

Applied Computer Science, vol. 20, no. 4, pp. 117–137

doi: https://doi.org/10.35784/acs-2024-43

117

Submitted: 2024-09-07 | Revised: 2024-10-19 | Accepted: 2024-10-29

Keywords: artificial immune systems, fine-tuning, hybridization, traveling salesman problem

Peeraya THAPATSUWAN [0009-0007-4187-124X]*,
Warattapop THAPATSUWAN [0000-0001-7740-727X]*,

Chaichana KULWORATIT [0000-0001-9959-4264]**

ENHANCEMENT OF ARTIFICIAL IMMUNE

SYSTEMS FOR THE TRAVELING SALESMAN

PROBLEM THROUGH HYBRIDIZATION WITH

NEIGHBORHOOD IMPROVEMENT AND

PARAMETER FINE-TUNING

Abstract

This research investigates the enhancement of Artificial Immune Systems (AIS) for

solving the Traveling Salesman Problem (TSP) through hybridization with

Neighborhood Improvement (NI) and parameter fine-tuning. Two main experiments

were conducted: Experiment A identified the optimal integration points for NI within

AIS, revealing that position 2 (AIS+NIpos2) improved solution quality by an average

of 27.78% compared to other positions. Experiment B benchmarked AIS performance

with various enhancement techniques. Using symmetric and asymmetric TSP datasets,

the results showed that integrating NI at strategic points and fine-tuning parameters

boosted AIS performance by up to 46.27% in some cases. The hybrid and fine-tuned

version of AIS (AIS-th) consistently provided the best solution quality, with up to a

50.36% improvement, though it required more computational time. These findings

emphasize the importance of strategic combinations and fine-tuning for creating

effective optimization algorithms.

1. INTRODUCTION

Real-world problems such as scheduling, packing, loading, and routing often require

sophisticated approaches for larger instances. Over the past few decades, nature-inspired

algorithms have emerged as robust solutions for complex optimization problems. These

algorithms are categorized into three main groups (Engin & Döyen, 2004): socially-inspired

algorithms like Tabu Search (Glover, 1989); physically-inspired algorithms such as

Simulated Annealing (Kirkpatrick et al., 1983); and biologically-inspired algorithms

including Genetic Algorithms (Goldberg, 1989), Particle Swarm Optimization (Eberhart et

* Kasetsart University Kamphaeng Saen Campus, Faculty of Liberal Arts and Science, Department of

Computational Science and Digital Technology, peeraya.t@ku.ac.th, warattapop.t@ku.ac.th
** King Mongkut’s Institute of Technology Ladkrabang, School of Science, Department of Computer Science,

chaichana.kul@kmitl.ac.th

118

al., 2001), Ant Colony Optimization (Dorigo & Stützle, 2004), and Artificial Immune

Systems (AIS) (Hart & Timmis, 2008).

Among these, AIS has attracted significant attention due to its unique advantages. AIS

employs a multi-directional search process using a diverse set of antibodies (candidate

solutions), unlike conventional single-directional search methods (De Castro & Timmis,

2002). The cloning process in AIS selectively replicates high-affinity antibodies and

employs a dual mutation mechanism, allowing antibodies that fail the first mutation a second

chance. Despite these strengths, conventional AIS has faced criticism for its performance

limitations in specific applications (Greensmith et al., 2010).

Enhancing AIS to find the global optimum consistently is a persistent challenge,

particularly for large-scale combinatorial optimization problems. The stochastic nature of

AIS's search process often leads to variable solution quality. Two primary techniques have

been identified to enhance AIS performance: parameter fine-tuning and hybridization with

other optimization methods (Sengupta et al., 2019).

Fine-tuning involves optimizing the algorithm's parameters through systematic

experimentation, which is essential for metaheuristics relying on stochastic processes (Eiben

& Smit, 2011; Huang et al., 2019). Research has shown that optimal parameter settings

derived from well-designed experiments are critical to improving solution quality (Eiben &

Smit, 2011; Adenso-Díaz & Laguna, 2006). Hybridization involves integrating AIS with

other optimization techniques to enhance its performance. Methods such as local search

heuristics, fuzzy logic, and genetic algorithms have successfully combined with optimization

methods like AIS to solve complex problems (Akram & Habib, 2023; Ruan, 1997). The

synergy of parameter tuning and hybridization often yields superior results compared to

employing either technique alone (Yang, 2023; Joy et al., 2023).

This paper presents a novel heuristic technique combining a local search heuristic called

Neighborhood Improvement (NI) with the AIS framework while incorporating parameter

modification. Our objective is to investigate different approaches for incorporating NI into

AIS and assess its influence on performance.

This study has two main objectives:

1. To investigate the optimal positions for integrating NI within AIS to enhance its

performance.

2. To benchmark the performance of AIS enhanced through fine-tuning, hybridization

with NI, and combining both techniques.

This research employs datasets from the Traveling Salesman Problem (TSP) library,

precisely symmetric and asymmetric TSP instances (STSP & ATSP), to evaluate the

proposed methods.

The following sections of this paper are structured as follows: Section 2 presents the

mathematical model of the Traveling Salesman Problem (TSP) and the problem statement.

Section 3 describes the Artificial Immune System (AIS) algorithm and its modifications for

TSP. Section 4 focuses on the local search techniques, including the integration of

Neighborhood Improvement (NI) within AIS. Section 5 details the experimental design and

analysis aimed at benchmarking the performance of AIS with various enhancement

techniques. Finally, Section 6 presents the conclusions and future research directions.

119

2. PROBLEM STATEMENT AND MATHEMATICAL MODEL

2.1. Mathematical formulation

The Traveling Salesman Problem (TSP) is a classic optimization problem where the

objective is to find the shortest possible route that visits each city exactly once and returns

to the starting city. The main challenge is the enormous number of possible tours, which

grows factorially with the number of cities, making it a classic NP-hard problem (Larrañaga

et al., 1999).

The TSP can be mathematically formulated as follows:

 Minimize
= =

=
m

i

m

j

ijij xdT
1 1

 (1)

 Subject to 1
1

=
=

m

i

ijx j = 1, 2, …, m; i ≠ j (2)

 1
1

=
=

m

j

ijx i = 1, 2, …, m; i ≠ j (3)

 ui – uj + m.xij m – 1 i, j = 2, 3, …, m; i ≠ j (4)

 ui ≥ 0 i (5)

 xij {0, 1} i, j (6)

Here, m represents the number of cities, dij denotes the distance between city i and city j,

and xij is a binary variable indicating whether the route includes a direct path from city i to

city j. The objective is to minimize the total travel distance. Constraints ensure that each city

is visited exactly once and that no sub-tours exist. Variables ui and uj are used to prevent

sub-tours.

