD 

Gender Male (50) / Female (56) 

Age Between 39 and 81 years 

Symptoms Resting Tremor / Bradykinesia / pill rolling / Rigidity (any two) 

Diagnose duration Two years (minimum) 

Disease stage Hoehn & Yahr Stage I / II 

HP 

Gender Male (65) / Female (41) 

Age Between 34 and 85 years 

Symptoms No indications of any neurological diseases 

3.2. Non-Motor Test Assessments to detect PD 

3.2.1. CDT 

It is globally recognized as a neuropsychological screening tool with robust psychometric 

properties, including test-retest reliability and inter-rater reliability (Mainland & Shulman, 

2017). Various scoring systems exist, with higher scores indicating better performance and 

lower scores suggesting potential cognitive deficits. The CDT's simplicity, quick 

administration, and ability to assess a range of cognitive functions have made it popular in 

both research and clinical settings for screening cognitive disorders. Various features of 

CDT are shown in Tab. 2. A sample clock drawing of 3 PPD can be seen from Fig. 2. 

 

Fig. 2. Sample drawings of CDT [57] 

3.2.2. HVLT 

HVLT test (Benedict et al., 1998) involves three trials where participants freely recall a 

12-item list categorized semantically. Following these trials, a YES/NO recognition task is 

conducted. Approximately after20 minutes, an impede memory test, in which participants 

freely recollect words from the original list and a detection test (consists of 24 words: 12 

target words, 12 incorrect positives, 6 semantically similar distractors, and 6 semantically 
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independent distractors) are administered. The features of HVLT can be observed from Tab. 

1. 

3.2.3. PDST 

Table 2. depicts various features associated with PDST (Thangaleela et al., 2023). PDSS-

2 (Chaudhuri et al., 2002) consists of a modified version of 15 questions that assess different 

dimensions of sleep disturbances. Every subject is scored using a categorical scale that 

indicates how frequently the disturbance occurred (A score of 0 indicates not at all disturbed; 

1 indicates disturbed rarely; 2 indicates disturbed few times; 3 indicates disturbed regularly 

and 4 indicates disturbed very frequently). The questions are related to the past week. The 

highest score of 60 indicates maximum disturbance while the lowest score of 0 indicates no 

disturbance. A score ≥18 indicates significant PD-related sleep disruptions (Trenkwalder et 

al., 2011). 

3.2.4. HYBRID dataset 

Combining heterogeneous datasets enriches the available information and enhances 

predictive performance by leveraging diverse data sources. This approach leads to better 

decision-making through a comprehensive view of the data, enables advanced analyses, and 

increases robustness by averaging out noise and reducing biases. It also fosters innovation 

and competitive advantage by uncovering new insights and making models more flexible 

and adaptable to various tasks. In the proposed study, the three diverse datasets CDT, PDST 

and HVLT conducted on same cohort of people are combined as follows: Initially, all the 

individual datasets are cleaned by handling the missing values, correcting the errors and 

removing the duplicates, if any. Schema matching is performed by identifying a common 

feature across all datasets for integration. In this process, patient-ID is the common feature 

observed to integrate all the datasets together. Then, left outer join operation was applied to 

integrate all the datasets into a single comprehensive set, the HYBRID dataset. This dataset 

is observed to check the presence of any duplicate records as a result of integration and 

removed, if any. All the features of CDT, HVLT and PDST are found in the HYBRID 

making up a total of 38 features. 

3.3. Data preprocessing 

The data obtained from PPMI underwent several preprocessing steps, including 

imputation of missing values, removal of outliers, and application of rescaling techniques 

where necessary. 

3.3.1. Data cleaning 

Outliers are data points that significantly differ from the majority of the data in a dataset. 

Outliers can adversely affect the model performance with increased errors that can distort 

data visualizations, making it difficult to interpret the underlying patterns. These outliers can 

be detected using visual, statistical and ML methods. Outliers are identified and eliminated 

using Z-score method in the proposed study. The value with Z-score above a certain 

threshold (±3 in this study) are considered outliers and hence eliminated. 
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𝑧 =
𝑥−µ

𝜎
             (1) 

Where ‘x’ is the data point; ‘µ’ is the mean of the dataset and ‘σ’ is the standard deviation 

of the dataset. 

The dataset used in this study was collected from the public database, PPMI and some 

data points were incomplete or missing. This is often a common issue with publicly available 

datasets, as they may contain gaps due to data collection processes or inconsistencies in 

reporting. The missing data could be due to incomplete entries or technical issues during the 

original data collection phase. As the missing data may introduce some limitations, we took 

necessary precautions to minimize its impact on the results. To address this, we used data 

imputation to fill missing values using mean, ensuring the integrity of the analysis. Data 

imputation is a statistical technique used to replace missing or incomplete data within a 

dataset with substituted values.  This is done to maintain the integrity of the data and allow 

for accurate analysis. It is observed that the collected datasets are with some missing values 

and after confirming that the data approximately follows a normal distribution using the 

Shapiro-Wilk test, data imputation using mean was used. Each feature with missing values 

is observed and mean is calculated with which the gaps are replaced. 

𝑀𝑒𝑎𝑛 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1            (2) 

Where ‘n’ is the total number of data points and 𝑥𝑖are the individual data points. 

3.3.2. Data transformation 

Data normalization is a preprocessing technique that adjusts data to a common scale 

while preserving the relative differences in value ranges. This step is particularly crucial 

when features have different units or scales. Min-Max normalization is a technique used to 

rescale the range of features to a specific range, typically [0, 1]. This method adjusts the data 

so that the minimum value of each feature becomes 0 and the maximum value becomes 1. It 

can be calculated using the formula as follows: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
          (3) 

Where ‘X’ is the original value; 𝑋𝑚𝑖𝑛  is the minimum value of the feature; 𝑋𝑚𝑎𝑥is the 

maximum value of the feature; 𝑋𝑛𝑜𝑟𝑚is the normalized value; In the proposed study, 

quantitative features were normalized using min-max normalization, ensuring all variables 

ranged between 0 and 1.  

