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Abstract 

This research investigates the enhancement of Artificial Immune Systems (AIS) for 

solving the Traveling Salesman Problem (TSP) through hybridization with 

Neighborhood Improvement (NI) and parameter fine-tuning. Two main experiments 

were conducted: Experiment A identified the optimal integration points for NI within 

AIS, revealing that position 2 (AIS+NIpos2) improved solution quality by an average 

of 27.78% compared to other positions. Experiment B benchmarked AIS performance 

with various enhancement techniques. Using symmetric and asymmetric TSP datasets, 

the results showed that integrating NI at strategic points and fine-tuning parameters 

boosted AIS performance by up to 46.27% in some cases. The hybrid and fine-tuned 

version of AIS (AIS-th) consistently provided the best solution quality, with up to a 

50.36% improvement, though it required more computational time. These findings 

emphasize the importance of strategic combinations and fine-tuning for creating 

effective optimization algorithms. 

1. INTRODUCTION 

Real-world problems such as scheduling, packing, loading, and routing often require 

sophisticated approaches for larger instances. Over the past few decades, nature-inspired 

algorithms have emerged as robust solutions for complex optimization problems. These 

algorithms are categorized into three main groups (Engin & Döyen, 2004): socially-inspired 

algorithms like Tabu Search (Glover, 1989); physically-inspired algorithms such as 

Simulated Annealing (Kirkpatrick et al., 1983); and biologically-inspired algorithms 

including Genetic Algorithms (Goldberg, 1989), Particle Swarm Optimization (Eberhart et 
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al., 2001), Ant Colony Optimization (Dorigo & Stützle, 2004), and Artificial Immune 

Systems (AIS) (Hart & Timmis, 2008). 

Among these, AIS has attracted significant attention due to its unique advantages. AIS 

employs a multi-directional search process using a diverse set of antibodies (candidate 

solutions), unlike conventional single-directional search methods (De Castro & Timmis, 

2002). The cloning process in AIS selectively replicates high-affinity antibodies and 

employs a dual mutation mechanism, allowing antibodies that fail the first mutation a second 

chance. Despite these strengths, conventional AIS has faced criticism for its performance 

limitations in specific applications (Greensmith et al., 2010). 

Enhancing AIS to find the global optimum consistently is a persistent challenge, 

particularly for large-scale combinatorial optimization problems. The stochastic nature of 

AIS's search process often leads to variable solution quality. Two primary techniques have 

been identified to enhance AIS performance: parameter fine-tuning and hybridization with 

other optimization methods (Sengupta et al., 2019). 

Fine-tuning involves optimizing the algorithm's parameters through systematic 

experimentation, which is essential for metaheuristics relying on stochastic processes (Eiben 

& Smit, 2011; Huang et al., 2019). Research has shown that optimal parameter settings 

derived from well-designed experiments are critical to improving solution quality (Eiben & 

Smit, 2011; Adenso-Díaz & Laguna, 2006). Hybridization involves integrating AIS with 

other optimization techniques to enhance its performance. Methods such as local search 

heuristics, fuzzy logic, and genetic algorithms have successfully combined with optimization 

methods like AIS to solve complex problems (Akram & Habib, 2023; Ruan, 1997). The 

synergy of parameter tuning and hybridization often yields superior results compared to 

employing either technique alone (Yang, 2023; Joy et al., 2023). 

This paper presents a novel heuristic technique combining a local search heuristic called 

Neighborhood Improvement (NI) with the AIS framework while incorporating parameter 

modification. Our objective is to investigate different approaches for incorporating NI into 

AIS and assess its influence on performance. 

This study has two main objectives: 

1. To investigate the optimal positions for integrating NI within AIS to enhance its 

performance. 

2. To benchmark the performance of AIS enhanced through fine-tuning, hybridization 

with NI, and combining both techniques. 

This research employs datasets from the Traveling Salesman Problem (TSP) library, 

precisely symmetric and asymmetric TSP instances (STSP & ATSP), to evaluate the 

proposed methods. 

The following sections of this paper are structured as follows: Section 2 presents the 

mathematical model of the Traveling Salesman Problem (TSP) and the problem statement. 