2.2. Symmetric TSP (STSP)

The Symmetric Traveling Salesman Problem (STSP) is a classical combinatorial

optimization problem where the goal is to find the shortest possible route that visits each city

exactly once and returns to the starting point, with the distance between cities being the same

in both directions. This variation has significant applications in real-world problems such as

urban logistics, scheduling, and network design. Solutions to the STSP involve finding the

minimum-cost route that visits each node exactly once and returns to the starting node,

accounting for symmetrical travel costs (Lawler, 1985).

The STSP has been extensively studied for decades, with early approaches focusing on

exact algorithms. These methods include cutting plane algorithms introduced by Laporte and

Nobert, branch and bound techniques, and Lagrangian dual approaches (1980). Exact

120

methods aim to guarantee finding the optimal solution, but they often face limitations in

terms of computational feasibility, especially for large instances of the problem (Laporte,

1992). As the complexity of the STSP increased, researchers began utilizing heuristic and

metaheuristic approaches to solve the problem. These approaches provide near-optimal

solutions within a reasonable computation time, making them more practical for large-scale

problems.

Genetic Algorithms (GA) have been widely used for solving STSP because of their

ability to explore the solution space efficiently. Early work by Braun demonstrated the

effectiveness of GA in finding high-quality solutions by emulating natural evolutionary

processes (Braun, 1991). Similarly, Particle Swarm Optimization (PSO), inspired by the

social behavior of birds flocking or fish schooling, has also been applied to STSP. Wang et

al. introduced a PSO algorithm that incorporates a swap operator and mutation methods,

yielding promising results (Kang-Ping et al., 2003), and subsequent improvements by

Akhand et al. further enhanced PSO's performance (2014).

Ant Colony Optimization (ACO), inspired by the foraging behavior of ants, has been

effectively applied to the STSP. Dorigo and Gambardella introduced ACO for the Traveling

Salesman Problem (TSP), demonstrating its capability in finding optimal routes by

mimicking the pheromone trail-laying behavior of ants (1997). This method has been

continuously improved and combined with other techniques to enhance solution quality.

Similarly, the Artificial Bee Colony (ABC) algorithm, which is based on the foraging

behavior of bees, has been adapted to STSP. Karaboga and Gorkemli developed the

Combinatorial ABC (CABC) algorithm to address combinatorial optimization problems like

STSP (2011).

The Firefly Algorithm (FA), inspired by the flashing behavior of fireflies, has been

applied to STSP. The work by Li et al. highlighted FA's effectiveness in finding optimal

solutions through attraction mechanisms based on firefly brightness (Li et al., 2015).

Additionally, Panwar and Deep introduced the Discrete Grey Wolf Optimizer (D-GWO),

which incorporates the 2-opt local search method to enhance solution quality. Their study

demonstrated that D-GWO outperformed other metaheuristic algorithms in solving TSP

instances (2021).

Several hybrid approaches have been developed to combine the strengths of different

metaheuristics. Deng et al. proposed a hybrid approach that combines Genetic Algorithms

(GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) to achieve

better results for STSP (2012). Chen and Chien developed a hybrid method combining

genetic simulated annealing, ant colony system, and particle swarm optimization (GSA-

ACS-PSOT) to solve TSPs (2011). Additionally, Khan and Maiti used a combination of 2-

opt and 3-opt with the Artificial Bee Colony (ABC) algorithm, which led to significant

improvements in solution quality (2019).

The STSP has been the subject of extensive research, leading to the development of

various exact, heuristic, and metaheuristic approaches. While exact methods guarantee

optimal solutions, they are often impractical for large instances due to computational

constraints. Metaheuristics, on the other hand, provide a balance between solution quality

and computational efficiency, making them more suitable for real-world applications (Blum

& Roli, 2003). The continuous innovation in hybrid and advanced metaheuristic algorithms

ensures ongoing improvements in solving the STSP, addressing the ever-growing

complexity of this classic optimization problem (Krishna et al., 2021).

121

In conclusion, the Symmetric Traveling Salesman Problem has seen significant

advancements through the development of various algorithms. Researchers have continually

sought to improve the efficiency and effectiveness of solving this problem, from the

foundational exact methods to the more recent hybrid metaheuristics. Combining different

metaheuristic strategies based on natural processes has led to strong solutions that can be

used in the real world. This shows that STSP research is still relevant and important in

combinatorial optimization.

2.3. Asymmetric TSP (ATSP)

The Asymmetric Traveling Salesman Problem (ATSP) is a well-studied variation of the

TSP where the cost or distance between two nodes is direction-dependent. This variation is

crucial for real-world problems like urban logistics, scheduling, and network design, where

bidirectional travel costs differ. Solutions to the ATSP involve finding the minimum-cost

route that visits each node exactly once and returns to the starting node, considering these

asymmetrical travel costs.

ATSP has been extensively researched, leading to numerous methods to solve this

complex optimization problem. Over the years, various innovative approaches have

significantly advanced the field. The foundational work on ATSP began with the Miller-

Tucker-Zemlin (MTZ) model introduced in 1960 (Miller et al., 1960), which provided a

compact mathematical formulation with subtour elimination constraints (SECs). However,

the MTZ model faced computational efficiency challenges, especially for large-scale

problems. In the 1990s, Desrochers and Laporte (1991) improved the MTZ model by

introducing lifted SECs, enhancing linear programming relaxation, and improving

computational efficiency. Concurrently, Gouveia and Pires (1999) proposed disaggregation

techniques for the MTZ model, further boosting the efficiency and effectiveness of solving

ATSP by offering stronger SECs.

As exact algorithms struggled with large and complex ATSP instances, researchers

shifted to heuristic and metaheuristic methods. In 2012, Nagata and Soler (2012) introduced

a genetic algorithm (GA) for ATSP, focusing on effective crossover and mutation

operations, which showed superior performance in exploring the solution space and finding

near-optimal solutions. In 2019, Boryczka and Szwarc (2019) developed an improved

harmony search algorithm, demonstrating its effectiveness in dynamically adjusting

parameter values for complex ATSP problems. These advancements highlighted the

potential of nature-inspired algorithms in addressing ATSP's directional cost variations.

Osaba et al. (2016; 2018) significantly contributed to solving both symmetric and

asymmetric TSPs with their discrete bat algorithm (DBA) and discrete water cycle algorithm

(DWCA). These bio-inspired algorithms leveraged natural behaviors to optimize the search

process, showing robustness and superior performance in various scenarios. Building on the

MTZ model, Campuzano et al. (2020) enhanced its computational performance by

generating valid inequalities from fractional solutions, significantly reducing the number of

nodes in the branch-and-bound tree, accelerating the convergence of MTZ-type

formulations, and extending to solve the multiple ATSP (mATSP).

In 2023, Zhang et al. (2023) introduced the discrete mayfly algorithm (DMA) for the

spherical ATSP, integrating inver-over, crossover, and 3-opt operators to enhance the search

process in discrete space. This algorithm demonstrated superiority over other metaheuristics,

122

especially in high-dimensional ATSP instances. This progression from foundational

mathematical formulations like the MTZ model to advanced metaheuristic algorithms

highlights continuous efforts to improve computational efficiency and solution quality.