3.3.3. Feature encoding 

Feature encoding is the process of converting categorical data into a numerical format 

that ML algorithms can understand. In this study, categorical features were encoded using 

one-hot encoding. It works by creating new binary columns, each representing one of the 

possible categories in the original data, and assigning a 1 or 0 to indicate the presence or 

absence of each category. This method ensures that categorical data is treated appropriately 

by algorithms, avoiding the creation of any artificial ordinal relationships. However, it can 
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lead to increased dimensionality and sparsity in the dataset when dealing with features that 

have many categories. 

3.3.4. Feature selection 

Feature selection aims to identify the most relevant variables or biomarkers for two 

primary purposes. Firstly, it assists in distinguishing between PPD and HP by pinpointing 

significant features. Secondly, Feature selection streamlines models by simplifying the data, 

which enhances interpretability, reduces training times, and lowers the risk of overfitting. 

The proposed methods for this study are RFE, RFA, RF and US, which are chosen mainly 

due to their minimal computational cost and independence from specific prediction models. 

3.3.5. Data augmentation 

An imbalanced dataset, where one class significantly outweighs the other, can negatively 

impact the performance of machine learning models. This is especially problematic in binary 

classification, where the model might become biased towards the majority class and fail to 

learn the minority class patterns. The model may show high accuracy simply by predicting 

the majority class, even if it is not correctly classifying the minority class. This leads to 

misleading performance metrics. One approach followed to address data imbalance problem 

of the proposed study is Synthetic Minority Oversampling Technique [SMOTE] (Gunakala 

 & Shahid, 2023) that generates synthetic samples for the minority class by creating linear 

combinations of existing minority samples and selecting points along these combinations. 

This helps balance the dataset, without simply duplicating data points that may lead to 

overfitting. By balancing the class distribution, SMOTE allows the model to learn patterns 

in both the minority and majority classes. This results in better classification performance, 

particularly in identifying minority class instances. The impact of data augmentation can be 

observed from Tab. 3. 

Tab. 3. Impact of data augmentation 

Dataset Data samples Data Growth 

Factor 

Impact on result 

(accuracy 

improvement %) 
before 

augmentation 

after 

augmentation 

CDT 485 998 2.05 times 0.82 

HVLT 1084 -- -- -- 

PDST 355 1077 3.03 times 1.22 

HYBRID  1864 3344 1.79 times 1.06 

3.4. Training and fitting 

The ML algorithms are programmed to learn and optimize their operations by analysing 

input data to make predictions within defined parameters. As new data is introduced, these 

algorithms improve their accuracy in prediction. In this study, 4 ML algorithms NB (Zhang, 

2004), RF (Breiman et al., 2001), SVM (Pisner & Schnyer, 2020) and LR (Hosmer et al., 

2013) were applied on the data obtained from PPMI database as well as the custom HYBRID 

data sets using various quantified features. The reasons behind the choice of ML techniques 

are as follows: 
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1. Random Forest: This is an ensemble learning technique that builds multiple decision 

trees and merges them to produce a more accurate and stable prediction. It is 

especially useful in handling datasets with many features, preventing overfitting, and 

offering high accuracy, making it ideal for capturing complex relationships in the data.  

2. Naive Bayes: Based on Bayes' Theorem, this model is fast and efficient. It assumes 

feature independence and performs well when a probabilistic approach is needed. It 

is known for handling noisy data well. 

3. Logistic Regression: This is a simple and interpretable model that outputs 

probabilities directly, making it great for binary classification. Its effectiveness lies in 

its simplicity and ability to provide insights into the impact of each feature on the 

predicted outcome.  

4. SVM (Support Vector Machine): SVM is particularly good at separating classes with 

a clear margin of separation, offering a robust solution for linearly separable data and 

kernel-based methods for more complex patterns. 

Hyperparameters are the parameters set by the user before the training of a ML model 

begins. To optimize model performance, Grid Search was employed to identify the best 

hyperparameter values. This method systematically explores a grid of hyperparameter 

combinations, evaluating each combination using cross-validation. Grid Search is 

straightforward to parallelize as each hyperparameter combination is evaluated 

independently, making it efficient and scalable (Yu & Zhu, 2020). 

4. RESULTS 

4.1. Hierarchical approach 

All the tasks are carried out on a laptop equipped with an Intel ® Core (TM) i5-1135G7 

microprocessor, NVidia GeForce GTX 1660 GPU, 16 gigabytes of Random-Access 

Memory (RAM) and a 256 GB DDR4 SSD for storage. Tab. 3. represents the Confusion 

Matrix (CM) obtained to describe the behaviour of the ML algorithms RF, SVM, NB and 

LR when applied on datasets CDT, HVLT, PDST and HYBRID datasets. Each and every 

cell is composed of 4 values representing True Negatives (TN), False Negatives (FN), True 

Positives (TP) and False Positives (FP) respectively. The highlighted values represented in 

HYBRID dataset using RF algorithm with all feature sets, represents the confusion matrices 

that contributed to the best performance. The Q2 feature set generated by RF feature 

selection mechanism using RF classification algorithm outperformed with 464 samples 

being analysed as TN with 0 samples being FN; 196 samples being classified as TP with 

only 9 being identified as FP. The hierarchical approach of the process analysis is explained 

in the following sections. 
Phase-1: The best FS Algorithm analysis for PD classification 

In this phase, different FS mechanisms like US, RFE, RFA and RF are applied on four 

different data sets HVLT, PDST, CDT and HYBRID and different quartiles Q1, Q2, Q3 and 

Q4 of feature sets are extracted. This resulted in generating 52 feature sets out of which 48 

are generated with Q1, Q2 and Q3 features generated using 4 FS algorithms, while 4 sets are 

generated with Q4 (i.e., no FS) features applied on 4 different data sets. Then, we performed 

ensemble operations like UNION, mean and weighted mean on the corresponding quartile 
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features of all FS mechanisms generating 36 (Q1, Q2 and Q3 are comprised of different sets 

of features generated by 3 different ensemble operations) more feature sets. These 

aggregates to 88 different feature sets, which can be observed from Tab. 4. All these are 

analysed using different CA like RF, NB, SVM and LR. This step identifies the best feature 

set in combination with the CA that yields better accuracy. 