Section 3 describes the Artificial Immune System (AIS) algorithm and its modifications for 

TSP. Section 4 focuses on the local search techniques, including the integration of 

Neighborhood Improvement (NI) within AIS. Section 5 details the experimental design and 

analysis aimed at benchmarking the performance of AIS with various enhancement 

techniques. Finally, Section 6 presents the conclusions and future research directions. 
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2. PROBLEM STATEMENT AND MATHEMATICAL MODEL 

2.1. Mathematical formulation 

The Traveling Salesman Problem (TSP) is a classic optimization problem where the 

objective is to find the shortest possible route that visits each city exactly once and returns 

to the starting city. The main challenge is the enormous number of possible tours, which 

grows factorially with the number of cities, making it a classic NP-hard problem (Larrañaga 

et al., 1999). 

The TSP can be mathematically formulated as follows: 
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  ui – uj + m.xij  m – 1 i, j = 2, 3, …, m; i ≠ j        (4) 

  ui ≥ 0 i                        (5) 

  xij  {0, 1} i, j                     (6) 

Here, m represents the number of cities, dij denotes the distance between city i and city j, 

and xij is a binary variable indicating whether the route includes a direct path from city i to 

city j. The objective is to minimize the total travel distance. Constraints ensure that each city 

is visited exactly once and that no sub-tours exist. Variables ui and uj are used to prevent 

sub-tours. 

2.2. Symmetric TSP (STSP) 

The Symmetric Traveling Salesman Problem (STSP) is a classical combinatorial 

optimization problem where the goal is to find the shortest possible route that visits each city 

exactly once and returns to the starting point, with the distance between cities being the same 

in both directions. This variation has significant applications in real-world problems such as 

urban logistics, scheduling, and network design. Solutions to the STSP involve finding the 

minimum-cost route that visits each node exactly once and returns to the starting node, 

accounting for symmetrical travel costs (Lawler, 1985). 

The STSP has been extensively studied for decades, with early approaches focusing on 

exact algorithms. These methods include cutting plane algorithms introduced by Laporte and 

Nobert, branch and bound techniques, and Lagrangian dual approaches (1980). Exact 



 

120 

methods aim to guarantee finding the optimal solution, but they often face limitations in 

terms of computational feasibility, especially for large instances of the problem (Laporte, 

1992). As the complexity of the STSP increased, researchers began utilizing heuristic and 

metaheuristic approaches to solve the problem. These approaches provide near-optimal 

solutions within a reasonable computation time, making them more practical for large-scale 

problems. 

Genetic Algorithms (GA) have been widely used for solving STSP because of their 

ability to explore the solution space efficiently. Early work by Braun demonstrated the 

effectiveness of GA in finding high-quality solutions by emulating natural evolutionary 

processes (Braun, 1991). Similarly, Particle Swarm Optimization (PSO), inspired by the 

social behavior of birds flocking or fish schooling, has also been applied to STSP. Wang et 

al. introduced a PSO algorithm that incorporates a swap operator and mutation methods, 

yielding promising results (Kang-Ping et al., 2003), and subsequent improvements by 

Akhand et al. further enhanced PSO's performance (2014). 

Ant Colony Optimization (ACO), inspired by the foraging behavior of ants, has been 

effectively applied to the STSP. Dorigo and Gambardella introduced ACO for the Traveling 

Salesman Problem (TSP), demonstrating its capability in finding optimal routes by 

mimicking the pheromone trail-laying behavior of ants (1997). This method has been 

continuously improved and combined with other techniques to enhance solution quality. 

Similarly, the Artificial Bee Colony (ABC) algorithm, which is based on the foraging 

behavior of bees, has been adapted to STSP. Karaboga and Gorkemli developed the 

Combinatorial ABC (CABC) algorithm to address combinatorial optimization problems like 

STSP (2011). 

The Firefly Algorithm (FA), inspired by the flashing behavior of fireflies, has been 

applied to STSP. The work by Li et al. highlighted FA's effectiveness in finding optimal 

solutions through attraction mechanisms based on firefly brightness (Li et al., 2015). 

Additionally, Panwar and Deep introduced the Discrete Grey Wolf Optimizer (D-GWO), 

which incorporates the 2-opt local search method to enhance solution quality. Their study 

demonstrated that D-GWO outperformed other metaheuristic algorithms in solving TSP 

instances (2021). 