Burke et al. demonstrated the significant advantages of employing a hybrid approach for

solving the ATSP (2001). By combining the HyperOpt heuristic, which embeds an exact

algorithm within a local search framework, with the well-established 3-opt heuristic, they

were able to leverage the strengths of both methods. This hybrid approach allowed for the

exhaustive exploration of promising regions in the solution space, leading to better tour

optimization and overcoming the limitations of using a single heuristic. Integrating this

hybrid into the Variable Neighborhood Search (VNS) framework further enhanced its

effectiveness, enabling the algorithm to escape local optima and achieve high-quality

solutions. The introduction of a "guided shake" within VNS, as opposed to random shakes,

also contributed to the efficiency of the heuristic. Overall, the hybrid approach proved highly

capable of handling real-world constraints and provided a powerful tool for solving complex

ATSP problems in industrial settings.

3. ARTIFICIAL IMMUNE SYSTEM

The Artificial Immune System (AIS) is a class of computational algorithms inspired by

the principles and processes of the biological immune system. It has been effectively applied

to various complex problem-solving scenarios, including combinatorial optimization. The

natural immune system's ability to recognize, learn, and remember foreign pathogens

provides a robust metaphor for developing algorithms that can adapt and optimize solutions

in dynamic and complex environments (Greensmith et al., 2010).

3.1. Natural clonal selection

In the natural immune system, clonal selection refers to the mechanism by which immune

cells (B cells) that recognize specific antigens are selected for proliferation and

differentiation. When a B cell binds to an antigen, it becomes activated and undergoes clonal

expansion, producing many clones. These clones then undergo somatic hypermutation,

which introduces random mutations into their receptors, increasing the diversity and

improving the immune system's ability to recognize and neutralize the antigen (Burnet,

1959).

1. Antigen Recognition: Each B cell has unique receptors on its surface that can bind to

specific antigens. When a B cell encounters an antigen that matches its receptors, it

binds to the antigen.

2. Activation and Proliferation: Once the antigen is bound, the B cell becomes activated

and undergoes clonal expansion, rapidly dividing to produce many identical copies

(clones) of itself.

3. Differentiation: The cloned B cells differentiate into plasma and memory B cells.

Plasma cells produce and secrete large quantities of antibodies explicitly targeting the

antigen. Memory B cells remain in the body to provide a faster response if the same

antigen is reencountered in the future.

4. Affinity Maturation: During the proliferation process, somatic hypermutation occurs,

introducing small mutations in the receptors of the cloned B cells. This process

123

increases the diversity of the receptors, allowing for higher affinity binding to the

antigen. B cells with higher affinity receptors are selectively expanded.

5. Elimination of Self-reactive Cells: B cells that bind strongly to self-antigens

(molecules ordinarily present in the body) are typically eliminated through negative

selection to prevent autoimmune responses.

3.2. AIS clonal selection

Clonal selection is a cornerstone of the Artificial Immune System (AIS) and is inspired

by the biological process of clonal selection observed in the natural immune system. In the

context of AIS, clonal selection involves the processes of selection, cloning, and mutation

of candidate solutions, which are referred to as antibodies (De Castro & Von Zuben, 2001).

This process allows the algorithm to iteratively improve the quality of solutions and explore

the solution space effectively.

AIS clonal selection relies on two key principles (Garrett, 2005): cloning and affinity

maturation. The steps involved in AIS clonal selection are as follows:

1. Initialization: An initial population of antibodies (candidate solutions) is generated,

often randomly or using heuristic methods.

2. Evaluation: Each antibody's fitness is evaluated using an affinity function, which

measures how well the candidate solution solves the given problem. The affinity

function is analogous to the objective function in optimization problems.

3. Selection: A subset of high-affinity antibodies is selected based on their fitness values.

These selected antibodies are deemed the most promising solutions and are chosen for

cloning. The selection process ensures that only the best-performing solutions are

proliferated.

4. Cloning: The selected antibodies undergo clonal expansion, where each antibody

produces a number of clones proportional to its affinity. This process amplifies the

high-quality solutions, increasing their representation in the population.

5. Mutation: The cloned antibodies are subjected to hypermutation, which introduces

random mutations into the clones. The mutation rate is typically inversely

proportional to the antibody's affinity, meaning that high-affinity antibodies undergo

fewer mutations, preserving their quality while exploring new potential solutions.

6. Affinity Maturation: The mutated clones are re-evaluated for their fitness. This step

ensures that only the clones with improved or high affinity are retained in the

population. The selection of these high-affinity clones mimics the natural immune

system's ability to adapt and improve its response to antigens.

7. Replacement: Low-affinity antibodies in the original population are replaced with the

high-affinity clones from the clonal expansion and mutation process. This

replacement ensures that the population's overall quality improves over successive

iterations.

8. Termination: The process of evaluation, selection, cloning, mutation, and replacement

is repeated until a termination criterion is met. This criterion could be a predefined

number of generations, a satisfactory fitness level, or population convergence.

Freitas and Timmis (2003) noted that AIS algorithms often neglect inductive and

positional bias within representation and affinity measures. To address this, we introduced a

124

modified AIS incorporating the Neighborhood Improvement (NI) heuristic, enhancing

standard AIS performance.

4. LOCAL SEARCH

Local search algorithms are critical in combinatorial optimization, particularly for

solving the Traveling Salesman Problem (TSP) and its asymmetric variant (ATSP). These

algorithms iteratively improve a candidate solution by exploring its neighborhood, which

consists of solutions that are "close" in some sense. The goal is to find a locally optimal

solution that approximates the global optimum.

4.1. Neighborhood Improvement (NI)

This research introduces a novel local search heuristic called Neighborhood

Improvement (NI). This heuristic is designed to enhance the performance of the Artificial

Immune System (AIS) framework by systematically exploring and improving candidate

solutions. Specifically tailored for the Traveling Salesman Problem (TSP) and its

asymmetric variant (ATSP), NI focuses on identifying and relocating the worst-performing

pairs of cities within a tour to generate improved solutions. The heuristic iteratively refines

the solution until no further improvements can be found.

Algorithm 1. The procedure of Neighborbood Improvement

1: Initialize the tour

2: Initialize improvement as True

3: while improvement do

4: improvement ← False

5: best_tour ← tour

6: (city1, city2) ← FindWorstPair(tour)

7: new_tour ← RelocateCities(tour, city1, city2)

8: if CalculateDistance(new_tour) < CalculateDistance(best_tour) then

9: best_tour ← new_tour

10: improvement ← True

11: end if

12: tour ← best_tour

13: end while

14: return tour

The procedure of NI (illustrated in Figure 1 and detailed in the pseudocode provided in

Algorithm 1) can be described as follows:

1. Selection of Candidate Solution: Start with an initial tour generated by the

optimization algorithm.