Tab. 4. Confusion matrices of various ML classification algorithms on different datasets  

*Yellow coloured area represents the best confusion matrix values obtained in the respective quartile using the best dataset. 

 

Phase-2: The best CA analysis for PD classification 

In this phase, the selected feature sets of the previous step are observed to identify the 

best performance yielding CA in the corresponding quartiles using the 4 data sets, which can 

be observed from Tab. 5. As part of level-2 evaluation, the best CA that contributes to highest 

performance in the respective quartile feature sets is observed. 

Phase-3: The best dataset analysis for PD classification 

Table 5. is constructed with the aim of analysing the best dataset that performs well in 

differentiating PPD from HP, with greater accuracy. It can be noticed from the Tab. 6. that 

the HYBRID data set achieved better accuracy of more than 97 % with all the quartile 

features compared to the other datasets of the study and also achieved remarkable accuracy 

Quar- 

Tile 

Dataset CDT HVLT PDST HYBRID 

FS/CA SVM RF LR NB SVM RF LR NB SVM RF LR NB SVM RF LR NB 

Q1 

US 
[50  9] 

[13 25] 

[50  9] 

[13 25] 

[50  9] 

[13 25] 

[55  4] 

[33  5] 

[133  4] 

[ 78   2] 

[123 14] 

[67   13] 

[136 1] 

[75   5] 

[128   9] 

[ 65  15] 

[36  2] 

[19 14] 

[36  2] 

[19 14] 

[36  2] 

[19 14] 

[36  2] 

[21 12] 

[445  19] 

[ 87 118] 

[464   0] 

[63 142] 

[445  19] 

[ 88 117] 

[418  46] 

[ 73 132] 

RFE 
[50  9] 

[11 27] 

[50  9] 

[12 26] 

[50  9] 

[11 27] 

[52  7] 

[38  0] 

[125 12] 

[ 48  32] 

[113 24] 

[ 32  48] 

[135 2] 

[79   1] 

[128   9] 

[ 72   8] 

[33  5] 

[14 19] 

[34  4] 

[14 19] 

[33  5] 

[14 19] 

[37  1] 

[23 10] 

[443  21] 

[ 80 125] 

[457   7] 

[21 184] 

[447  17] 

[ 95 110] 

[438  26] 

[ 88 117] 

RFA 
[56  3] 

[37  1] 

[56  3] 

[37  1] 

[56  3] 

[37  1] 

[53  6] 

[35  3] 

[133 4] 

[ 71  9] 

[123 14] 

[ 68  12] 

[137 0] 

[80   0] 

[135  2] 

[ 80   0] 

[34  4] 

[21 12] 

[28 10] 

[20 13] 

[34  4] 

[21 12] 

[36  2] 

[24  9] 

[439  25] 

[157  48] 

[449 15] 

[38 167] 

[431  33] 

[153  52] 

[402  62] 

[127  78] 

RF 
[50  9] 

[13 25] 

[50  9] 

[13 25] 

[50  9] 

[13 25] 

[55  4] 

[33  5] 

[125 12] 

[ 48  32] 

[115 22] 

[ 34  46] 

[135 2] 

[79   1] 

[128  9] 

[ 72   8] 

[34  4] 

[15 18] 

[31  7] 

[14 19] 

[34  4] 

[15 18] 

[38  0] 

[23 10] 

[443  21] 

[ 80 125] 

[456   8] 

[22 183] 

[447  17] 

[ 95 110] 

[438  26] 

[ 88 117] 

UNION 

 

[52  7] 

[13 25] 

[49 10] 

[10 28] 

[52  7] 

[13 25] 

[49 10] 

[32  6] 

[130 7] 

[ 57  2] 

[118 19] 

[ 41  39] 

[132  5] 

[66  14] 

[115 22] 

[56   24] 

[36  2] 

[21 12] 

[34  4] 

[18 15] 

[36  2] 

[21 12] 

[36  2] 

[19 14] 

[445  19] 

[ 87 118] 

[464   0] 

[64 141] 

[439  25] 

[ 85 120] 

[398  66] 

[ 69 136] 

mean 

 

[50  9] 

[ 9 29]] 

[50  9] 

[13 25] 

[50  9] 

[ 9 29] 

[49 10] 

[31  7] 

[125 12] 

[ 63  17] 

[104 33] 

[ 56  24] 

[135 2] 

[76   4] 

[127 10] 

[67   13] 

[34  4] 

[15 18] 

[32  6] 

[16 17] 

[34  4] 

[15 18] 

[37  1] 

[22 11] 

[445  19] 

[ 82 123] 

[463   1] 

[11 194] 

[442  22] 

[ 87 118] 

[396  68] 

[ 73 132] 

Wt-mean 

 

[50  9] 

[ 9 29]] 

[49 10] 

[12 26] 

[50  9] 

[ 9 29] 

[49 10] 

[32  6] 

[131  6] 

[ 70  10] 

[104 33] 

[ 61  19] 

[137 0] 

[78   2] 

[133   4] 

[73    7] 

[31  7] 

[15 18] 

[28 10] 

[14 19] 

[31  7] 

[15 18] 

[36  2] 

[23 10] 

[449  15] 

[ 91 114] 

[464   0] 

[63 142] 

[444  20] 

[ 86 119] 

[402  62] 

[ 73 132] 

Q2 

US 
[51   8] 

[19 19] 

[49 10] 

[13 25] 

[51  8] 

[19 19] 

[49 10] 

[32  6] 

[127 10] 

[ 63  17] 

[111 26] 

[ 48  32] 

[128  9] 

[63  17] 

[120 17] 

[58   22] 

[34  4] 

[15 18] 

[33  5] 

[15 18] 

[34  4] 

[15 18] 

[36  2] 

[24  9] 

[448  16] 

[ 93 112] 

[456   8] 

[27 178] 

[445  19] 

[ 88 117] 

[418  46] 

[ 73 132] 

RFE 
[52   7] 

[15 23] 

[49 10] 

[12 26] 

[52  7] 

[15 23] 

[53  6] 

[32  6] 

[135   2] 

[ 50  30] 

[125 12] 