Several hybrid approaches have been developed to combine the strengths of different 

metaheuristics. Deng et al. proposed a hybrid approach that combines Genetic Algorithms 

(GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) to achieve 

better results for STSP (2012). Chen and Chien developed a hybrid method combining 

genetic simulated annealing, ant colony system, and particle swarm optimization (GSA-

ACS-PSOT) to solve TSPs (2011). Additionally, Khan and Maiti used a combination of 2-

opt and 3-opt with the Artificial Bee Colony (ABC) algorithm, which led to significant 

improvements in solution quality (2019). 

The STSP has been the subject of extensive research, leading to the development of 

various exact, heuristic, and metaheuristic approaches. While exact methods guarantee 

optimal solutions, they are often impractical for large instances due to computational 

constraints. Metaheuristics, on the other hand, provide a balance between solution quality 

and computational efficiency, making them more suitable for real-world applications (Blum 

& Roli, 2003). The continuous innovation in hybrid and advanced metaheuristic algorithms 

ensures ongoing improvements in solving the STSP, addressing the ever-growing 

complexity of this classic optimization problem (Krishna et al., 2021). 
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In conclusion, the Symmetric Traveling Salesman Problem has seen significant 

advancements through the development of various algorithms. Researchers have continually 

sought to improve the efficiency and effectiveness of solving this problem, from the 

foundational exact methods to the more recent hybrid metaheuristics. Combining different 

metaheuristic strategies based on natural processes has led to strong solutions that can be 

used in the real world. This shows that STSP research is still relevant and important in 

combinatorial optimization. 

2.3. Asymmetric TSP (ATSP) 

The Asymmetric Traveling Salesman Problem (ATSP) is a well-studied variation of the 

TSP where the cost or distance between two nodes is direction-dependent. This variation is 

crucial for real-world problems like urban logistics, scheduling, and network design, where 

bidirectional travel costs differ. Solutions to the ATSP involve finding the minimum-cost 

route that visits each node exactly once and returns to the starting node, considering these 

asymmetrical travel costs. 

ATSP has been extensively researched, leading to numerous methods to solve this 

complex optimization problem. Over the years, various innovative approaches have 

significantly advanced the field. The foundational work on ATSP began with the Miller-

Tucker-Zemlin (MTZ) model introduced in 1960 (Miller et al., 1960), which provided a 

compact mathematical formulation with subtour elimination constraints (SECs). However, 

the MTZ model faced computational efficiency challenges, especially for large-scale 

problems. In the 1990s, Desrochers and Laporte (1991) improved the MTZ model by 

introducing lifted SECs, enhancing linear programming relaxation, and improving 

computational efficiency. Concurrently, Gouveia and Pires (1999) proposed disaggregation 

techniques for the MTZ model, further boosting the efficiency and effectiveness of solving 

ATSP by offering stronger SECs. 

As exact algorithms struggled with large and complex ATSP instances, researchers 

shifted to heuristic and metaheuristic methods. In 2012, Nagata and Soler (2012) introduced 

a genetic algorithm (GA) for ATSP, focusing on effective crossover and mutation 

operations, which showed superior performance in exploring the solution space and finding 

near-optimal solutions. In 2019, Boryczka and Szwarc (2019) developed an improved 

harmony search algorithm, demonstrating its effectiveness in dynamically adjusting 

parameter values for complex ATSP problems. These advancements highlighted the 

potential of nature-inspired algorithms in addressing ATSP's directional cost variations. 

Osaba et al. (2016; 2018) significantly contributed to solving both symmetric and 

asymmetric TSPs with their discrete bat algorithm (DBA) and discrete water cycle algorithm 

(DWCA). These bio-inspired algorithms leveraged natural behaviors to optimize the search 

process, showing robustness and superior performance in various scenarios. Building on the 

MTZ model, Campuzano et al. (2020) enhanced its computational performance by 

generating valid inequalities from fractional solutions, significantly reducing the number of 

nodes in the branch-and-bound tree, accelerating the convergence of MTZ-type 

formulations, and extending to solve the multiple ATSP (mATSP). 

In 2023, Zhang et al. (2023) introduced the discrete mayfly algorithm (DMA) for the 

spherical ATSP, integrating inver-over, crossover, and 3-opt operators to enhance the search 

process in discrete space. This algorithm demonstrated superiority over other metaheuristics, 
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especially in high-dimensional ATSP instances. This progression from foundational 

mathematical formulations like the MTZ model to advanced metaheuristic algorithms 

highlights continuous efforts to improve computational efficiency and solution quality. 