2. Identification of Worst Pair: Determine the pair of cities in the tour that contribute the

most to the total distance.

3. Relocation of Cities: Explore the relocation of these cities within the tour and evaluate

the resulting distance.

4. Evaluation and Replacement: If the new tour resulting from the relocation is shorter

than the current tour, update the tour with this new configuration.

125

5. Iteration: Repeat the process until no further improvements can be made, ensuring that

the tour is locally optimized.

Fig. 1. The Neighborhood Improvement (NI)

4.2. Integration of NI with AIS

The NI heuristic is integrated into the AIS framework at three strategic positions, as

shown in Figure 2 and explained in the pseudocode of Algorithm 2. These positions (NIpos1,

NIpos2, and NIpos3) are chosen based on their potential to enhance the overall optimization

process by improving solution quality at different stages of the algorithm.

Fig. 2. Flowchart of the NI integration with AIS

1. NIpos1 (Before Cloning and Mutation): Applying NI at this position helps refine the

best antibodies before cloning and mutation. This approach ensures that high-quality

solutions are further improved, providing a stronger foundation for generating clones.

By optimizing the best antibody initially, the subsequent clones are more likely to

explore promising regions of the solution space.

2. NIpos2 (After Mutation): Integrating NI after the mutation provides an opportunity to

correct or enhance solutions that were not significantly improved by the initial and

second mutations. This intermediate application of NI helps to steer the search process

towards more optimal solutions by addressing suboptimal configurations introduced

during mutation.

3. NIpos3 (After Elimination and Replacement): Applying NI at the final stage, after

eliminating the worst antibodies and creating new ones, ensures that the best solutions

are refined before the next iteration. This final improvement step helps maintain a

126

high level of solution quality and prevents the algorithm from stagnating in local

optima.

Algorithm 2. The integrating NI into AIS

1: P ← InitializeAntibodySize()

2: Imax ← InitializeMaxIterations()

3: %B ← InitializePercentageElimination()

4: population ← GeneratePopulation(P)

5: for each antibody in population do

6: antibody.affinity ← CalculateAffinity(antibody)

7: end for

8: I ← 1

9: while I ≤ Imax do

10: for each antibody in population do

11: if hybrid in position 1 then

12: best_antibody ← FindBestAntibody(population)

13: best_antibody ← NeighborhoodImprovement(best_antibody)

14: end if

15: NC ← CalculateNumberOfClones(antibody)

16: clones ← CloneAntibody(antibody, NC)

17: for each clone in clones do

18: mutated_clone ← ApplyFirstMutation(clone)

19: mutated_clone.affinity ← CalculateAffinity(mutated_clone)

20: if mutated_clone.affinity > clone.affinity then

21: clone ← mutated_clone

22: else

23: mutated_clone ← ApplySecondMutation(clone)

24: mutated_clone.affinity ← CalculateAffinity(mutated_clone)

25: if mutated_clone.affinity > clone.affinity then

26: clone ← mutated_clone

27: else

28: if hybrid in position 2 then

29: clone ← NeighborhoodImprovement(clone)

30: end if

31: end if

32: end if

33: end for

34: antibody ← clone

35: end for

36: population ← EliminateWorstAntibodies(population, %B)

37: new_antibodies ← GenerateNewAntibodies(%B)

38: population.extend(new_antibodies)

39: if hybrid in position 3 then

40: best_antibody ← FindBestAntibody(population)

41: best_antibody ← NeighborhoodImprovement(best_antibody)

42: end if

43: I ← I + 1

44: end while

45: best_solution ← FindBestAntibody(population)

46: return best_solution

127

5. EXPERIMENTAL DESIGN AND ANALYSIS

In this work, the instant datasets of symmetric TSP (STSP) and asymmetric TSP (ATSP)

provided in the TSP library (Reinelt, 1991) were used in all experiments. The tours in these

datasets are measured using Euclidean distance, which is an abstract, dimensionless unit

representing the total length of the paths traveled between cities. The experiments were

conducted on a machine with an Intel Core i7-12700H processor, 16 GB of RAM, and an

NVIDIA RTX 3050 GPU, running Windows 11. The proposed methods were developed

using Python 3.9 with the NumPy and SciPy libraries for numerical computations.

The study consisted of two main experiments: Experiment A, which investigated the

appropriate technique for hybridizing AIS with NI, and Experiment B, designed to

benchmark the original AIS and improved AIS.

5.1. Experiment A

The objective of Experiment A was to determine the optimal positions for integrating

Neighborhood Improvement (NI) within the Artificial Immune System (AIS) to enhance its

performance. To achieve this, the total number of searches, determined by the number of

candidate solutions multiplied by the number of iterations, was fixed at 5,000 generated

solutions.

Tab. 1. Results of experiment A for STSP instances

Problem

sizes

Hybrid AIS

Types

Quality of solutions (tours) obtained
Time (s)

SD Shortest Longest Average

eil51

AIS+NIpos1 7.74 438 472 452.47 8.47

AIS+NIpos2 8.54 425 464 427.51 19.13

AIS+NIpos3 8.45 436 470 450.20 8.47

berlin52

AIS+NIpos1 205.8 7787 8640 8276.67 8.67

AIS+NIpos2 294.62 7542 8148 7676.40 18.13

AIS+NIpos3 188.98 7891 8712 8256.03 8.70

pr76

AIS+NIpos1 4365.12 124071 143657 132119.33 34.08

AIS+NIpos2 4173.78 121069 139274 130034.27 28.47

AIS+NIpos3 4187.74 123977 140303 130886.17 10.97

kroA100

AIS+NIpos1 1168.93 29530 34520 32106.20 13.67

AIS+NIpos2 1207.85 28867 33704 30900.77 40.80

AIS+NIpos3 957.09 29932 33274 31351.47 13.53

eil101

AIS+NIpos1 24.76 790 886 845.97 13.37

AIS+NIpos2 24.88 784 873 834.17 41.00

AIS+NIpos3 24.37 792 878 838.27 13.30

bier127

AIS+NIpos1 5255.51 170032 193897 181716.97 37.53

AIS+NIpos2 5135.55 165274 186768 179777.73 100.53

AIS+NIpos3 5759.61 170559 195591 182738.73 16.40

rat195

AIS+NIpos1 189.54 4944 5569 5303.60 81.17

AIS+NIpos2 196.19 4767 5448 5075.37 320.37

AIS+NIpos3 231.54 4897 5598 5264.20 79.13

a280

AIS+NIpos1 376.263 8046 9744 8681.00 90.23

AIS+NIpos2 268.47 7668 8972 8163.80 343.67

AIS+NIpos3 319.32 7669 9126 8487.17 37.00

128

Higher values of generated solutions increase the likelihood of finding reasonable

solutions but require longer computational times. The AIS parameters used in this

experiment were as follows: the number of antibodies (P) was set to 10, the number of

iterations (Imax) was set to 500, and the percentage of antibody elimination (%B) was set to

10%.