[35   45] 

[130  7] 

[65  15] 

[119 18] 

[63   17] 

[36  2] 

[21 12] 

[34  4] 

[18 15] 

[36  2] 

[21 12] 

[36  2] 

[19 14] 

[448  16] 

[ 87 118] 

[464   0] 

[17 188] 

[443  21] 

[ 89 116] 

[416  48] 

[ 73 132] 

RFA 
[59  0] 

[38  0] 

[56  3] 

[36  2] 

[59  0] 

[38  0] 

[53  6] 

[34  4] 

[129   8] 

[ 56  24] 

[117 20] 

[ 46  34] 

[136 1] 

[79   1] 

[120 17] 

[73     7] 

[32  6] 

[16 17] 

[33  5] 

[14 19] 

[32  6] 

[16 17] 

[36  2] 

[21 12] 

[447  17] 

[ 92 113] 

[463   1] 

[15 190] 

[442  22] 

[ 90 115] 

[401  63] 

[ 67 138] 

RF 
[52   7] 

[15 23] 

[50  9] 

[12 26] 

[52  7] 

[15 23] 

[53  6] 

[32  6] 

[135   2] 

[ 47  33] 

[124 13] 

[ 38  42] 

[131 6] 

[76   4] 

[121 16] 

[68   12] 

[29  9] 

[13 20] 

[29  9] 

[13 20] 

[29  9] 

[13 20] 

[36  2] 

[23 10] 

[448  16] 

[ 89 116] 

[464   0] 

[ 9  196] 

[441  23] 

[ 89 116] 

[400  64] 

[ 70 135] 

UNION 

 

[50  9] 

[ 9 29] 

 

[50  9] 

[13 25] 

 

[50  9] 

[ 9 29] 

 

[50  9] 

[31  7] 

 

[136   1] 

[ 53  27] 

[126  11] 

[ 42  38] 

[130  7] 

[65  15] 

[109 28] 

[55   25] 

[32  6] 

[16 17] 

[33  5] 

[14 19] 

[[32  6] 

[16 17] 

[36  2] 

[21 12] 

[448  16] 

[ 92 113] 

[458   6] 

[28 177] 

[443  21] 

[ 88 117] 

[397  67] 

[ 68 137] 

mean 

 

[50  9] 

[ 9 29] 

[50  9] 

[13 25] 

[50  9] 

[ 9 29] 

[49 10] 

[31  7] 

[125 12] 

[ 58  22] 

[109  28] 

[ 40  40] 

[126 11] 

[66  14] 

[123 14] 

[58   22] 

[35  3] 

[14 19] 

[31  7] 

[13 20] 

[35  3] 

[14 19] 

[36  2] 

[19 14] 

[448  16] 

[ 93 112] 

[457   7] 

[21 184] 

[446  18] 

[ 86 119] 

[397  67] 

[ 68 137] 

Wt-mean 

 

[50  9] 

[ 9 29] 

[49 10] 

[12 26] 

[50  9] 

[ 9 29] 

[49 10] 

[32  6] 

[132   5] 

[ 55  25] 

[123  14] 

[ 44  36] 

[131  6] 

[65 15] 

[122 15] 

[58   22] 

[34  4] 

[16 17] 

[32  6] 

[13 20] 

[34  4] 

[16 17] 

[36  2] 

[19 14] 

[450  14] 

[ 94 111] 

[464   0] 

[13 192] 

[441  23] 

[ 87 118] 

[397  67] 

[ 68 137] 

Q3 

US 
[50   9] 

[12 26] 

[50  9] 

[15 23] 

[50  9] 

[12 26] 

[50  9] 

[31  7] 

[130   7] 

[ 65  15] 

[119  18] 

[49  31] 

[128  9] 

[64  16] 

[93  44] 

[38  42] 

[34  4] 

[13 20] 

[33  5] 

[13 20] 

[34  4] 

[13 20] 

[36  2] 

[19 14] 

[447  17] 

[ 89 116] 

[464   0] 

[21 184] 

[443  21] 

[ 88 117] 

[429  35] 

[ 80 125] 

RFE 
[50  9] 

[ 9 29] 

[51  8] 

[13 25] 

[50  9] 

[ 9 29] 

[49 10] 

[30  8] 

[135   2] 

[ 54  26] 

[123  14] 

[40  40] 

[132  5] 

[65  15] 

[100 37] 

[42   38] 

[33  5] 

[14 19] 

[32  6] 

[13 20] 

[33  5] 

[14 19] 

[36  2] 

[19 14] 

[49  15] 

[ 93 112] 

[464   0] 

[14 191] 

[443  21] 

[ 92 113] 

[402  62] 

[ 75 130] 

RFA 
[55  4] 

[33  5] 

[52  7] 

[34  4] 

[55  4] 

[33  5] 

[47 12] 

[30  8] 

[130   7] 

[ 58  22] 

[125  12] 

[48  32] 

[134 3] 

[74   6] 

[109 28] 

[58   22] 

[20 18] 

[17 16] 

[20 18] 

[14 19] 

[20 18] 

[17 16] 

[32  6] 

[24  9] 

[446  18] 

[ 92 113] 

[464   0] 

[13 192] 

[443  21] 

[ 86 119] 

[415  49] 

[ 75 130] 

RF 
[50  9] 

[ 9 29] 

[50  9] 

[13 25] 

[50  9] 

[ 9 29] 

[49 10] 

[31  7] 

[136   1] 

[ 59  21] 

[118  19] 

[41  39] 

[128  9] 

[64  16] 

[89   48] 

[40  40] 

[29  9] 

[16 17] 

[29  9] 

[18 15] 

[29  9] 

[16 17] 

[37  1] 

[23 10] 

[450  14] 

[ 95 110] 

[464   0] 

[17 188] 

[443  21] 

[ 91 114] 

[402  62] 

[ 70 135] 

UNION 

 

[50   9] 

[12 26] 

[49 10] 

[13 25] 

[50  9] 

[12 26] 

[48 11] 

[30  8] 

[135   2] 

[ 57  23] 

[126 11] 

[42  38] 

[131  6] 

[65  15] 

[78  59] 

