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Abstract 

Diabetes Mellitus (DM) is a persistent metabolic disorder which is characterized by 

increased blood glucose level in the blood stream. Initially, DM occurs while the insulin 

secretion in the pancreas has a disability to secrete or to use hormone for the metabolic 

process. Moreover, there are different types of DM depending on the physiological 

process, and the types include Type1 DM, Type2 DM and Gestational DM. 

Electrocardiography (ECG) waves are used to detect the abnormal heartbeats and 

cannot directly detect DM, but the wave abnormality can indicate the possibility and 

presence of DM. Whereas the Photoplethysmography (PPG) signals are a non-invasive 

method used to detect changes in  blood volume that can monitor BG changes. 

Furthermore, the detection and classification of DM using PPG and ECG can involve 

analyzing the functional performance of these modalities. By extracting the features 

like R wave (W1) and QRS complex (W2) in the ECG signals and Pulse Width (S1) and 

Pulse Amplitude Variation (S2) can detect DM and can be classified into DM and Non-

DM. The authors propose a Novel architecture in the basis of Encoder Decoder 

structure named as Obstructive Encoder Decoder module. This module extracts the 

specific features and the proposed novel Obstructive Erasing Module remove the 

remaining artifacts and then the extracted features are fed into the Multi-Uni-Net for 

the fusion of the two modalities and the fused image is classified using EXplainable 

Machine Learning (EX-ML). From this classification the performance metrics like 

Accuracy, Precision, Recall, F1-Score and AUC can be determined. 

1. INTRODUCTION 

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood 

glucose levels over an extended period of time. This condition is obvious when the pancreas 

fails to produce efficient insulin or when the body's cells exhibit minimal responsiveness to 

insulin or sometimes both factors simultaneously (Shashikant et al., 2021). As per the World 

Health Organization (WHO), about 555.6 million instances were recognized in 2022, with 

projections demonstrating a rise to 748.2 million by 2049. Diabetes is expanding swiftly in 

middle- and low-income nations, possibly attributable to its chronic nature and genetic 
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predispositions, producing it the seventh commonest cause of death globally. Insulin, a 

hormone produced by the pancreas, promotes the entry of glucose into cells, where it serves 

as an energy source. In cases where insulin lacks efficiency or is inadequate, glucose 

assembles in the bloodstream instead of being used by cells (Kulkarni et al., 2023). This 

collection results in increased blood sugar levels, potentially yielding rise to a range of 

complications. Diabetes presents in diverse forms, including Type 1 Diabetes, wherein the 

immune system inaccurately targets and removes the insulin-producing beta cells within the 

pancreas. Hence, the body's capacity to produce insulin is notably diminished, if not entirely 

absent (Shaan et al., 2023). Type 1 diabetes usually develops in childhood in adults, although 

it can be seen at any stage of life. On the other hand, type 2 diabetes signifies the predominant 

form, including the bulk of diabetes cases. This condition develops when the body rises 

resistance to insulin or fails to produce minimal amounts of insulin needed to regulate blood 

sugar levels within the normal range (Dave et al., 2024). Type 2 diabetes is commonly linked 

to lifestyle elements like obesity, sedentary behaviour, and unhealthy dietary habits. While 

it generally emerges during adulthood, there is a growing trend of diagnosis among children 

and adolescents, validated to the increase in rates of obesity. Two crucial aspects concerning 

these estimations merit attention. Firstly, the common assessment of diabetes prevalence 

worldwide is likely to fall short of reflecting the actual burden of the condition. Secondly, 

diabetes often leads to pre-diabetes a state that offers greater possibility for preventive 

interventions and proves efficient in preventing the onset of diabetes. So, early identification 

of pre-diabetes and diabetes holds main significance in  collective activities to reduce the 

global burden of diabetes. It's worth noting that the criteria for diagnosing diabetes and pre-

diabetes predominantly hinge on assessing blood glucose levels and haemoglobin A1c 

(HbA1c) concentrations. However, these methods pose challenges as they are invasive and 

not easily implementable as screening tools, particularly in low-resource environments. 

The composition of the Electrocardiogram (ECG) signal serves as a sign of cardiac well-

being. Through ECG analysis, anomalies precisely associated with heart function, such as 

cardiac arrhythmia, can be detected (Prabha et al., 2021). Furthermore, it can offer valuable 

insights into conditions like diabetes, which might not initially appear to be connected to 

heart health. Diabetes can lead to complications affecting multiple organs, increasing the 

risk of premature mortality. While ECG has traditionally been employed in cardiac and 

medical domains, its commercial viability is now being investigated in diverse and 

innovative applications. In recent years, there has been a growing effort to create computer-

based automated diagnostics for ECG readings (Mishra et al., 2024). Additionally, ECG has 

shown as a tool for detecting hyperglycemia and enabling continuous glucose monitoring in 

more recent developments.  

Photoplethysmography (PPG) serves as a non-invasive method deploys optical 

technology to gauge volumetric changes in blood circulation. In this process, light released 

from an LED is directed onto the fingers or wrists, where it is either diffused or transmitted 

to a photodiode. The photodiode then calculates the detected light, presenting it in the form 

of a pulse wave (Hina & Saadeh, 2022). In transmissive mode PPG sensors, the photodiode 

is positioned on the opposite side of the LED, whereas in reflective mode, it is situated 

adjacent to the LED. PPG signals typically consist of both pulsed and non-pulsed 

components. One benefit is that the PPG signal can be obtained using devices already 

combines into daily life, such as smart phones and wristbands. In recent years, many studies 

have explored the potential of using PPG signals, coupled with traditional, machine learning 
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(ML) or Deep learning (DL) techniques, to detect diabetes. PPG offers the advantage of 

easily capturing sequential heartbeats, allowing for the measurement of both heart rate (HR) 

and heart rate variability (HRV) (Shaan et al., 2022). HRV signal, derived from the ECG, is 

generally calculated from the R–R interval. Likewise, in computing the HRV signal from 

the PPG signal, the inter-beat interval (IBI) or pulse interval (PPI) is employed. HRV 

estimates the variability in time durations between consecutive heartbeats, a method 

completely used as an indicator for variety health conditions (Lee et al., 2023). The HRV 

serves as a robust reflection of both the parasympathetic and sympathetic branches of the 

autonomic nervous system (ANS). The ANS controls the body's metabolic functions, 

crucially influencing the regulation of blood glucose levels. 

Artificial intelligence (AI) indicates an intelligent system capable of following the 

expertise of medical professionals, aiding healthcare providers in their daily tasks and 

supports for decision-making and problem-solving processes. The combination of the ECG 

and PPG signal dataset with AI enables the prediction of blood glucose levels (BGL). The 

authors proposed a novel framework named as Obstructive Encoder Decoder Network for 

feature extraction. In this module the ReMEM encoder module extracts the specific features 

and provides it into the Obstructive Erasing Module where the remaining artifacts are fully 

refined and fed into the ReMDM decoder and finally the extracted features are fused using 

Multi-Uni-Net and DM is classified using Explainable ML. 