Each algorithm's computational runs were repeated 30 times with different random seed

numbers for each TSP dataset. The experimental results were analyzed in terms of standard

deviation (SD), the shortest, longest, and average distance of tours obtained from each

method, and execution time (in seconds), as shown in Tables 1 and 2 for STSP and ATSP,

respectively.

Table 1 shows the results for solving STSP. It can be seen that the quality of the traveled

tour in terms of average solutions (obtained from AIS+NIpos2) was considerably better than

the results for AIS+NIpos1 and AIS+NIpos3 for almost all problem sizes except the smallest

STSP instance (eil51) for which AIS+NIpos3 found the shortest average tour. Moreover, the

experimental results for ATSP instances shown in Table 2 were similar to the findings for

STSP. The shortest tour of the smallest instance (br17) was obtained using all methods. For

the remaining instances, AIS+NIpos2 outperformed AIS+NIpos1 and AIS+NIpos3 in terms of

the average solution. However, higher performance usually requires extended computational

time, as Tables 1 and 2 show.

Tab. 2. Results of experiment A for ATSP instances

Problem

sizes

Hybrid AIS

Types

Quality of solutions (tours) obtained
Time (s)

SD Shortest Longest Average

br17

AIS+NIpos1 0 39 39 39.00 11.47

AIS+NIpos2 0 39 39 39.00 11.57

AIS+NIpos3 0 39 39 39.00 11.47

ftv35

AIS+NIpos1 94.21 1595 2054 1808.63 16.17

AIS+NIpos2 106.14 1513 1998 1804.03 31.80

AIS+NIpos3 96.83 1644 2057 1821.5 16.17

ft53

AIS+NIpos1 685.64 8347 11786 10033.3 17.37

AIS+NIpos2 663.01 8268 11446 9828.27 44.20

AIS+NIpos3 553.45 8985 11424 9958.87 17.27

ftv70

AIS+NIpos1 176.52 3280 3960 3565.43 25.40

AIS+NIpos2 220.94 2969 3904 3404.33 87.00

AIS+NIpos3 175.65 3126 3872 3522.07 25.37

kro124p

AIS+NIpos1 2760.56 50935 58005.8 58005.80 34.70

AIS+NIpos2 1853.27 49777 61364 57116.50 46.47

AIS+NIpos3 3238.56 50912 63796 57737.50 36.00

ftv170

AIS+NIpos1 476.76 9196 11001 10294.90 58.60

AIS+NIpos2 439.14 8937 10597 9765.97 202.07

AIS+NIpos3 540.19 9152 11559 10223.40 58.53

rbg323

AIS+NIpos1 98.52 2868 3313 3081.43 124.57

AIS+NIpos2 89.56 2790 3111 2946.43 378.03

AIS+NIpos3 84.66 2909 3293 3081.93 115.83

rbg443

AIS+NIpos1 130.78 4699 5211 4936.47 175.17

AIS+NIpos2 142.972 4503 5133 4757.30 592.13

AIS+NIpos3 128.98 4611 4872.77 4872.77 173.23

129

The results indicate that integrating NI at position 2 within the AIS (AIS+NIpos2)

consistently yielded better average solutions than integrating NI at positions 1 and 3. This

improvement can be attributed to several factors:

1. Target of Improvement: The first and third positions for integrating NI target the best

antibody directly, aiming to refine the top-performing solution at the beginning and

end of the iterations. In contrast, the second position applies NI to clones, meaning

the entire antibody population undergoes improvement, potentially leading to a more

widespread enhancement of solutions.

2. Diversity and Quality: Applying NI to the clones at position 2 improves the overall

quality of the antibody population. This approach ensures that the diversity of

solutions is maintained while simultaneously enhancing the quality of multiple

solutions rather than focusing solely on the best one. This broader application can

prevent premature convergence and promote better solution space exploration.

3. Effective Use of Computational Resources: Computational resources are used more

effectively by improving the clones during the iterative process. Early-stage

improvements help guide the search process towards better regions of the solution

space, while late-stage refinements ensure that the best solutions are adequately

polished.

4. Balanced Search Strategy: Integrating NI at position 2 provides a balanced approach

between exploration and exploitation. This mid-iteration improvement helps adapt the

search strategy dynamically, allowing the algorithm to explore new solutions initially

and then focus on refining them, leading to better overall performance.

In conclusion, the superior performance of AIS+NIpos2 can be attributed to its strategy of

improving the entire population of clones rather than focusing solely on the best antibody.

This broader application of NI promotes diversity and quality in the solutions, leading to

more effective use of computational resources and a balanced search strategy that enhances

the overall performance of the AIS.

5.2. Experiment B

Experiment B aimed to benchmark the performance of AIS with and without

improvement techniques.

Tab. 3. AIS Algorithms and parameter settings

AIS

algorithm
Detail The setting parameters of AIS

AIS

AIS without improving technique and

setting parameters according to

those used in other research (Chandrasekaran

et al., 2006).

P = 10, Imax = 500, %B = 30,

inverse and pairwise interchange mutations

AIS-t AIS with fine-tuned parameters.
P = 10, Imax = 500, %B = 10,

inversion and shift operation mutations

AIS-h
AIS with hybridizing with other heuristics

(Nipos2).

P = 10, Imax = 500, %B = 30,

inverse and pairwise interchange mutations,

hybridized with NIpos2

AIS-th
AIS with both fine-tuning and hybridizing

techniques. (same as AIS+NIpos2)

P = 10, Imax = 500, %B = 10,

inversion and shift operation mutations,

hybridizing with NIpos2

130

The study focused on comparing four types of AIS configurations, each with specific

parameter settings for antibody size (P), number of iterations (Imax), and percentage of

antibody elimination (%B). Table 3 provides a detailed description of these AIS algorithms

and their respective parameter settings.

The different settings for %B and the AIS with tuning techniques (indexed with t) were

used to study the impact of mutation operations (inversion and shift operation mutations).

As established in Experiment A, the hybridizing technique (indexed with h) involved

modifying AIS using NIpos2.

Computational runs using each AIS type were repeated 30 times with different random

seed numbers for each symmetric and asymmetric TSP instant dataset. Tables 4 and 5 present

the experimental results regarding both the quality of the solutions obtained and

computational time usage.