[35  45] 

[30  8] 

[14 19] 

[33  5] 

[15 18] 

[30  8] 

[14 19] 

[36  2] 

[23 10] 

[450  14] 

[ 91 114] 

[464   0] 

[17 188] 

[441  23] 

[ 84 121] 

[410  54] 

[ 70 135] 

mean 

 

[50  9] 

[ 9 29] 

[50  9] 

[13 25] 

[50  9] 

[ 9 29] 

[49 10] 

[31  7] 

[133   4] 

[ 64  16] 

[125  12] 

[50  30] 

[129  8] 

[64  16] 

[94 43] 

[37 43] 

[36  2] 

[19 14] 

[36  2] 

[19 14] 

[36  2] 

[19 14] 

[36  2] 

[21 12] 

[449  15] 

[ 93 112] 

[464   0] 

[14 191] 

[444  20] 

[ 89 116] 

[398  66] 

[ 69 136] 

Wt-mean 

 

[50  9] 

[ 9 29] 

[49 10] 

[12 26] 

[50  9] 

[ 9 29] 

[49 10] 

[32  6] 

[130   7] 

[ 56  24] 

[124 13] 

[47  33] 

[129  8] 

[64  16] 

[110 27] 

[59   21] 

[36  2] 

[21 12] 

[34  4] 

[18 15] 

[36  2] 

[21 12] 

[36  2] 

[19 14] 

[449  15] 

[ 95 110] 

[464   0] 

[18 187] 

[441  23] 

[ 87 118] 

[397  67] 

[ 68 137] 

Q4 
[50   9] 

[12 26] 

[49 10] 

[13 25] 

[50  9] 

[12 26] 

[48 11] 

[30  8] 

[135   2] 

[ 60  20] 

[127  10] 

[46  34] 

[131  6] 

[66  14] 

[80 57] 

[35 45] 

[35  3] 

[16 17] 

[31  7] 

[14 19] 

[35  3] 

[16 17] 

[36  2] 

[19 14] 

[449  15] 

[95 110] 

[464   0] 

[18 187] 

[441  23] 

[87 118] 

[397  67] 

[ 68 137] 
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of 98.6 % with Q2 features generated using RF feature selection and RF classification 

algorithms. 

Tab. 5. Performance of the ML algorithms on various datasets with different feature sets  

*Yellow colored areas represent the highest accuracy obtained by CA in the respective Quartile feature set; 

Tab. 6. The best performances of CA with the best FS algorithm with quartile set of features 

Feat

ures 
Ana

lysi

s 

CDT HVLT PDST HYBRID 

CA CA CA CA 

RF NB SVM LR RF NB SVM LR RF NB SVM LR RF NB SVM LR 

Q1 Acc 0.793 0.618 0.814 0.814 0.741 0.659 0.723 0.672 0.746 0.704 0.732 0.732 0.982 0.829 0.849 0.840 

FS

A 

UNIO

N 
US Mean Mean RFE US RFE 

UNIO

N 
RFE 

UNIO

N 
RF RF 

UNIO

N 
RFE RF US 

Acc    0.618 0.814 0.814 0.741                 0.829 0.849 0.840 

FS

A 
  RF 

Wt-

Mean 

Wt-

Mean 
                  RF 

Wt-

Mean 
Mean 

Q2 Acc 0.783 0.608 0.814 0.814 0.783 0.668 0.774 0.672 0.746 0.704 0.760 0.760 0.986 0.828 0.846 0.840 

FS
A 

RF RFE 
UNIO
N 

UNIO
N 

RFE Mean RF 
Wt-
Mean 

UNIO
N 

US 
UNIO
N 

UNIO
N 

RF RFE RFE RF 

Acc    0.608 0.814 0.814           0.704             

FS

A 
  RF Mean Mean           

UNIO

N 
            

Acc      0.814 0.814           0.704             

FS

A 
    

Wt-

Mean 

Wt-

Mean 
          

Wt-

Mean 
            

Q3 Acc  0.783 0.587 0.814 0.814 0.755 0.635 0.741 0.677 0.732 0.704 0.732 0.732 0.980 0.814 0.843 0.844 

FS

A 
RFE US RFE RFE 

UNIO

N 
RFE RFE RFE RFE US 

Wt-

Mean 

UNIO

N 
RFA RFE Mean RF 

Acc    0.587 0.814 0.814         0.732 0.704             

FS

A 
  RFE RF RF         RF 

UNIO

N 
            

Acc      0.814 0.814         0.732 0.704             

FS

A 
    Mean Mean         

UNIO

N 

Wt-

Mean 
            

Acc      0.814 0.814                         

FS

A 
    

Wt-

Mean 

Wt-

Mean 
                        

Q4 Acc        0.783 0.741             0.760 0.973       

*Wt-Mean = Weighted Mean; FSA = Feature Selection Algorithm; Acc=Accuracy (in percentage); yellow colored areas represent the best accuracy obtained by CA in the 

respective Quartile feature set using the best FS mechanism; 

 

Table 6. shows the performance metrics employed in this study to identify the behaviour 

of different CA working on different datasets while Tab. 7. shows the training response times 

involved. The lowest training response time of 8sec was possible with RF on HVLT dataset 

while LR achieved the highest training response time of 3600sec on the same dataset. Even 

though the HYBRID dataset achieved the highest training response time of 1620sec 

(approximately 27 minutes) with RF classification algorithm compared to other algorithms, 

the remarkable performance of 98.6 %, achieved using only non-motor symptoms places it 

Feature 

set 

Feature Selection 

Algorithm 

CDT HVLT PDST HYBRID 

Accuracy of CA (%) Accuracy of CA (%) Accuracy of CA (%) Accuracy of CA (%) 