1.1. Description of the proposed flow 

The Obstructive Encoder-Decoder Module is designed to help in processing and 

analyzing signals from ECG and PPG data, the brief workflow description is provided 

below: 

− Wave Extraction: After the initial preprocessing step, specific waves are extracted: 

− ECG Data: Two main features are extracted: W1, which is the R-wave, and W2, 

representing the QRS Duration. 

− PPG Data: Two features are also extracted: S1, which measures the Pulse Width, and 

S2, the Pulse Amplitude Variation. 

− Noise Removal: Although most noise is removed in preprocessing, some motion and 

signal artifacts may still remain. For these, an Obstructive Erasing Module is used, 

which refines the signals to ensure higher accuracy in the next stages. 

− Feature Extraction and Fusion: After the signals are cleaned, the Decoder extracts the 

refined features. These are then input into the Multi-Modality Unifying Network, 

where ECG and PPG features are combined. 

− Classification: Finally, the fused features are used to classify the data with an 

Explainable ML Model, which not only identifies patterns but also provides insight 

into how it made these classifications. 

− Metric Detection: This process allows to detect key metrics, which are crucial for 

understanding and diagnosing conditions such as DM. 

1.2. Major contributions 

• The novel contribution in this study is incorporating the Obstructive Erasing Module 

 in the encoder decoder structure which helps to eliminate the artifacts in the ECG 
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and PPG signals that persists after preprocessing and the refined features are further 

processed to decoder. 

• For classification of DM, EXplainable-ML is used which has an enhanced 

interpretability and it is crucial in understanding the decision-making process. 

1.3. Motivation 

− Enhanced Accuracy in Diabetes Detection: Existing methods of diabetes detection 

may lack precision, mainly when studying complex signals. By implementing a multi-

level fusion approach (Focus Wave Blend, TwinPath Module, and MultiBlend 

fusion), this study aims to improve classification accuracy, specificity, and sensitivity, 

potentially leading to more reliable and early diagnosis of diabetes. 

− Overcoming Limitations in Signal Fragmentation: Many existing methods only 

analyze isolated segments of ECG signals, which can lead to incomplete or inaccurate 

assessments. By fusing features from F1, F2, and F3 fragments, this research applies 

a more comprehensive signal analysis, allowing for a more holistic approach to 

diabetes detection. 

− Innovative Use of Fusion Techniques for Signal Analysis: The combination of 

multiple fusion techniques in this study addresses the challenges of integrating distinct 

waveforms (such as the 'R', 'T', and 'QT' Waves) and maximizes their diagnostic value. 

This approach can contribute to the development of more advanced analytical 

frameworks in biomedical signal processing. 

2. LITERATURE REVIEW 

Ahamed et al. (2023)  targets on using DL techniques for non-invasive detecting anomaly 

in ECG signals, with a particular attention on diabetes-related anomalies. It aims to improve 

the accuracy and reliability of anomaly detection using advanced DL models. Cordeiro et al. 

(2021) analyzes the use of DL methodologies to find hyperglycemia from ECG signals. By 

using the power of DL algorithms, the study aims to elevate accurate and efficient models 

for early detection of hyperglycemic episodes utilizing ECG data. Navaneethakrishna and 

Manuskandan (2021) looks into the analysis of HRV in ECG signals, differentiating patterns 

between normal and diabetic individuals. Utilizing a fragmentation approach, the study has 

a motive to uncover distinctive HRV patterns associated with diabetes, offering insights into 

potential diagnostic markers. Jain et al. (2023) suggested a features removal method for 

differentiate normal and diabetic ECG data. The single-lead ECG signal is charged to ten 

characteristics extraction processes; they are logging energy, threshold, Shannon, sure 

entropy, root mean square value, kurtosis, skewness, maximum value, energy, and variance. 

The Fisher-score has been adopted in feature ranking techniques. The ranked features are 

provided into classifiers. Li et al. (2021) proposed Three blood glucose ranges—low, 

moderate, and high can be non-invasively monitored thanks to an ECG-based technique that 

addressed the necessity of monitoring different blood glucose ranges for the management of 

diabetes. The abbreviation CNN-DBSCAN stands for spatial grouping of applications using 

density-based methods with convolution neural networks and noise. A method for 

classifying BG range-based ECGs and pre-processing ECG outliers was presented. 
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Srinivasan and Foroozan (2021) proposes a non-invasive method for diabetes prediction 

using PPG signals and DL techniques. By adopting the performance of DL, the study aims 

to develop a robust predictor that can accurately detect diabetes risk factors from PPG 

signals. Zanelli et al. (2023) proposes a method for detecting type 2 DM utilizing a Light 

CNN from a single raw PPG wave. The research aims to progress a reliable and efficient 

model capable of accurately diagnosing type 2 DM from PPG signals. Susana et al. (2023) 

investigates the non-invasive classification of BG levels by using PPG signals and time-

frequency analysis techniques. By examining the spectral characteristics of PPG signals, the 

study aims to progress a robust classification model for approximating BG levels. Susana et 

al. (2022) motivates on emerging a non-invasive method for classifying BG levels to allow 

early detection of DM using PPG signals. By using ML techniques, the research aims to 

figure a reliable classifier proficient of accurately predicting BG levels from PPG data. Khan 

et al. (2023) proposes an expert diagnostic system for detecting hypertension and DM using 

discrete wavelet decomposition of PPG signals and ML techniques. By examining the 

incidence components of PPG signals, the purpose of the study to develop an accurate 

diagnostic tool for detecting hypertension and DM. Sathish et al. (2024) discussed a non-

invasive technique for dividing cases into those with and without diabetes. One of the main 

drawbacks of commercially available invasive blood glucose level monitoring systems for 

patients is the discomfort, pain, and infection they may feel during the finger-prick blood 

sample collection process. Using a near-infrared sensor (NIR), a revolutionary non-invasive 

gadget is being considered for blood sugar classification. Singha and Ahmad (2021) 

proposed a straightforward technique that measured both HR and BGL values concurrently 

using a single instrument based just on PPG without pricking a finger or the need for a skilled 

individual. A pulse sensor is implemented to gather PPG signals. Moreover, the bandpass 

filter is used to extract noise from the PPG signal and increase it before sending it to the 

microcontroller unit (MCU). Gupta et al. (2022) suggested a unique indicator called the 

dynamic systemic vascular resistance index (dSVRI) to differentiate who are healthy and 

diabetes. It is based on systemic vascular resistance pathology. The time-domain PPG 

features that are currently in use and their higher derivatives were compared with the 

suggested dSVRI's diagnostic performance and discrimination capacity. Sen Gupta et al. 