Burke et al. demonstrated the significant advantages of employing a hybrid approach for 

solving the ATSP (2001). By combining the HyperOpt heuristic, which embeds an exact 

algorithm within a local search framework, with the well-established 3-opt heuristic, they 

were able to leverage the strengths of both methods. This hybrid approach allowed for the 

exhaustive exploration of promising regions in the solution space, leading to better tour 

optimization and overcoming the limitations of using a single heuristic. Integrating this 

hybrid into the Variable Neighborhood Search (VNS) framework further enhanced its 

effectiveness, enabling the algorithm to escape local optima and achieve high-quality 

solutions. The introduction of a "guided shake" within VNS, as opposed to random shakes, 

also contributed to the efficiency of the heuristic. Overall, the hybrid approach proved highly 

capable of handling real-world constraints and provided a powerful tool for solving complex 

ATSP problems in industrial settings. 

3. ARTIFICIAL IMMUNE SYSTEM 

The Artificial Immune System (AIS) is a class of computational algorithms inspired by 

the principles and processes of the biological immune system. It has been effectively applied 

to various complex problem-solving scenarios, including combinatorial optimization. The 

natural immune system's ability to recognize, learn, and remember foreign pathogens 

provides a robust metaphor for developing algorithms that can adapt and optimize solutions 

in dynamic and complex environments (Greensmith et al., 2010). 

3.1. Natural clonal selection 

In the natural immune system, clonal selection refers to the mechanism by which immune 

cells (B cells) that recognize specific antigens are selected for proliferation and 

differentiation. When a B cell binds to an antigen, it becomes activated and undergoes clonal 

expansion, producing many clones. These clones then undergo somatic hypermutation, 

which introduces random mutations into their receptors, increasing the diversity and 

improving the immune system's ability to recognize and neutralize the antigen (Burnet, 

1959). 

1. Antigen Recognition: Each B cell has unique receptors on its surface that can bind to 

specific antigens. When a B cell encounters an antigen that matches its receptors, it 

binds to the antigen. 

2. Activation and Proliferation: Once the antigen is bound, the B cell becomes activated 

and undergoes clonal expansion, rapidly dividing to produce many identical copies 

(clones) of itself. 

3. Differentiation: The cloned B cells differentiate into plasma and memory B cells. 

Plasma cells produce and secrete large quantities of antibodies explicitly targeting the 

antigen. Memory B cells remain in the body to provide a faster response if the same 

antigen is reencountered in the future. 

4. Affinity Maturation: During the proliferation process, somatic hypermutation occurs, 

introducing small mutations in the receptors of the cloned B cells. This process 
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increases the diversity of the receptors, allowing for higher affinity binding to the 

antigen. B cells with higher affinity receptors are selectively expanded. 

5. Elimination of Self-reactive Cells: B cells that bind strongly to self-antigens 

(molecules ordinarily present in the body) are typically eliminated through negative 

selection to prevent autoimmune responses. 

3.2. AIS clonal selection 

Clonal selection is a cornerstone of the Artificial Immune System (AIS) and is inspired 

by the biological process of clonal selection observed in the natural immune system. In the 

context of AIS, clonal selection involves the processes of selection, cloning, and mutation 

of candidate solutions, which are referred to as antibodies (De Castro & Von Zuben, 2001). 

This process allows the algorithm to iteratively improve the quality of solutions and explore 

the solution space effectively.  

AIS clonal selection relies on two key principles (Garrett, 2005): cloning and affinity 

maturation. The steps involved in AIS clonal selection are as follows: 

1. Initialization: An initial population of antibodies (candidate solutions) is generated, 

often randomly or using heuristic methods. 

2. Evaluation: Each antibody's fitness is evaluated using an affinity function, which 

measures how well the candidate solution solves the given problem. The affinity 

function is analogous to the objective function in optimization problems. 

3. Selection: A subset of high-affinity antibodies is selected based on their fitness values. 

These selected antibodies are deemed the most promising solutions and are chosen for 

cloning. The selection process ensures that only the best-performing solutions are 

proliferated. 

4. Cloning: The selected antibodies undergo clonal expansion, where each antibody 

produces a number of clones proportional to its affinity. This process amplifies the 

high-quality solutions, increasing their representation in the population. 