Tab. 4. Performance comparison for STSP

Problem

sizes

AIS

algorithms

Quality of solutions (tours) obtained
Time (s)

SD Shortest Longest Average

eil51

AIS 22.35 551 592.01 592.07 6.06

AIS-t 8.83 442 480 460.10 9.77

AIS-h 21.27 475 567 529.70 18.43

AIS-th 8.54 425 464 427.57 19.13

berlin52

AIS 429.20 9760 11517 10552.60 4.47

AIS-t 232.50 7848 8921 8291.90 5.57

AIS-h 324.39 8761 10067 9349.70 18.50

AIS-th 294.62 7553 8748 8122.40 18.13

pr76

AIS 15321.39 214455 292037 241995.10 8.17

AIS-t 4193.55 127438 143004 136821.20 8.23

AIS-h 12359.29 171977 215772 194261.57 63.30

AIS-th 4173.78 121069 139274 130034.27 28.47

kroA100

AIS 3008.92 46241 58808 51667.97 8.83

AIS-t 1234.97 32549 38073 34454.67 15.47

AIS-h 2255.87 34825 43361 39685.03 48.37

AIS-th 1207.85 28867 33704 30900.77 40.80

eil101

AIS 50.37 1125 1346 1245.00 8.93

AIS-t 21.80 848 940 907.30 15.60

AIS-h 40.59 960 1110 1018.03 54.50

AIS-th 24.88 784 873 834.17 41.00

bier127

AIS 7146.29 235023 264670 248642.57 11.60

AIS-t 6269.90 180596 207933 195079.10 14.60

AIS-h 9451.14 189079 225388 206012.53 59.50

AIS-th 5135.55 165274 186768 179777.73 100.53

rat195

AIS 413.39 9823 11632 10519.90 19.57

AIS-t 123.84 6052 6505 6286.33 24.27

AIS-h 507.18 6041 8305 7489.80 104.93

AIS-th 196.19 4767 5448 5075.37 320.37

a280

AIS 574.76 15445 17779 16442.23 29.30

AIS-t 238.55 10740 11742 11222.50 36.73

AIS-h 497.22 9984 12032 11050.17 524.60

AIS-th 268.47 7668 8972 8163.80 343.67

Tables 4 and 5 show that the performance of conventional AIS was outperformed by AIS

with improving techniques (AIS-t, AIS-h, and AIS-th) across all datasets. The average

131

distance of the tours obtained using AIS-t was relatively better than those generated using

AIS-h for all ATSP and 7 out of 8 STSP instant datasets. These results confirm that optimal

parameter settings, especially for metaheuristic algorithms, significantly affect the quality

of the solution.

Furthermore, it was found that the modified AIS (combining both tuning and hybridizing

techniques as AIS-th) outperformed AIS, AIS-t, and AIS-h in terms of the quality of the

solutions obtained for both STSP and ATSP instant datasets. However, the average

execution time taken by AIS-th was the longest, followed by AIS-h, AIS-t, and AIS.

Tab. 5. Performance comparison for ATSP

Problem

sizes

AIS

algorithms

Quality of solutions (tours) obtained
Time (s)

SD Shortest Longest Average

br17

AIS 2.57 39 53 39.57 11.10

AIS-t 0 39 39 39.00 11.27

AIS-h 0 39 39 39.00 11.50

AIS-th 0 39 39 39.00 11.57

ftv35

AIS 159.22 1986 2594 2221.83 13.40

AIS-t 90.58 1625 1984 1823.07 15.20

AIS-h 107.92 1831 2294 2032.20 30.03

AIS-th 106.14 1613 1998 1804.03 31.80

ft53

AIS 1090.36 11538 15337 13344.20 15.07

AIS-t 610.83 8950 11415 10078.10 15.77

AIS-h 976.00 10715 14484 12551.80 28.37

AIS-th 663.01 8468 11446 9828.27 44.20

ftv70

AIS 353.81 4283 5758 4996.57 16.83

AIS-t 185.15 3133 4039 3662.37 23.03

AIS-h 219.44 3667 4507 4181.07 43.70

AIS-th 220.94 2969 3904 3404.33 87.00

kro124p

AIS 4590.96 71465 89759 79640.50 20.10

AIS-t 2396.78 55892 65199 61567.80 31.00

AIS-h 4058.04 57070 74149 64503.40 64.63

AIS-th 1853.27 53777 61364 57116.50 46.47

ftv170

AIS 994.43 13583 17660 15885.20 28.50

AIS-t 341.89 10715 12163 11547.50 51.70

AIS-h 479.93 10932 13344 12366.60 135.90

AIS-th 439.14 8937 10597 9765.97 202.07

rbg323

AIS 87.18 5058 5736 5276.80 80.07

AIS-t 67.31 3411 3673 3551.70 107.87

AIS-h 200.14 3832 4692 4191.97 232.17

AIS-th 89.56 2790 3111 2946.43 378.03

rbg443

AIS 77.90 7094 7462 7303.30 149.23

AIS-t 64.39 5250 5514 5387.33 152.80

AIS-h 204.74 5835 6604 6124.77 376.20

AIS-th 142.972 4503 5133 4757.33 592.13

The results clearly emphasize the importance of fine-tuning parameters and hybridizing

with NI. Fine-tuning (as seen in AIS-t) optimizes the algorithm's performance by adjusting

parameters to suit the specific problem better, resulting in improved solution quality and

consistency. Hybridization (as seen in AIS-h) further enhances the algorithm by

incorporating additional heuristics, such as NI, to refine the search process and avoid local

optima.

132

Figures 3 and 4 present the percentage improvements of AIS variants for both STSP and

ATSP problems. In Figure 3, the AIS-th variant demonstrates the highest improvement for

the majority of STSP problems, with significant gains observed for pr76 (46.27%) and a280

(50.36%). Similarly, Figure 4 shows the AIS-th variant continuing to outperform other

variants in ASTSP problems, particularly in rbg443 (34.84%) and ft53 (26.35%). These

figures highlight the consistent advantage of hybridization and parameter tuning across

different problem sizes.

Fig. 3. Percentage improvement of AIS variants over baseline (STSP)

Fig. 4. Percentage improvement of AIS variants over baseline (ATSP)

133

To ensure statistical significance, a paired t-test was applied to compare the performance

of each algorithm variant. The comparison is based on three key metrics: Shortest Tours (the

best possible solution found by the algorithm), Average Tours (the average performance

across multiple runs), and Best-to-Worst Difference (the difference between the longest and

shortest tours found by each algorithm, indicating performance consistency).

A paired t-test was used to statistically compare the performance of each AIS variant with

the others across these metrics. The results, summarized in Table 6, report only the p-values

for each paired comparison.

 Tab. 6. Paired t-test P-values for Shortest Tours, Average Tours and Best-to-Worst Difference

Comparison
Shortest Tours

(p-value)

Average Tours

(p-value)

Best-to-Worse Difference

(p-value)

AIS vs AIS-t 0.028 0.12 0.06

AIS vs AIS-t 0.037 0.08 0.10

AIS vs AIS-t 0.023 0.10 0.04

The Shortest Tours comparison measures the best solution found by each algorithm. The

p-values for the comparisons between AIS and its variants (AIS-t, AIS-h, AIS-th) are all

below the 0.05 threshold (0.028, 0.037, and 0.023, respectively). This indicates that the

difference between AIS and each variant is statistically significant, suggesting that the tuned

and hybrid version of AIS consistently outperforms the core AIS in finding the shortest tours.