(2021) proposed and creates a multifunctional, commercial prototype PPG device, which 

monitors the essential health indicator parameters. By improving the skin with red, green, 

and infrared LEDs the produced fingertip PPG gadget consists of both transmissive and 

reflecting type data gathering system. Particular emphasis is placed on indicating the 

accuracy of the blood glucose meter (BGL). Prabha et al. (2022) proposed unique Mel 

frequency spectral coefficients feature of the wristband PPG signal and physiological data 

are utilized to present the design of a non-invasive blood glucose determination system. A 

dataset of 217 participants from a hospital located in Cuenca, Ecuador is used to verify the 

proposed model.  By using SVR, XGBR approaches Blood glucose levels (BGL) are 

predicted. Mishra and Nirala (2023) used a variety of machine learning (ML) approaches to 

offer a non-invasive method for classifying type 2 diabetes by utilizing brief PPG signals. 

For making it easier for people to diagnose type 2 diabetes early on ML classifier can be 

used to smart or wearable apps. More over 68 statistically relevant features were exposed to 

a variety of ML approaches, either with or without feature selection technique (FST). Li et 

al. (2024) aimed was to build a unique multimodal framework based on the merging of ECG 

and PPG signals to create a universal BG monitoring model. This is implemented as a 
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weight-based Choquet integral for BG monitoring spatiotemporal decision fusion approach. 

Moreover, three feature selection methods are utilized to find the appropriate temporal 

statistical features, and DNN to compact the spatial morphological data.  

Tab. 1. Brief Analysis on the research gaps 

Ref. No Objective Method/Algorithm Limitation 

(Ahamed et al., 

2023) 

Detect diabetes-related 
anomalies in ECG signals 

using DL. 

DL 
Model accuracy may vary 

with signal quality and noise. 

(Cordeiro et al., 

2021) 

Identify hyperglycemia by 
analyzing ECG signals with 

DL. 

Deep neural networks for 

ECG data classification. 

Lack of generalizability across 

diverse populations. 

(Navaneethakrishna 

& Manuskandan, 
2021) 

Differentiate HRV between 

normal and diabetic ECG 
signals. 

Fragmentation of ECG signals 

and variability analysis. 

Limited to specific ECG 

fragments, potentially 
overlooking broader patterns. 

(Jain et al., 2023) 

Automatically detect diabetes 

from ECG signals non-
invasively. 

ML 

High dependency on signal 

preprocessing for accurate 
results. 

(Li et al., 2021) 

Monitor glucose levels using 

ECG to categorize into three 

ranges. 

DBSCAN clustering and CNN 
for ECG-based classification. 

Accuracy might be influenced 

by patient variability and 

signal noise. 

(Srinivasan & 

Foroozan, 2021) 

Predict diabetes non-

invasively using PPG signals. 
DL 

May face challenges in 

handling noisy PPG data. 

(Zanelli et al., 

2023) 

Detect Type 2 diabetes from a 

single PPG waveform. 

Lightweight CNN for PPG 

signal processing. 

Single-wave analysis may 

limit the robustness of results. 
 

(Susana et al., 

2023) 

Classify blood glucose levels 

non-invasively using PPG. 

Time-frequency analysis on 

PPG signals. 

Time–frequency resolution 

may affect classification 

accuracy. 

(Susana et al., 

2022) 

Detect diabetes early by 

classifying glucose levels with 
PPG. 

ML 
Model may be sensitive to 

PPG signal artifacts. 

(Khan et al., 2023) 

Detect hypertension and 

diabetes using wavelet 

decomposition of PPG 

Discrete wavelet transform 
and ML algorithms 

High computational 

complexity due to wavelet 

decomposition 

(Sathish et al., 

2024) 

Develop a non-invasive 

system to detect diabetes from 

PPG. 
 

ML 
Limited performance in the 

presence of noisy signals 

(Singha & Ahmad, 
2021) 

Estimate heart rate and 

glucose levels non-invasively 

with PPG. 

Signal processing techniques 
on PPG data. 

Low accuracy for glucose 
estimation across all ranges. 

(Gupta et al., 2022) 

Diagnose Type-II diabetes 

early with a novel PPG 

feature. 

DL 
Feature robustness requires 
further validation 

(Sen Gupta et al., 

2021) 

Measure blood glucose non-
invasively using an all-

purpose PPG system. 

ML 
Performance varies across 

different demographic groups 

(Prabha et al., 

2022) 

Estimate glucose levels using 

wrist-worn PPG and other 
parameters 

PPG signal processing 
combined with physiological 

data. 

 

Device-dependent, affected by 

motion artifacts 

(Mishra & Nirala, 

2023) 

Classify Type 2 diabetes from 

short PPG signals. 
ML. 

Short signals may limit feature 

richness and accuracy. 

(Li et al., 2024) 

Monitor glucose non-

invasively by fusing ECG and 
PPG features. 

Spatiotemporal feature fusion 

and Choquet Integral model. 

Complex model structure may 

lead to high computational 
demand. 

(Pal & 

Mahadevappa, 
2023) 

Detect cardiac morbidities 

using fused ECG and PPG 
signals. 

Dual attentive DCNN on fused 

ECG and PPG signals. 

High data processing 

requirements due to dual 
modality 
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Pal and Mahadevappa (2023) suggested a novel approach for successfully identifying and 

categorizing heart abnormalities other than coronary artery disease and disorders connected 

to electrical impulses. 300 patients with cardiovascular illness had their PPG and ECG 

signals jointly possessed by following predetermined inclusion and exclusion criteria. The 

PPG and ECG signals are merged with an algorithm to create a fused signal. Skip 

connections, multidimensional convolution, and self and cross attention features are utilized 

in DNN construction. 

3. PROPOSED METHODOLOGY 

3.1. Data preprocessing 

The presented Novel Framework follows an encoder -decoder structure, fusing the 

features extracted and classifying DM through distinct models. Overcoming the 

complexities inherent in extracting relevant features from ECG and PPG signals for diabetes 

classification is a significant challenge. However, using advanced techniques such as 

obstructive encoder-decoder networks, it can prominently provide a solution. These 

methodologies enable the model to effectively learn representations directly from the input 

data, thereby capturing the intricate patterns essential for accurately classify DM. Encoder -

Decoder architectures can easily accommodate multimodal data and have capacity to 

incorporate multiple input channels into the model. Finally, we utilize Explainable ML to 

evaluate the classification results. 

Denoising 

(Using wavelet tranformer)

Normalization (Min-Max)

Pre-Processed PPG 

Signal

Electrode Motion 

Artifact Elimination 

Using Adaptive 

Filtering

Pre-Processed ECG 

Signal

PPG Signal ECG Signal

 

Fig. 1. The process flow of pre-processing 
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3.1.1. Pre-processing 

In ECG signal pre-processing methods include denoising using Wavelet Transformer, 

Electrode motion artifact Elimination utilizing High-pass filter and normalization using min-

max scaling. These methods are described below and in Fig. 1. 