RF NB SVM LR RF NB SVM LR RF NB SVM LR RF NB SVM LR 

Q1 

US 0.773 0.618 0.773 0.773 0.626 0.659 0.622 0.649 0.704 0.676 0.704 0.704 0.905 0.822 0.841 0.840 

RFE 0.783 0.536 0.793 0.793 0.741 0.626 0.723 0.626 0.746 0.662 0.732 0.732 0.958 0.829 0.849 0.832 

RFA 0.587 0.577 0.587 0.587 0.622 0.622 0.654 0.631 0.577 0.633 0.647 0.647 0.920 0.717 0.728 0.722 

RF 0.773 0.618 0.773 0.773 0.741 0.626 0.723 0.626 0.704 0.676 0.732 0.732 0.955 0.829 0.849 0.835 

UNION 0.793 0.567 0.783 0.793 0.723 0.640 0.705 0.672 0.732 0.704 0.718 0.718 0.982 0.805 0.841 0.832 

Mean 0.773 0.577 0.814 0.814 0.589 0.645 0.654 0.640 0.549 0.577 0.507 0.507 0.904 0.822 0.841 0.840 

Wt. Mean 0.773 0.567 0.814 0.814 0.566 0.645 0.649 0.640 0.704 0.676 0.704 0.704 0.905 0.819 0.849 0.835 

 Q2 

US 0.762 0.567 0.721 0.721 0.658 0.654 0.663 0.668 0.690 0.704 0.676 0.676 0.947 0.799 0.837 0.832 

RFE 0.773 0.608 0.773 0.773 0.783 0.626 0.760 0.668 0.690 0.676 0.732 0.732 0.974 0.828 0.846 0.837 

RFA 0.597 0.587 0.608 0.608 0.695 0.585 0.705 0.631 0.661 0.647 0.690 0.690 0.976 0.795 0.837 0.831 

RF 0.783 0.608 0.773 0.773 0.764 0.612 0.774 0.622 0.718 0.633 0.732 0.732 0.986 0.814 0.843 0.840 

UNION 0.773 0.587 0.814 0.814 0.755 0.617 0.751 0.668 0.746 0.704 0.760 0.760 0.980 0.798 0.838 0.835 

Mean 0.773 0.577 0.814 0.814 0.686 0.668 0.677 0.645 0.619 0.662 0.647 0.647 0.949 0.802 0.838 0.832 

Wt. Mean 0.773 0.567 0.814 0.814 0.732 0.663 0.723 0.672 0.690 0.704 0.676 0.732 0.958 0.796 0.837 0.831 

Q3 

US 0.752 0.587 0.783 0.783 0.691 0.622 0.668 0.663 0.690 0.704 0.676 0.676 0.968 0.798 0.841 0.837 

RFE 0.783 0.587 0.814 0.814 0.751 0.635 0.741 0.677 0.732 0.676 0.690 0.690 0.979 0.814 0.838 0.840 

RFA 0.577 0.567 0.618 0.618 0.723 0.603 0.700 0.645 0.690 0.647 0.690 0.690 0.980 0.789 0.835 0.837 

RF 0.773 0.577 0.814 0.814 0.723 0.594 0.723 0.663 0.732 0.676 0.690 0.690 0.974 0.798 0.837 0.844 

UNION 0.762 0.577 0.783 0.783 0.755 0.566 0.728 0.672 0.732 0.704 0.732 0.732 0.973 0.798 0.835 0.835 

Mean 0.773 0.577 0.814 0.814 0.714 0.631 0.686 0.668 0.718 0.647 0.690 0.690 0.974 0.798 0.843 0.837 

Wt. Mean 0.773 0.567 0.814 0.814 0.723 0.603 0.709 0.668 0.704 0.704 0.732 0.676 0.979 0.798 0.838 0.841 

Q4 0.762 0.577 0.783 0.783 0.741 0.576 0.714 0.668 0.718 0.704 0.760 0.760 0.973 0.798 0.835 0.835 
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in the first position rather than the expensive clinical tests and time involved in the diagnosis 

process. 

Tab. 7. Performance comparison with other datasets 

Data 

Type / 

features 

quantity 

Q1 Q2 Q3 Q4 

Acc FSA CA Acc FSA CA Acc FSA CA Acc CA 

CDT 0.814 

Mean, 
LR, 
SVM 

0.814 Mean LR 0.814 Mean LR 0.783 LR Wt-

Mean 

HVLT 0.741 RF, RFE RF 0.783 RFE RF 0.755 UNION RF 0.741 RF 

PDST 0.746 RFE RF 0.760 UNION 
SVM, 

LR 
0.732 

RFE, RF, 

UNION, 

Mean, 

Wt-Mean 

RF, 
SVM, 

LR 

0.760 LR 

HYBRID 0.982 UNION RF 0.986 RF RF 0.980 RFA RF 0.973 RF 
*Acc-Accuracy; FSA-Feature Selection Algorithm; CA-Classification Algorithm; 

Tab. 8. Performance metrics of HYBRID dataset with different quartiles of features 

Dataset FS FSA CA Acc BA P R F 

HYBRID 

Q1 UNION 

RF 

0.982 0.972 0.995 0.946 0.970 

Q2 RF 0.986 0.978 1 0.956 0.977 

Q3 RFA 0.980 0.959 1 0.917 0.957 

Q4 -- 0.973 0.956 1 0.912 0.954 
*FS-Feature Set; Acc-Accuracy; BA-Balanced Accuracy; P-Precision; R-Recall; F-F1 Score 

Tab. 9. Training response Time of ML algorithms on datasets 

Dataset RF NB SVM LR 

CDT 480 120 23 20 

HVLT 8 240 120 3600 

PDST 2520 240 33 32 

HYBRID 1620 240 41 25 
*Response Time in seconds 

Tab. 10. Performance comparison with existing works 

Ref Count Dataset used Acc(%) 

[24] PPD:423; HC:195 RBDSQ and UPSIT 85.48 

[25] 
PPD:342; HC:157 Features derived from SPECT 

SCAN images 
82.2 

SWEDD:51  

[34] PPD:109; HC:40 audio 91.83 

[35] PPD:10; HC:8 
Genetic,  88.9 

audio 91.83 

[41] 
Voice:5826;  