The Average Tours metric provides a broader view of the algorithms' performance across

multiple runs. None of the p-values in this category (0.12, 0.08, and 0.10) fall below the

significance threshold of 0.05, indicating that the differences in average performance

between AIS and its variants are not statistically significant. This suggests that while the

variants may occasionally find better solutions, their average performance is comparable to

that of the core AIS algorithm.

The Best-to-Worst Difference reflects the variability or consistency of the algorithms. A

lower difference indicates more consistent performance. The comparison between AIS and

AIS-th shows a significant p-value of 0.04, indicating that AIS-th is more consistent in

performance than AIS. However, no significant differences were found between AIS and the

other variants (AIS-t and AIS-h), with p-values of 0.06 and 0.10, respectively.

The results demonstrate that the AIS variants, particularly AIS-th, are capable of finding

shorter tours and exhibit more consistent performance compared to the core AIS algorithm.

However, in terms of average performance, the differences are not statistically significant,

suggesting that the overall improvements provided by the variants may be more subtle and

situational. These findings highlight the importance of selecting the appropriate variant of

AIS based on specific performance goals, such as optimizing the best solution or ensuring

consistent performance.

This analysis indicates that the hybrid and tuned AIS variants offer tangible

improvements over the core AIS, particularly when focusing on the best solution or

performance consistency.

134

6. CONCLUSIONS

This study demonstrates the effectiveness of enhancing the Artificial Immune System

(AIS) through hybridization with the Neighborhood Improvement (NI) heuristic and fine-

tuning parameters for solving the Traveling Salesman Problem (TSP). The research was

conducted in two main experiments: Experiment A, which investigated the optimal positions

for integrating NI within AIS, and Experiment B, which benchmarked the performance of

various AIS configurations.

Experiment A identified that integrating NI at position 2 (AIS+NIpos2) consistently

yielded better average solutions than integrating NI at positions 1 and 3 for almost all

problem sizes. This strategic integration improves the overall quality and diversity of the

antibody population by refining solutions in the middle of the iterative process, leading to a

more balanced search strategy. Experiment B demonstrated the importance of fine-tuning

parameters and hybridizing with NI. The results showed that AIS configurations with both

fine-tuning and hybridization (AIS-th) outperformed other configurations regarding solution

quality for both symmetric and asymmetric TSP datasets. Despite requiring more

computational time, the superior quality of solutions obtained by AIS-th justifies the

increased computational effort.

The study contributes to the field of combinatorial optimization by providing a detailed

analysis of how hybridization and parameter tuning can enhance AIS performance. The

proposed approach of integrating NI within AIS at optimal positions and fine-tuning

parameters can be generalized and applied to other combinatorial optimization problems

beyond TSP. The findings underscore the importance of strategic hybridization and

parameter tuning in developing robust optimization algorithms. Combining these techniques

allows for more effective exploration and exploitation of the solution space, leading to

higher-quality solutions and more efficient use of computational resources.

Future research could explore adaptive strategies for hybridization and real-time

parameter adjustment to enhance AIS performance further. Additionally, extending the

proposed approach to other combinatorial optimization problems, such as scheduling and

resource allocation, could provide valuable insights into the generalizability of the

techniques. Integrating other local search heuristics and advanced metaheuristic frameworks

with AIS could also yield significant improvements.

In conclusion, this study demonstrates the potential of hybridizing AIS with NI and fine-

tuning parameters to solve complex optimization problems effectively. The proposed

approach enhances the performance of AIS and provides a foundation for future research in

this area.

Author Contributions

P.T.: investigation, methodology, data analysis, writing an original draft, data curation,

review and editing; C.K.: investigation, methodology, data analysis, ethical oversight,

publishing and dissemination; W.T.: conceptualization, research design, funding

acquisition, project administration, supervision, ethical oversight, data curation, review and

editing, publishing and dissemination, collaboration, responsibility for outcomes. All

authors have read and agreed to the published version of the manuscript.

135

Conflicts of Interest

The authors declare no conflict of interest.

REFERENCES

Adenso-Díaz, B., & Laguna, M. (2006). Fine-Tuning of algorithms using fractional experimental designs and

local search. Operations Research, 54(1), 99-114. https://doi.org/10.1287/opre.1050.0243

Akhand, M. A. H., Akter, S., & Rashid, M. A. (2014). Velocity Tentative Particle Swarm Optimization to solve

TSP. 2013 International Conference on Electrical Information and Communication Technology (EICT)

(pp. 1-6). IEEE. https://doi.org/10.1109/EICT.2014.6777868

Akram, M., & Habib, A. (2023). Hybridizing simulated annealing and genetic algorithms with Pythagorean fuzzy

uncertainty for Traveling Salesman Problem optimization. Journal of Applied Mathematics and

Computing, 69, 4451-4497. https://doi.org/10.1007/s12190-023-01935-y

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Computing Surveys, 35(3), 268-308. https://doi.org/10.1145/937503.937505

Boryczka, U., & Szwarc, K. (2019). The Harmony Search algorithm with additional improvement of harmony

memory for Asymmetric Traveling Salesman Problem. Expert Systems with Applications, 122, 43-53.

https://doi.org/10.1016/j.eswa.2018.12.044

Braun, H. (1991). On solving travelling salesman problems by genetic algorithms. In H.-P. Schwefel & R.

Männer (Eds.), Parallel Problem Solving from Nature (Vol. 496, pp. 129-133). Springer-Verlag.

https://doi.org/10.1007/BFb0029743

Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighbourhood search

methods for the asymmetric travelling salesman problem. In E. J. W. Boers (Ed.), Applications of

Evolutionary Computing (Vol. 2037, pp. 203-212). Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-45365-2_21

Burnet, F. M. (1959). The clonal selection theory of acquired immunity; the Abraham Flexner lectures of

Vanderbilt University. Cambridge University Press.

Campuzano, G., Obreque, C., & Aguayo, M. M. (2020). Accelerating the Miller–Tucker–Zemlin model for the

asymmetric Traveling Salesman Problem. Expert Systems with Applications, 148, 113229.

https://doi.org/10.1016/j.eswa.2020.113229

Chandrasekaran, M., Asokan, P., Kumanan, S., Balamurugan, T., & Nickolas, S. (2006). Solving job shop

scheduling problems using artificial immune system. International Journal of Advanced Manufacturing

Technology, 31, 580-593. https://doi.org/10.1007/s00170-005-0226-3

Chen, S.-M., & Chien, C.-Y. (2011). Solving the Traveling Salesman Problem based on the genetic simulated

annealing ant colony system with particle swarm optimization techniques. Expert Systems with

Applications, 38(12), 14439-14450. https://doi.org/10.1016/j.eswa.2011.04.163

De Castro, L., & Timmis, J. (2002). Artificial immune systems: A new computational intelligence approach.