− Denoising: Noises of various kinds can distort any digital transmission. It is required 

to remove noise from signal features in order to isolate them. A noise-distorted ECG 

signal can be expressed as follows: 

                                                       𝔼(𝕊) = 𝕎ℕ(𝕊) + 𝕆(𝕊)                                               (1) 

Here 𝔼(𝕊) is the signal in ECG, 𝕎ℕ(𝕊) ECG with decreased noise distortion,𝕆(𝕊)ECG 

signal with Noise. Wavelet transformer is a common tool for eliminating noise from ECG 

signals. The noise in the ECG readings was eliminated using the Discrete Wavelet Transform 

(DWT), a member of the Symlet family, Daubechies wavelet with a compact carrier and 

little asymmetry. Empirical techniques are used to establish the detail factor for each 

scenario. Three phases of wavelet transform are used to extract the ECG signal's noise. Using 

the DWT on a noisy signal is the first step in obtaining noisy wavelet coefficients. The next 

step after that is to choose an appropriate threshold. Finally, a guided inverse wavelet 

transform yields a signal that has been cleaned. 

The DWT ECG signal is provided as follows: 

                                     𝒲𝒜𝒱ℰ𝒯(𝒳, 𝒴) =
1

√2
∑ 𝔼𝒻

𝕆
𝒻=0 ∫ 𝛽

𝒻+1

𝒻
(

𝕊−𝒴

𝒳
) 𝒽𝒻                                  (2) 

Here 𝕆 number of sample ECG signals, 𝔼 is the distorted noise in ECG signal, symlet is 

denoted as 𝛽, the variables 𝒳 and 𝒴 will take the values of: 

                                               𝒳 = 1 … . 𝒩, 𝒴 = 1 … . 𝒩 − 1.                                         (3) 

Simultaneously, this method is also implemented in PPG signal denoising. 

Normalization: For normalizing the ECG and PPG signals, this Min-Max Normalization 

technique is used to scale the numeric features to a specific range; By scaling the signals to 

a common range, the larger scale feature can be prevented from dominating the analysis or 

adversely affecting the performance of algorithms that rely on distance metrics or 

optimization techniques. Moreover, to determine the minimum and maximum values of the 

ECG and PPG signals the normalization factor is calculated by: 

                                                          𝒩ℱ =
𝒟ℳ𝒱−𝒟ℳ𝓋

𝒪ℳ𝒱−𝒪ℳ𝓋
                                                      (4) 

Where 𝒟ℳ𝒱 denotes the desired maximum value, 𝒟ℳ𝓋 indicated the 

Desired Minimum Value, Original maximum value is noted by 𝒪ℳ𝒱 and 𝒪ℳ𝓋 denotes 

the original minimum value. 
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Fig. 2. The pipeline for the proposed framework 

Electrode motion artifact Elimination: Electrode motion artifacts can occur due to factors 

such as the use of grouped electrodes or poor contact between dry electrodes and the skin. 

These issues can lead to instability in ECG recordings, making it challenging to assess the 

signal quality accurately. Addressing electrode motion artifacts is a major step in assessing 

the feature of ECG signals. We use the adaptive filtering method due to its ability to 

dynamically track signals in non-stationary conditions. Even in the  absence of prior 

knowledge about the signal or noise characteristics, this method effectively filters out noise 

from the input by altering its impulse response. To appropriately filter each sample, the 

adaptive algorithm in adaptive filtering modifies the adaptable filter coefficients. Using the 

selected adaptive approach, filter coefficients are continuously modified. 

                                                        𝒫(𝔫) = ℰ𝒮(𝔫) + ℛℰ(𝔫)                                              (5) 

                                                      ℛ𝒮(𝔫) ⇒ ℱ𝒮(𝔫) + ℛℰ′(𝔫)                                            (6) 

                                          ℰℛ(𝔫) = ℰ𝒮′(𝔫) = ℰ𝒮(𝔫) + ℛℰ(𝔫) −  ℛℰ′(𝔫)                         (7) 

The mean squared value error signal minimizing is noted as  ℰℛ(𝔫). The signal reference 

is noted to be  ℛ𝒮(𝔫) and the  input is processed through a digital filter to generate an 

output ℛℰ′(𝔫), The output aims to closely follows the replica of  the noise and it is 

indicated as ℛℰ(𝔫).Following that, this signal output ℱ𝒮(𝔫) is subtracted from the primary 

input 𝒫(𝔫) to attain the assessed required signal ℰ𝒮′(𝔫). 

3.1.2. Obstructive encoder decoder module 

This component comprises three sections: The Residual Multilevel Encoder Module 

(ReMEM), responsible for feature extraction. Despite artifact removal during pre-

processing, certain motion and signal artifacts may remain unresolved. Therefore, the 

Obstructive Erasing Module is employed to address these noises. Following refinement, the 

Residual multilevel decoder module (ReMDM) where the feature level fusion of each 

modality is done and then fed into the Multi-Modality Unifying network for diabetes 

mellitus classification. The brief pipeline is shown in Fig. 2.  

3.1.3. Residual multilevel encoder module (ReMEM) 

In Distinct, we utilize the ReMEM technique shown in fig 3 to dynamically acquire the 

spatial fusion weights for feature maps across different scales. 
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Fig. 3. Shows the structure of ReMEM 

This approach simplifies the network in comprehensively capturing contextual features 

from the Specific  data ECG waves named as W1(R-wave) and W2(QRS Duration) and 

significant PPG signals S1(Pulse Width) and S2 (Pulse Amplitude Variation) at the encoding 

stage. These significant W1 has been fragmented for a significant reason where the 

Individuals with a high resting heart rate and low HRV are at a heightened risk of developing 

DM in the future, whereas W2 wave was higher in DM individuals. In PPG signals S1 can 

be used in combination with additional physiological parameters, continuous BG monitoring 

systems offer enhanced monitoring capabilities and in S2 changes the parameter may denote 

the potential vascular abnormalities linked to diabetes, making its change in crucial for 

identifying the presence of DM.  

However other methods that merge multi-level features through simple operations like 

element-wise sum or concatenation, the ReMEM approach introduced here dynamically 

learns the importance of features among various encoder levels. The ReMEM process 

involves two distinct steps: a) Equivalent rescaling and b) dynamic fusing. Initially, 

Convolution with a stride of 2 are employed to integrate features of varying scales into a 

unified 256 ×28 ×40, representation. Subsequently, Trainable weight parameter are applied 

to dynamically combine the features. 

−  Equivalent rescaling. 