5. Mutation: The cloned antibodies are subjected to hypermutation, which introduces 

random mutations into the clones. The mutation rate is typically inversely 

proportional to the antibody's affinity, meaning that high-affinity antibodies undergo 

fewer mutations, preserving their quality while exploring new potential solutions. 

6. Affinity Maturation: The mutated clones are re-evaluated for their fitness. This step 

ensures that only the clones with improved or high affinity are retained in the 

population. The selection of these high-affinity clones mimics the natural immune 

system's ability to adapt and improve its response to antigens. 

7. Replacement: Low-affinity antibodies in the original population are replaced with the 

high-affinity clones from the clonal expansion and mutation process. This 

replacement ensures that the population's overall quality improves over successive 

iterations. 

8. Termination: The process of evaluation, selection, cloning, mutation, and replacement 

is repeated until a termination criterion is met. This criterion could be a predefined 

number of generations, a satisfactory fitness level, or population convergence. 

Freitas and Timmis (2003) noted that AIS algorithms often neglect inductive and 

positional bias within representation and affinity measures. To address this, we introduced a 
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modified AIS incorporating the Neighborhood Improvement (NI) heuristic, enhancing 

standard AIS performance. 

4. LOCAL SEARCH 

Local search algorithms are critical in combinatorial optimization, particularly for 

solving the Traveling Salesman Problem (TSP) and its asymmetric variant (ATSP). These 

algorithms iteratively improve a candidate solution by exploring its neighborhood, which 

consists of solutions that are "close" in some sense. The goal is to find a locally optimal 

solution that approximates the global optimum. 

4.1. Neighborhood Improvement (NI) 

This research introduces a novel local search heuristic called Neighborhood 

Improvement (NI). This heuristic is designed to enhance the performance of the Artificial 

Immune System (AIS) framework by systematically exploring and improving candidate 

solutions. Specifically tailored for the Traveling Salesman Problem (TSP) and its 

asymmetric variant (ATSP), NI focuses on identifying and relocating the worst-performing 

pairs of cities within a tour to generate improved solutions. The heuristic iteratively refines 

the solution until no further improvements can be found. 

 
Algorithm 1. The procedure of Neighborbood Improvement 

1: Initialize the tour 

2: Initialize improvement as True 

3: while improvement do 

4:    improvement ← False 

5:     best_tour ← tour 

6:     (city1, city2) ← FindWorstPair(tour) 

7:     new_tour ← RelocateCities(tour, city1, city2) 

8:     if CalculateDistance(new_tour) < CalculateDistance(best_tour) then 

9:         best_tour ← new_tour 

10:        improvement ← True 

11:    end if 

12:    tour ← best_tour 

13: end while 

14: return tour 

 

The procedure of NI (illustrated in Figure 1 and detailed in the pseudocode provided in 

Algorithm 1) can be described as follows: 

1. Selection of Candidate Solution: Start with an initial tour generated by the 

optimization algorithm. 

2. Identification of Worst Pair: Determine the pair of cities in the tour that contribute the 

most to the total distance. 

3. Relocation of Cities: Explore the relocation of these cities within the tour and evaluate 

the resulting distance. 

4. Evaluation and Replacement: If the new tour resulting from the relocation is shorter 

than the current tour, update the tour with this new configuration. 
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5. Iteration: Repeat the process until no further improvements can be made, ensuring that 

the tour is locally optimized. 

 

Fig. 1. The Neighborhood Improvement (NI) 

4.2. Integration of NI with AIS 

The NI heuristic is integrated into the AIS framework at three strategic positions, as 

shown in Figure 2 and explained in the pseudocode of Algorithm 2. These positions (NIpos1, 

NIpos2, and NIpos3) are chosen based on their potential to enhance the overall optimization 

process by improving solution quality at different stages of the algorithm. 

 

Fig. 2. Flowchart of the NI integration with AIS 

1. NIpos1 (Before Cloning and Mutation): Applying NI at this position helps refine the 

best antibodies before cloning and mutation. This approach ensures that high-quality 

solutions are further improved, providing a stronger foundation for generating clones. 

By optimizing the best antibody initially, the subsequent clones are more likely to 

explore promising regions of the solution space. 

2. NIpos2 (After Mutation): Integrating NI after the mutation provides an opportunity to 

correct or enhance solutions that were not significantly improved by the initial and 

second mutations. This intermediate application of NI helps to steer the search process 

towards more optimal solutions by addressing suboptimal configurations introduced 

during mutation. 