Voice and demographics 85 
Demographics: 6805 

[42] PPD:401; HC:183 

Rapid Eye Movement, olfactory 

loss, Cerebrospinal  
96.45 

fluid data, and dopaminergic 

imaging markers 

[43] PPD:29; HC:18 Gait 95 

[48] 
Biocruces:96  

SDMT, BJLOT, MoCA, HVLT, 

BSIT, GDS  86.3  

PPMI:687 and autonomic manifestations 

Proposed PPD:106; HC:106 SLEEP, HVLT, CDT, HYBRID 98.65 
*RBDSQ-Rapid eye movement sleep Behaviour Disorder Screening Questionnaire; UPSIT-University of Pennsylvania Smell Identification Test; SDMT-Symbol 

Digit Modalities Test; BJLOT- Benton Judgment of Line Orientation Test; MoCA- Montreal Cognitive Assessment; BSIT- Brief Smell Identification Test; GDS- 

Geriatric Depression Scale; MLP-Multi Layer Perceptron; Acc-Accuracy; 
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4.2. Performance Evaluation 

Tab. 11. Interpretability of HYBRID dataset vs other datasets 

  

Features 
HYBRID 

accuracy (hb) 

CDT accuracy 

© 

HVLT accuracy 

(h) 

PDST accuracy 

(p) 

Q1 0.982 0.793 0.741 0.746 

Q2 0.986 0.783 0.783 0.746 

Q3 0.980 0.783 0.755 0.732 

Q4 0.973 0.762 0.741 0.718 

BCT for HYBRID and CDT 

(hb-c)     PSD   

Q1 0.189 

0.200 0.000087 0.00465 43.01 
Q2 0.203 

Q3 0.197 

Q4 0.211 

  
BCT for HYBRID and HVLT 

(hb-h)     PSD   

Q1 0.241 

0.225 0.000263 0.00811 27.75 
Q2 0.203 

Q3 0.225 

Q4 0.232 

  
BCT for HYBRID and PDST 

(hb-p)     PSD   

Q1 0.236 

0.245 0.000072 0.00423 57.94 
Q2 0.240 

Q3 0.248 

Q4 0.255 

 

BCT (Corani & Benavoli, 2015) is a statistical technique to compare the performance of 

two ML algorithms. It uses bayesian inference to get a probabilistic evaluation of which 

algorithm performs better than the other, using the correlation. For each dataset, the process 

involves identifying the performance metrics differences between the two algorithms, 

modelling these differences with a Bayesian framework with presumptive prior 

distributions, then updating these priors with observed data to produce a posterior 

distribution. Next, posterior distribution is assessed to find the likelihood that one approach 

performs better than the other. Finally, Cumulative Distributive Function (CDF), which 

gives the cumulative probability up to a certain point. In the proposed study, as HYBRID 

dataset achieved the best performance with all quartiles of features using RF CA, we 

compared the performance of RF algorithm with all the datasets using BCT as shown in Tab. 

10. The Probability that 𝑃(𝜇𝑑 > 0|𝑑𝑎𝑡𝑎 ≈ 𝐶𝐷𝐹(𝜇|⬚|𝑑)is 1, as the 𝜇𝑑values are very large 

and CDF will be obviously 1, indicating that the HYBRID dataset performs well, compared 

to other data sets. 
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5. DISCUSSION 

 

Fig. 3. (a), (b), (c), (d): CDT, HVLT, PDST and HYBRID datasets performance with the best Q1 features 

respectively 

 

Fig. 4. (a), (b), (c), (d): CDT, HVLT, PDST and HYBRID datasets performance with the best Q2 features 

respectively 

It can be observed that the RF classification algorithm performed well for HVLT, PDST, 

HYBRID datasets using RFE feature set (Fig. 3(b), 3(c) and Fig. 3(d)) while SVM and LR 

outperformed for CDT data set using mean feature set with Q1 features (Fig. 3(a)). RF 

classification algorithm performed well for HVLT and HYBRID datasets using RFE and RF 

(Fig. 4(b) and Fig. 4(d)) feature sets respectively, for PDST data set using UNION feature 
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Fig. 5. (a), (b), (c), (d): CDT, HVLT, PDST and HYBRID datasets performance with the best Q3 features 

respectively 

RF classification algorithm performed well for HVLT and HYBRID datasets using RFE 

and RF (Fig. 4(b) and Fig. 4(d)) feature sets respectively, for PDST data set using UNION 

feature set with Q2 features (Fig. 4(c)). SVM and LR outperformed for CDT data set using 

mean feature set with Q2 features (Fig. 4(a)). With Q3 feature set, it can be noticed that 

SVM and LR outperformed for CDT dataset using mean and weighted mean feature sets 

(Fig. 5(a)) while RF, SVM and LR outperformed for PDST data set using RFE and UNION 

feature sets (Fig. 5(c)). RF outperformed HVLT and HYBRID datasets using features 

obtained using RF (Fig. 5(b) and 5(d)). 
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Fig. 6. (a), (b), (c), (d): datasets performance with the best CA and Q1, Q2, Q3 and Q4 features 

respectively 
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LR outperformed for all the data sets, without using any feature selection mechanism 

(Fig. 6(a), 6(b), 6(c) and 6(d)). All the algorithms obtained an accuracy of above 70 % in 

discriminating PPD from HP (Tab. 5.) using Q3 feature sets generated by the discussed 

feature selection mechanisms, which proves that many learning strategies achieve quite good 

detection rates. Remarkably, RF classification algorithm obtained an accuracy of over 97 % 

on all quantitative feature sets using HYBRID dataset. The results clearly show that the 

custom-built HYBRID dataset outperformed the remaining data sets. The performance 

improvement provided by the feature selection process was especially remarkable for Q2 

feature set of the proposed HYBRID dataset yielding an accuracy of 98.6 % with RF 

algorithm being used for both feature selection and classification purpose. 

From Tab. 6, it can be observed that the accuracies increased from Q1 to Q2 while 

dropped from Q2 to Q3 and further dropped to Q4 using HVLT and HYBRID datasets, while 

it is maintained constant in all quartiles for CDT dataset. It can also be noted that the 

accuracy is increased slightly from Q3 to Q4 equating with Q2 in case of PDST data set. 

This clearly shows that the quantitative feature selection mechanism plays a vital role on the 

CA performance.  