Springer.

De Castro, L., & Von Zuben, F. (2001). The clonal selection algorithm with engineering applications. Workshop

Proceedings of GECCO (pp. 36-37).

Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two-stage hybrid swarm intelligence

optimization algorithm and application. Soft Computing, 16, 1707-1722. https://doi.org/10.1007/s00500-

012-0855-z

Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin subtour

elimination constraints. Operations Research Letters, 10(1), 27-36. https://doi.org/10.1016/0167-

6377(91)90083-2

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. Biosystems, 43(2),

73-81. https://doi.org/10.1016/S0303-2647(97)01708-5

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.

Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms.

Swarm and Evolutionary Computation, 1(1), 19-31. https://doi.org/10.1016/j.swevo.2011.02.001

Engin, O., & Döyen, A. (2004). Artificial immune systems and applications in industrial problems. Journal of

Science, 17(1), 71-84.

136

Freitas, A. A., & Timmis, J. (2003). Revisiting the foundations of artificial immune systems: A problem-oriented

perspective. In J. Timmis, P. J. Bentley, & E. Hart (Eds.), Artificial Immune Systems (Vol. 2787, pp. 229-

241). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-45192-1_22

Garrett, S. M. (2005). How do we evaluate artificial immune systems? Evolutionary Computation, 13(2), 145-

177. https://doi.org/10.1162/1063656054088512

Glover, F. W. (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3), 190-206.

https://doi.org/10.1287/ijoc.1.3.190

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley

Longman Publishing Co., Inc.

Gouveia, L., & Pires, J. M. (1999). The asymmetric travelling salesman problem and a reformulation of the

Miller-Tucker-Zemlin constraints. European Journal of Operational Research, 112(1), 134-146.

https://doi.org/10.1016/S0377-2217(97)00358-5

Greensmith, J., Whitbrook, A., & Aickelin, U. (2010). Artificial immune systems. In M. Gendreau & J.-Y. Potvin

(Eds.), Handbook of Metaheuristics (Vol. 146, pp. 421–448). Springer US. https://doi.org/10.1007/978-

1-4419-1665-5_14

Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. Applied Soft

Computing, 8(1), 191-201. https://doi.org/10.1016/j.asoc.2006.12.004

Huang, C., Li, Y., & Yao, X. (2019). A survey of automatic parameter tuning methods for metaheuristics. IEEE

Transactions on Evolutionary Computation, 24(2), 201-216. https://doi.org/10.1109/TEVC.2019.2921598

Joy, G., Huyck, C., & Yang, X.-S. (2023). Review of parameter tuning methods for nature-inspired algorithms.

In X.-S. Yang (Ed.), Benchmarks and Hybrid Algorithms in Optimization and Applications (pp. 33–47).

Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3970-1_3

Kang-Ping, W., Lan, H., Chun-Guang, Z., & Wei, P. (2003). Particle swarm optimization for Traveling Salesman

Problem. 2003 International Conference on Machine Learning and Cybernetics (pp. 1583-1585). IEEE.

https://doi.org/10.1109/ICMLC.2003.1259748

Karaboga, D., & Gorkemli, B. (2011). A combinatorial Artificial Bee Colony algorithm for Traveling Salesman

Problem. 2011 International Symposium on Innovations in Intelligent Systems and Applications (pp. 50-

53). IEEE. https://doi.org/10.1109/INISTA.2011.5946125

Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Morgan Kaufmann Publishers Inc.

Khan, I., & Maiti, M. K. (2019). A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman

Problem. Swarm and Evolutionary Computation, 44, 428-438. https://doi.org/10.1016/j.swevo.2018.05.006

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science,

220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671

Krishna, M., Panda, N., & Majhi, S. (2021). Solving Traveling Salesman Problem using Hybridization of Rider

Optimization and Spotted Hyena Optimization Algorithm. Expert Systems with Applications, 183,

115353. https://doi.org/10.1016/j.eswa.2021.115353

Laporte, G. (1992). The Traveling Salesman Problem: An overview of exact and approximate algorithms.

European Journal of Operational Research, 59(2), 231-247. https://doi.org/10.1016/0377-

2217(92)90138-Y

Laporte, G., & Nobert, Y. (1980). A Cutting Planes Algorithm for the m-Salesmen Problem. The Journal of the

Operational Research Society, 31(11), 1017-1023. https://doi.org/10.2307/2581282

Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the

Travelling Salesman Problem: A Review of representations and operators. Artificial Intelligence Review,

13, 129-170. https://doi.org/10.1023/A:1006529012972

Lawler, E. L. (1985). The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. John

Wiley & Sons.

Li, M., Ma, J., Zhang, Y., Zhou, H., & Liu, J. (2015). Firefly algorithm solving multiple Traveling Salesman Problem. Journal

of Computational and Theoretical Nanoscience, 12(7), 1277-1281. https://doi.org/10.1166/jctn.2015.3886

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of Traveling Salesman

Problems. Journal of the ACM, 7(4), 326-329. https://doi.org/10.1145/321043.321046

Nagata, Y., & Soler, D. (2012). A new genetic algorithm for the asymmetric Traveling Salesman Problem. Expert

Systems with Applications, 39(10), 8947-8953. https://doi.org/10.1016/j.eswa.2012.02.029

Osaba, E., Ser, J. D., Sadollah, A., Bilbao, M. N., & Camacho, D. (2018). A discrete water cycle algorithm for

solving the symmetric and asymmetric Traveling Salesman Problem. Applied Soft Computing, 71, 277-

290. https://doi.org/10.1016/j.asoc.2018.06.047

137

Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An improved discrete bat algorithm

for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial

Intelligence, 48, 59-71. https://doi.org/10.1016/j.engappai.2015.10.006

Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric Traveling Salesman Problem.

Applied Soft Computing, 105, 107298. https://doi.org/10.1016/j.asoc.2021.107298

Reinelt, G. (1991). TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4), 267-

384. https://doi.org/10.1287/ijoc.3.4.376

Ruan, D. (1997). Intelligent hybrid systems : fuzzy logic, neural networks, and genetic algorithms. Springer.

Sengupta, S., Basak, S., & Peters, R. A. (2019). Particle swarm optimization: A survey of historical and recent

developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157-

191. https://doi.org/10.3390/make1010010

Yang, X.-S. (2023). Nature-Inspired algorithms in optimization: Introduction, hybridization, and insights. In X.-

S. Yang (Ed.), Benchmarks and Hybrid Algorithms in Optimization and Applications (pp. 1–17). Springer

Nature Singapore. https://doi.org/10.1007/978-981-99-3970-1_1

Zhang, T., Zhou, Y., Zhou, G., Deng, W., & Luo, Q. (2023). Discrete Mayfly Algorithm for spherical asymmetric Traveling

Salesman Problem. Expert Systems with Applications, 221, 119765. https://doi.org/10.1016/j.eswa.2023.119765