Features at level are denoted as the ℒ{ℒ𝜖(1,2,3,4)} and features in the encoder as 𝕖ℒ 

related to 𝔈1, 𝔈2, 𝔈3and 𝔈4. As features across various levels exhibit in different resolutions 

and channels, they need to be standardized to the same size prior to fuse. We utilize 𝕖𝕟
ℒ to 

indicate the rescaling operation feature 𝕖𝕟 to thefeature size of 𝕖ℒ. We need to merge 

𝔈1, 𝔈2, 𝔈3to the size 𝔈4 (minimum to maximum), convolution with stride 2 and Soft-pool 

with stride 2 are utilized to feature rescaling. In this subgroup we represent 𝒞𝒩𝒯 to denote 

the convolution with stride 2 and 𝒮𝒫 to denote the Soft-pool with stride 2. The distinct 

procedures for adjusting the dimensions of encoding features with varying sizes are outlined 

as follows: 

                                                   𝕖1
4 = 𝒮𝒫 (𝒞𝒩𝒯(𝒞𝒩𝒯(𝕖1)))                                               (8) 

                                    𝕖2
4 = 𝒮𝒫(𝒞𝒩𝒯(𝕖2))                                                    (9) 
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                                                              𝕖3
4 = 𝒮𝒫(𝕖3)                                                        (10) 

                                                 𝕖4
4 = 𝕖4                                                           (11) 

− Dynamic fusing. 

𝕖𝕟
ℒ    Signifies the rescaling operation in the feature level 𝕟 the feature in levelsize as ℒ . 

Theproposed output of the ReMEM  is: 

                 𝔜ReMEM = ℙ𝔸1 × 𝕖1
ℒ + ℙ𝔸2 × 𝕖2

ℒ + ℙ𝔸3 × 𝕖3
ℒ + ℙ𝔸4 × 𝕖4

ℒ                       (12) 

ℒ is 4 and ℙ𝔸1, ℙ𝔸2, ℙ𝔸3 and  ℙ𝔸4are parameters which are trainable, implying the 

features weight obtained by rescaling.  Observe that ℙ𝔸1, ℙ𝔸2, ℙ𝔸3 and  ℙ𝔸4these can be 

specific scalar variables that are shared across all channels uniformly. We force ℙ𝔸1 +
ℙ𝔸2 + ℙ𝔸3+ℙ𝔸4=1 andℙ𝔸1, ℙ𝔸2, ℙ𝔸3 ,ℙ𝔸4𝜖 [0,1]. ℙ𝔸𝓃 is elaborated as: 

                                                  ℙ𝔸𝓃 =
𝜀𝛾𝓃

𝜀𝛾1+𝜀𝛾2+𝜀𝛾3+𝜀𝛾4
                                                         (13) 

𝓃𝜖{1,2,3,4} × ℙ𝔸1, ℙ𝔸2, ℙ𝔸3 and ℙ𝔸4are stated by utilizing the SoftMax function with 

𝛾1, 𝛾2, 𝛾3 and 𝛾4 as the control  parameters, each corresponding to a specific function and 

can be trained using standard backpropagation techniques. 

3.1.4. Obstructive erasing module (OEM) 

Even after the initial preprocessing stage removes artifacts, some remaining motion and 

signal irregularities may remain uncorrected. Figure 4 shows the overall architecture of the 

proposed framework. To efficiently handle these remaining noises, the authors propose the 

OEM for part feature erasing or recorrecting. The module comprises four sub-modules, each 

corresponding to a specific body part. Within each sub-module, there are two fully connected 

(FC) layers, one-layer normalization, and one Sigmoid function. Layer normalization is 

positioned between the FC layers, while the Sigmoid function resides at the final stage. The 

initial FC layer diminishes the channel dimension to a quarter of its original size, the 

objective of excluding particular details while regaining the original signal data that converts 

into a feature representation. 

Following that, the final Sigmoid function initiates the predicted obstructive values𝒮𝒢𝓂 

for each part feature. We denote the operation as the multiplication of the obstructive scores 

with the corresponding part features as 𝒪ℱ′In terms of functionality, the process can be 

represented as follows: 

                                    𝒪ℱ𝓂
′ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝔚𝕣𝕘ℕ𝕃(𝔚𝕔𝕡𝒪ℱ𝓂)) × 𝒪ℱ𝓂                              (14) 

Here 𝔚𝕔𝕡𝜖Ε
𝔠

4×𝔠⁄  , 𝔚𝕣𝕘𝜖Ε
𝔠

4×𝔠⁄ , ℕ𝕃 is the normalization layer and 𝓂 denotes 𝓂𝑡ℎ part 

feature. We compute the Mean Square Error (MSE) Loss between the obstructive masks and 

obstructive scores, which can be represented by the following function: 

𝔩𝔪𝔢𝔞𝔫 =
1

𝑁
∑ (𝒮𝒢𝓂, MAS𝓂)4

𝓂=1                                            (15) 
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3.1.5. Residual multilevel decoder module (ReMDM) 

Multi-level fusion is typically used in computer vision, however improving scale fusion 

to enhance model presentation is still a difficult task. varying levels in encoder-decoder 

networks have varying receptive fields, which capture different types of data. In order to 

overcome this, ReMDM see fig 4 uses multiple pooling and multiple attention techniques to 

combine features from several levels. 

We depict the characteristics at the level ,ℒ in the decoder as ∁ℒ{ℒ𝜖(1,2,3,4)} corelated 

to 𝜕1,𝜕2,𝜕3 and 𝜕4 the resolution of ∁1 is 224×320, which is the same as the input resolution 

of the network. ∁ℒ
1  represents the operation of rescaling feature ∁ℒ to the size of feature ∁1. 

This process is achieved through bilinear interpolation transformation, subsequently 

followed by 3 × 3 convolution. The former noted as 𝕖𝜗 can be utilized to maximize the 

resolution of ∁ℒto the resolution of ∁1,the latter specifies as 𝒞𝒩𝒯 can be given todecrease 

computational load, the channels of the resampled features are reduced to 4. 

Fig:4 demonstrates the structure of ReMDM. The method for resizing the decoding 

features with distinct sizes includes merging the size of the four features to 4 × 224 × 320 

after rescaling. We fuse them to form 𝔉. 

                         ∁ℒ
1 = 𝒞𝒩𝒯 (𝕖𝜗(∁ℒ , 2ℒ−1)) ,       ℒ𝜖{1,2,3,4}                                (16) 

𝔉 = 𝐶𝑂𝑁𝐶(∁1,
1 ∁2

1 , ∁3
1 , ∁4

1)                                              (17) 
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Fig. 4. Demonstrates the structure of ReMDM 

We merge Avg-pool, Max-pool, and Soft-pool with multiple layer perception (MLP) to 

attain each channel co efficient of F.  𝛽𝜖[0,1]4×1×1 is noted as the scale coefficient attention 
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vector. In order to assign multi-level soft attention weight to each pixel, we insert a spatial 

attention block, which𝔉 × 𝛽 as input to initiate spatial-wise attention coefficient 

𝛿𝜖[0,1]1×224×320, so that 𝛽 × 𝛼 denotes pixel-wise scale attention.The Spatial Attention 

contains one 3 × 3 and one 1 × 1 convolutional layer, The initial block provides 4 output 

channels followed by the Rectified Linear Unit (ReLU), while the following block gives 4 

output channels followed by the Sigmoid function.First, the process combines convolution 

layers—each with the same number of output channels—with the bilinear interpolation 

technique. This combination functions to combine the features on different scales into a 

unified format, resulting in dimensions of 4 × 224 × 320. 