From Tab. 7, it can be observed that a precision value of ‘1’ was achieved in Q2, Q3 and 

Q4 quartiles, which is desirable in medical diagnosis. A perfect precision indicates that the 

model has high confidence in its positive predictions, proving that the disease can be 

diagnosed truly. The model is very conservative, only predicting positive when it is very 

sure, hence avoiding any incorrect positive predictions. The highest recall value of 0.956 in 

Q2 set indicates strong performance in identifying TP. The highest F1- score value of 0.977 

can also be observed in Q2 set which indicates that it is the best performing quartile overall. 

The consistent closeness of accuracy and balanced accuracy values indicates that the model's 

performance is balanced across classes, avoiding significant biases. Q3 and Q4 have the 

lowest Balanced Accuracy values of 0.959 and 0.956, respectively, suggesting that the 

performance on one or both classes is slightly less balanced compared to Q1 and Q2. It is 

evident that Q2 feature set of HYBRID dataset is the best performing quartile with the 

highest Accuracy and Balanced Accuracy, indicating a well-balanced and highly effective 

model that can be used to differentiate PPD from HP.  Balanced accuracy is also highest for 

Q2 and lowest for Q4, indicating that the classifier is well-balanced and performs 

consistently across classes, with Q2 being the most balanced. Precision is perfect for Q2, 

Q3, and Q4, indicating no false positives in these cases, while for Q1, precision is slightly 

lower, suggesting a minimal number of false positives. Recall is highest for Q2 and lowest 

for Q4, indicating that the classifier's ability to identify true positives was best in Q2 and 

weakest in Q4. F-Score, which is the harmonic mean of precision and recall, is highest for 

Q2 and lowest for Q4, highlighting that Q2 had the best balance of precision and recall. 

Overall, the classifier performed best with the features in Q2, as evidenced by the highest 

accuracy, balanced accuracy, recall, and F1-score, allowing the classifier to identify true 

positives and true negatives most effectively. The precision remains consistently high across 

Q2, Q3, and Q4, indicating that the classifier is effective at avoiding false positives with 

these feature sets. Recall shows more variability, suggesting that while the classifier can 

avoid false positives well, its ability to identify all true positives depends more on the feature 

set used. The feature set in Q4, while still performing well, shows the lowest values across 

all metrics compared to Q1, Q2, and Q3, indicating a possible trade-off between various 

datasets using ML algorithms. Considering the performance metrics, Q2 seems to be the 



188 

most effective feature set for this classifier, and it might be beneficial to analyse and 

understand why Q2 features perform best to potentially apply similar selection criteria to 

other datasets. It would also be useful to examine the specific features in Q2 that contribute 

to its high performance and compare them with those in Q3 and Q4 to optimize feature 

selection further. Despite the strong performance, fine-tuning the model further with 

hyperparameter optimization, and potentially incorporating other ML models could improve 

the results even more.  

Table 8. gives the training response times involved in training the discussed datasets 

using the RF, NB, SVM and LR classification models. It is evident that HVLT dataset using 

RF classification model was trained consuming the lowest time (8 seconds) while the highest 

time was required to train using LR model (3600 seconds).  

Table 9. Shows the performance of the proposed model compared with the existing works 

and it can be noticed that the proposed model stands in the first position with an accuracy of 

98.65 %. 

Large evidence is provided with BCT that the HYBRID dataset significantly outperforms 

the CDT, HVLT, and PDST datasets across the 4 quartiles feature sets, using RF 

classification method, which can be observed from Tab.10. The mean difference in accuracy 

is substantial with a P (𝜇𝑑>0|data) of virtually 1, indicating very high confidence in these 

results.  

6. CONCLUSION 

The study employed various validation techniques, utilizing 10 runs of a 10-fold cross-

validation method. Evaluation primarily focused on accuracy metrics, complemented by 

analysis of F1-score, Precision, and Recall. The Bayesian approach interprets probability 

subjectively, viewing it as a measure of belief in the face of uncertainty. The approach was 

used to determine the best-performing model among comparisons involving 7 distinct 

feature selection mechanisms and 4 trained models on 4 different datasets. Evaluation 

metrics included confusion matrix, accuracy, balanced accuracy, specificity, precision, recall 

and f1-score. Currently, there are limited studies employing ML algorithms to detect PD 

based on non-motor symptoms, often supported by more complex data such as clinical 

images and biofluid biomarkers. Previous research focused on using individual non-motor 

features to distinguish PPD from HP with various objectives. In the proposed study, a strong 

PD detection rate of 97.3% was achieved without employing any feature selection 

mechanisms, and up to 98.6% using second quartile features. This was accomplished 

through a hierarchical screening strategy where level-1 identified optimal feature selection 

mechanisms, level-2 selected the best CA paired with these mechanisms, and level-3 

identified the best dataset resulting in the highest predictive accuracy. HVLT and PDST 

datasets performed the best way with RFE and UNION FS methods across all quartile 

features, CDT dataset excelled with Mean feature selection, and the HYBRID dataset 

optimized with RF, RFA, and UNION feature selection methods for Q1, Q2, and Q3 features 

respectively at level-1. RF and LR algorithms were identified as optimal at level-2. 

Ultimately, the HYBRID dataset comprising HVLT, PDST, and CDT datasets achieved a 

notable 98.6% accuracy using second quartile features selected by RF, and classified by RF 

algorithm. The authors assert that this methodological hierarchy can significantly enhance 
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early detection of PD. The BCT conducted on RF performance evaluation on various 

datasets provides a valuable insight for researchers and clinicians for clinical use of the 

proposed work. A primary limitation of the proposed study was its focus solely on 

classifying HP and PPD using existing numerical data related to non-motor symptoms. 

Assessment of the disease severity was not included. Other important non-motor 

assessments tests such as UPSIT, BJLOT, GDS, Wechsler Adult Intelligence Scale (WAIS), 

PD Anxiety Scale Test (PDAST), Boston Naming Test (BNT) were not included in the 

study. Another significant limitation was to incorporate imaging data and compare with the 

numerical data in analysing the performance. Thus, the authors encourage efforts aimed at 

acquiring additional data from both PPD and HP. Future studies should aim to include 

different imaging data to enhance differentiating PPD from HP accurately. 
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