The resulting output of the ReMDM model is: 

∁ReMDM= 𝔉 × 𝛽 × 𝛼 + 𝔉 × 𝛽 + 𝔉                                      (18) 

Residual connections are once more implied to aid in the training process. Through 

ReMDM, the network attains the capability to observe the most appropriate scale for the 

task. 
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Fig. 5.The overall architecture of the proposed framework of obstructive encoder decoder module 

3.1.6. Multi-modality unifying network (Multi-Uni-Net) 

In order to consider the fundamental relationships between W1 and W2 waves and S1 

and S2 data, the authors integrated a Multi-Uni-Net into their methodology. Particularly, 
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features were extracted independently from the ReMDM and subsequently input into the 

fusion module to enable thorough feature fusion. Within the fusion module, the inputs 

comprised ECG feature 𝒲𝔦,𝔧 and PPG feature𝑆𝔦,𝔧. These two features were initially 

transformed into 𝒲 𝜖 𝜌𝒷×𝒹 and  𝑆 𝜖 𝜌𝒷×𝒹 by using FC layers, we estimated them into two 

various feature spaces. Additionally, the degree of similarity was calculated as follows: 

𝜎𝔧𝔦 =
𝑒𝑥𝑝(𝒦𝔦𝔧)

∑ 𝑒𝑥𝑝(𝒦𝔦𝔧)
𝒦
𝔦=1

, where 𝒦𝔦𝔧 = 𝒬1(𝒲𝔦)
𝑡ℋ2(𝑆𝔦)                             (19) 

                            𝜂𝔧𝔦 =
𝑒𝑥𝑝(𝔷𝔦𝔧)

∑ 𝑒𝑥𝑝(𝔷𝔦𝔧)
𝒦
𝔦=1

, where 𝔷𝔦𝔧 = 𝒬2(𝑆𝔧)
𝑡
ℋ1(𝒲𝔧)                              (20) 

Where 𝔖 = 𝓌 × 𝓀 and 𝜎, 𝜂denote the degree of correlation within the ECG waves and 

PPG data, respectively. Following that, the computed 𝜎𝔧𝔦 and 𝜂𝔧𝔦 is the attention scores are 

multiplied with the feature values to produce the conclusive cross-modal attention maps. 

Subsequently, these maps are merged with the ECG features.𝒲𝔦 .After merging process, 

they are passed to subsequent FC layers, ultimately producing a fused prediction for DM. 

3.1.7. Classification using EXplainable ML 

EXplainable kNN provides a transparent decision-making mechanism within the 

algorithm, it generates the development trust and confidence in the predictions. This 

transparency allows users to understand how the model comes at its decisions, thereby 

improving their belief in the reliability of the model's development. EXplainable kNN shows 

numerous merits, such as transparency and interpretability, representing it as a valuable asset 

across various practical sections. These features are particularly advantageous in contexts 

where transparency and ease of interpretation play major roles in decision-making processes. 

This is accomplished by precisely choosing features, distance metrics, interpretation 

methodologies, and accounting for both local and global model behaviours. In kNN, 

classification depends on the closest of the nearest neighbors within a given space. Based on 

this, the allocation of data classes depends on the density of neighboring points in close 

availability to the target point. The output provided by kNN is determined by the closest 

neighbors, with uniform weights assigned to each. The distance formula calculates the 

absolute value of the difference between the coordinates in one dimension, and this 

computation is extended to multiple dimensions. It is represented as follows: 

                                       ω(𝒲𝔦,𝔧, 𝑆𝔦,𝔧) = |𝒲𝔦,𝔧 − 𝑆𝔦,𝔧|                                              (21) 

                                  ω(𝒲𝔦,𝔧, 𝑆𝔦,𝔧) = √(𝒲𝔦,𝔧 − 𝑆𝔦,𝔧)
2
                                           (22) 

The final classification by using the kNN, has shown as: 

          ω(𝒲𝔦,𝔧, 𝑆𝔦,𝔧) = √(𝒲𝔦,𝔧 − 𝑆𝔦,𝔧)
2

+ (𝒲𝔦,𝔧 − 𝑆𝔦,𝔧)
2
                             (23) 
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4. EXPERIMENTAL EVALUATION 

4.1. Training and testing data 

4.1.1. ECG data 

Primarily, a dataset consisting of 22,055 ECG records was gathered from 23 participants. 

Of these,  2,265 ECG records were excluded by the classifier, with 1,365 from 18 healthy 

individuals and 946 from 8 individuals with prediabetes or diabetes. Testing and training 

were conducted using the remaining 19,865 ECG recordings. Specifically, half of each 

participant's ECG records were selected at random to train the BG range monitoring model, 

while the remaining ECG records were assigned for testing. 

4.1.2. PPG data 

In the study, a group of 924 patients was randomly selected from the extensive MIMIC 

dataset. Figure 6 demonstrates the PPG Waveforms. Among these, data from 580 patients 

were reserved for training purposes,  while data from the remaining 344 patients were 

allotted for testing manually. Within this group, 341 patients were diagnosed with diabetes. 

Among those diagnosed with diabetes, 180 were male, and 181 were female. Additionally, 

out of the total 584 patients diagnosed with hypertension, 300 were also found to have 

diabetes. 
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Fig. 6. Demonstrates the PPG Waveforms in 10 seconds a) and b) shows the diabetic patient PPG, c) and 

d) shows the non-diabetic patient PPG 
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4.2. Implementation details and performance evaluation 

The experimental setup used for testing contains of a test bed equipped with a 2.40 GHz 

x64 Intel Core i9-6800 CPU,  complemented by 32 GB of DDR8 RAM. Additionally, the 

system is augmented with a 6 GB NVIDIA GeForce RTX graphics card. Storage capacity is 

provided by a combination of 512 GB SSD and 2 TB HDD. The solid-state drive (SSD) 

comes pre-installed with Microsoft Windows 11 Professional 64-bit operating system. To 

optimize the training and testing procedures, the datasets and working settings are stored on 

the SSD. This approach eliminates the mechanical delays associated with the HDD, thereby 

facilitating the process. The true negative rate (TNR or specificity), true positive rate (TPR 

or sensitivity), positive predicted value (PPV), negative predicted value (NPV), and F-1 

score are among the performance metrics we use to gauge how robust our system is. Below 

are the mathematical formulas for various performance metrics: 

       𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝕋ℙ+𝕋ℕ

𝕋ℙ+𝕋ℕ+𝔽ℙ+𝔽ℕ × 100                                     (24) 

            𝑆𝑃𝐸𝐶𝐼𝐹𝐼𝐶𝐼𝑇𝑌 =
𝕋ℕ

𝕋ℕ+𝔽ℙ × 100                                          (25) 

        𝑆𝐸𝑁𝑆𝐼𝑇𝐼𝑉𝐼𝑇𝑌 =
𝕋ℙ

𝕋ℕ+𝔽ℕ × 100                                         (26) 

                    𝑁𝑃𝑉 =
𝕋ℕ

𝕋ℕ+𝔽ℕ × 100                                                 (27) 

              𝐹1𝑆𝐶𝑂𝑅𝐸 =
2×𝑃𝑅𝐶×𝑇𝑃𝑅

𝑃𝑅𝐶+𝑇𝑃𝑅
                                              (28) 

             𝑃𝑃𝑉 =
𝕋ℙ

𝕋ℙ+𝔽ℙ × 100                                                 (29) 

In this context, TP and TN denote the tally of accurately identified positive and negative 

occurrences, respectively. Correspondingly, FP and FN represent the counts of positive and 

negative events that were invalidly detected. 

4.3. Results evaluation 

This section shows the comparative analysis of proposed work with the existing works 

in terms of performance metrics like Accuracy, Precision, Recall, AUC, F1-Score 

respectively. 

4.3.1. Performance evaluation in ECG 

From the table 2, it is evident that the highest F-score observed for Log energy entropy 

is 0.032, while the lowest F-score recorded for Kurtosis is 1.50 1008. As a result, Log energy 

entropy is ranked first, whereas Kurtosis is ranked last. 
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Tab. 2. Represents the F-Score features and its ranking 

S. No Features Ranking F-score 

1 Signal energy 7 1.54× 10−02 

2 Log energy entropy 1 0.036 

3 RMS value 5 7.83× 10−04 

4 Variance 6 1.77× 10−03 

5 Threshold entropy 4 2.13× 10−01 

6 Maximum value 8 1.77× 10−08 

7 Kurtosis 10 1.44× 10−09 

8 Shannon entropy 9 6.03× 10−06 

9 Skewness 3 6.17× 10−4 

10 Sure entropy 2 1.03× 10−02 

 

The overall performance analysis of our proposed framework DM detection with the 

state-of-the-art works such as DL based CNN (Ahamed et al., 2023), DL-Net (Cordeiro et 

al., 2021), FE-net (Jain et al., 2023), DBSCAN-CNN (Li et al., 2021), Fragment-net 

(Navaneethakrishna & Manuskandan, 2021) are shown in the table below. The authors 

assess the evaluation on various performance metrics, including Precision (or specificity), 

Recall (or sensitivity), Area Under the Curve (AUC), and F-1 score. 

From the table 3, it shows clearly that our model’s performance in the ECG data has 

increased Accuracy and it is achieved by employing EX-kNN. EX-kNN will improve the 

transparency and interpretability through the decision-making process which has clear 

classification explanations. 

Tab. 3. Illustrates the performance metrics of the existing framework and our framework 

Model Acc Precision Recall AUC F1-Score 

DL based CNN 

(Ahamed et al., 2023) 
96.32 94.36 93.25 0.91 92.63 

DL-Net (Cordeiro et 

al., 2021) 
95.26 93.65 94.36 0.92 93.54 

FE-Net (Jain et al., 

2023) 
94.36 96.77 95.35 0.94 97.36 

DBSCAN-CNN (Li et 

al., 2021) 
98.11 93.25 96.34 0.93 96.38 

Fragment-net 

(Navaneethakrishna 

& Manuskandan, 

2021) 

97.25 96.87 94.25 0.92 94.68 

Our Method 98.99 97.86 96.97 0.95 98.80 

 

Illustrating the AUC with the best ECG data performance for the various model has been 

shown in Table 4.For evaluating AUC, it is a commonest method to evaluate the 

performance of the classification models. It is challenging to provide a specific and most 

precise value; we indicated a strong performance which has a high AUC value closer to 1. 
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Tab. 4. Shows the AUC with the best ECG performance 

MODEL AUC 

SVM Gaussian 53.26% 

SVM polynomial 57.36% 

Logistic Regression 63.69% 

SVM linear 59.88% 

DNN 10layer 94.54% 

Our Method 95.66% 

 

The features are arranged in a feature matrix according to their rankings from 1 to 5. 

Table 5. describes the performance of the ECG parameter ranked from 1 to 5 with the 

different ML Classifier. This feature matrix is then utilized as input for the machine learning 

classifier, employing various kernel functions such as Medium Tree (MeT), Coarse Tree 

(CoT), Linear Discriminant (LiD), Quadratic Discriminant (QuD). The authors assess the 

robustness of their system by evaluating various performance metrics, including Accuracy, 

Precision (or specificity), Recall (or sensitivity), Negative Predicted Rate (NPV), Positive 

Predicted Value (PPV) and F-1 score. 

Tab. 5. Demonstrates the performance of the ECG parameter ranked from 1 to 5 in ML classifier 

Rank Classifier ACC SEN SPE NPV PPV F1-Score 

1 MeT 64.22 63.88 72.04 18.74 96.74 0.78 

CoT 63.11 65.55 77.99 17.34 97.60 0.75 

LiD 61.77 61.98 59.02 13.13 95.88 0.78 

QuD 61.88 61.94 61.55 10.33 94.58 0.78 

2 MeT 63.55 64.33 55.99 30.69 81.44 0.71 

CoT 60.20 61.88 82.14 6.22 98.11 0.74 

LiD 61.44 61.88 56.84 12.54 93.44 0.71 

QuD 61.85 61.11 58.65 12.15 93.33 0.72 

3 MeT 77.60 78.32 79.12 60.23 89.36 0.79 

CoT 70.32 92.22 55.32 91.91 55.36 0.77 

LiD 66.36 73.00 74.56 16.39 95.36 0.72 

QuD 66.32 62.35 55.21 31.25 86.25 0.71 

4 MeT 79.36 79.44 72.36 61.35 90.58 0.82 

CoT 70.22 91.65 56.54 91.36 55.68 0.79 

LiD 66.32 62.14 74.36 17.35 94.36 0.68 

QuD 68.24 73.26 56.36 59.20 73.69 0.74 

5 MeT 88.36 89.44 85.36 82.99 99.10 0.95 

CoT 70.65 91.05 58.36 91.91 55.36 0.71 

LiD 67.39 66.31 82.36 18.36 96.35 0.48 

QuD 65.35 72.65 67.98 52.55 82.39 0.77 

 

By comparing the performance metrics of the proposed work with those of existing works 

(Ahamed et al., 2023; Cordeiro et al., 2021; Jain et al., 2023; Li et al., 2021; 

Navaneethakrishna & Manuskandan, 2021), it becomes evident that understanding the 

improvements, strengths, and weaknesses is depicted. Figure 7 shows the Graphical 

presentation of the performance Metrics compared with the existing works. The other ECG 

detecting DM work lacks in removing the remaining refined artifacts, thus resulting in 



57 

decreased performance in accuracy and other metrics. In our work, we remove the artifacts 

after the encoding process, enabling us to achieve better performance. 

4.3.2. Performance evaluation in PPG 

The comprehensive evaluation of our proposed framework for detecting DM is analyzed 

with state-of-the-art approaches, including DL-based methods DEL-NET (Srinivasan & 

Foroozan, 2021), Light CNN (Zanelli et al., 2023), NI-Classifying-Net (Susana et al., 2023), 

ED-Net (Susana et al., 2022), DW-Net (Khan et al., 2023) are shown in the table 6. 

Tab. 6. Represents the performance metrics of the proposed framework with existing methods 

Model Accuracy Precision Recall AUC F1-Score 

DEL-NET (Srinivasan & 

Foroozan, 2021) 
95.36 94.36 94.78 0.93 92.99 

Light CNN (Zanelli et al., 2023) 96.35 95.22 93.65 0.97 91.35 

NI-Classifying-Net (Susana et al., 

2023) 
94.77 95.99 94.58 0.96 90.21 

ED-Net (Susana et al., 2022) 96.66 96.35 95.55 0.91 92.44 

DW-Net (Khan et al., 2023) 97.55 96.44 96.01 0.92 94.21 

Proposed method 98.94 97.36 96.32 0.97 95.36 

 

By conducting a graphical representation, the compared proposed method performance 

metrics is compared with (Khan et al., 2023; Srinivasan & Foroozan, 2021; Susana et al., 

2022, 2023; Zanelli et al., 2023). Figure 6 shows the Graphical presentation of the 

performance Metrics compared with the existing works. The PPG signals in our process 

shows an immense performance because of the innovative approach in encoder decoder 

module, whereas the other method doesn’t use residual neural network in the architecture.  

The comparison of the performance in testing the PPG signal can involve in combining 

it by traditional methods.to monitor the Scalability of the classifier we analyze the training 

time. To analyses the model’s effectiveness and identifying  weakness the observation of 

the classifier is done. Table 7: determines the comparison of the PPG signal performance 

among the traditional classifiers. 

4.3.3. Performance evaluation in PPG and ECG 

The performance evaluation in PPG and ECG is assessed in table 8 with the existing 

papers (Li et al., 2024; Pal & Mahadevappa, 2023). It is necessary to evaluate the reliability 

and the accuracy of these physiological monitoring methods. For classifying DM ML 

algorithm is commonly used. Here we use EX-ML to determine the importance of the feature 

in the classification decision by assessing their relevance to the nearest feature. By 

improving the interpretability our model has a high transparency in classification. Whereas, 

other method uses CNN the classification and detection accuracy is not acquired properly. 
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Fig. 7. a) Shows the Graphical presentation of the performance Metrices compared with the existing 

works Accuracy; b) Denotes the Precision comparison; c) Comparison of Recall; d) F1 score comparison 
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Tab. 7. Shows the comparison of the PPG signal performance among the traditional classifiers 

Classifier Accuracy Observations 
Training 

Time 
Total Cost 

Ensemble Subspace KNN 96.00 ~99 8.33 7 

Ensemble Bagged Trees 95.00 ~270 8.65 9 

Fine KNN 98.00 ~200 14.00 7 

Medium Trees 98.00 ~310 25.00 2 

Narrow Neural Network 97.00 ~330 26.00 NA 

Weighted KNN 93.00 ~260 16.18 5 

3-Layered Neural Network 97.00 ~240 2.00 NA 

Fine Trees 98.00 ~170 7.36 8 

Ensemble Boosted Trees 92.00 ~360 5.19 2 

Coarse Gaussian SVM 90.00 ~290 28.36 7 

Logistic Regression 91.00 ~130 48.36 10 

EX-KNN (Our Proposed Method) 98.94 ~110 6.35 NA 

Tab. 8. Represents the comparison of proposed method performance metrics with the existing methods 

Model Accuracy Precision Recall AUC F1-Score 

Choquet-NET (Li et al., 2024) 94.38 96.36 93.66 0.94 91.87 

Dual-DNN (Zanelli et al., 2023) 95.45 96.22 94.75 0.96 94.37 

Proposed method 96.84 96.89 95.32 0.97 95.21 

4.3.4. Performance on large datasets 

The authors analysed their model performance with larger datasets, specifically the Heart 

Rate Variability (HRV) PPG Dataset (HRV PPG)  and the PhysioNet Cardiovascular Signal 

Challenge Datasets. The HRV PPG dataset provides a substantial amount of data that 

encompasses various physiological states, including healthy individuals and those with 

metabolic conditions such as diabetes. When the model is trained on this dataset, we observe 

significant improvements in key performance metrics, including accuracy, precision, and 

recall shown in table 9. This dataset allows the model to learn a wider range of physiological 

variations, which is essential for enhancing its generalizability. Initial evaluations indicate 

that the model can more effectively differentiate between normal and diabetic states when 

utilizing the diverse data present in the HRV PPG dataset. The PhysioNet datasets include a 

rich variety of cardiovascular signals, offering a comprehensive platform for training 

machine learning models. By leveraging this larger and more diverse dataset, our model 

demonstrates improved robustness in its predictive capabilities. Through rigorous validation 

techniques, such as k-fold cross-validation, we have confirmed that the model performs 

consistently well across different folds, suggesting a lower likelihood of overfitting. 

Additionally, training on these datasets enables the model to generalize better to unseen data, 

thereby increasing confidence in its applicability to real-world scenarios. 
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Tab. 9.Analysis on the HRV PPG dataset and physio net dataset 

Model Accuracy Precision Recall AUC F1-Score 

HRV PPG dataset 96.38 96.26 94.46 0.96 94.81 

Physionet Dataset 97.25 96.84 95.75 0.97 95.37 

5. CONCLUSION 

The combination of PPG and ECG has a unique ability for classifying the DM and this 

approach has a loaded information embedded in physiological signals and offers a non-

invasive and potentially cost effective for assessing the metabolic health. Furthermore, the 

PPG and ECG-based detection offers several advantages, including probability, ease of use 

and real-time monitoring capability. However, despite the promising potential of these 

technologies, several challenges remain, including standardization of data acquisition 

methods, validation in various populations, etc. The simultaneous analysis of these signals 

offers valuable insights into the cardiovascular health and the DM-related abnormalities such 

as autonomic dysfunction and vascular changes. EX-ML algorithm used in this research 

provides a transparency and interpretability by explaining the reason behind the 

classification decision. The authors improved the interpretability and allowed the clinicians 

to understand the features and biomarkers driven for the classification result. From the 

comparative results it is clear that the advanced method in ML can easily classify and it can 

achieve high accuracy and the AUC shows the best performance. Finally, the integration of 

EX-ML technique with the PPG and ECG signals was holding an immense action in 

improving the classification accuracy and provide a actionable insights.  Data variability, 

model complexity and generalizability are the challenges across various areas of active 

research and development. Addressing these challenges will be crucial for the widespread 

adoption of EX-ML approaches in DM classification using PPG and ECG signals. 
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