3. NIpos3 (After Elimination and Replacement): Applying NI at the final stage, after 

eliminating the worst antibodies and creating new ones, ensures that the best solutions 

are refined before the next iteration. This final improvement step helps maintain a 
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high level of solution quality and prevents the algorithm from stagnating in local 

optima. 

 
Algorithm 2. The integrating NI into AIS 

1: P ← InitializeAntibodySize() 

2: Imax ← InitializeMaxIterations() 

3: %B ← InitializePercentageElimination() 

4: population ← GeneratePopulation(P) 

5: for each antibody in population do 

6:     antibody.affinity ← CalculateAffinity(antibody) 

7: end for 

8: I ← 1 

9: while I ≤ Imax do 

10:    for each antibody in population do 

11:        if hybrid in position 1 then 

12:            best_antibody ← FindBestAntibody(population) 

13:            best_antibody ← NeighborhoodImprovement(best_antibody) 

14:        end if 

15:        NC ← CalculateNumberOfClones(antibody) 

16:        clones ← CloneAntibody(antibody, NC) 

17:        for each clone in clones do 

18:            mutated_clone ← ApplyFirstMutation(clone) 

19:            mutated_clone.affinity ← CalculateAffinity(mutated_clone) 

20:            if mutated_clone.affinity > clone.affinity then 

21:                clone ← mutated_clone 

22:            else 

23:                mutated_clone ← ApplySecondMutation(clone) 

24:                mutated_clone.affinity ← CalculateAffinity(mutated_clone) 

25:                if mutated_clone.affinity > clone.affinity then 

26:                    clone ← mutated_clone 

27:                else 

28:                    if hybrid in position 2 then 

29:                        clone ← NeighborhoodImprovement(clone) 

30:                    end if 

31:                end if 

32:            end if 

33:        end for 

34:        antibody ← clone 

35:    end for 

36:    population ← EliminateWorstAntibodies(population, %B) 

37:    new_antibodies ← GenerateNewAntibodies(%B) 

38:    population.extend(new_antibodies) 

39:    if hybrid in position 3 then 

40:        best_antibody ← FindBestAntibody(population) 

41:        best_antibody ← NeighborhoodImprovement(best_antibody) 

42:    end if 

43:    I ← I + 1 

44: end while 

45: best_solution ← FindBestAntibody(population) 

46: return best_solution 
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5. EXPERIMENTAL DESIGN AND ANALYSIS 

In this work, the instant datasets of symmetric TSP (STSP) and asymmetric TSP (ATSP) 

provided in the TSP library (Reinelt, 1991) were used in all experiments. The tours in these 

datasets are measured using Euclidean distance, which is an abstract, dimensionless unit 

representing the total length of the paths traveled between cities. The experiments were 

conducted on a machine with an Intel Core i7-12700H processor, 16 GB of RAM, and an 

NVIDIA RTX 3050 GPU, running Windows 11. The proposed methods were developed 

using Python 3.9 with the NumPy and SciPy libraries for numerical computations.  

The study consisted of two main experiments: Experiment A, which investigated the 

appropriate technique for hybridizing AIS with NI, and Experiment B, designed to 

benchmark the original AIS and improved AIS. 

5.1. Experiment A 

The objective of Experiment A was to determine the optimal positions for integrating 

Neighborhood Improvement (NI) within the Artificial Immune System (AIS) to enhance its 

performance. To achieve this, the total number of searches, determined by the number of 

candidate solutions multiplied by the number of iterations, was fixed at 5,000 generated 

solutions. 

Tab. 1. Results of experiment A for STSP instances 

Problem  

sizes 

Hybrid AIS 

Types 

Quality of solutions (tours) obtained 
Time (s) 

SD Shortest Longest Average 

eil51 

AIS+NIpos1 7.74 438 472 452.47 8.47 

AIS+NIpos2 8.54 425 464 427.51 19.13 

AIS+NIpos3 8.45 436 470 450.20 8.47 

berlin52 

AIS+NIpos1 205.8 7787 8640 8276.67 8.67 

AIS+NIpos2 294.62 7542 8148 7676.40 18.13 

AIS+NIpos3 188.98 7891 8712 8256.03 8.70 

pr76 

AIS+NIpos1 4365.12 124071 143657 132119.33 34.08 

AIS+NIpos2 4173.78 121069 139274 130034.27 28.47 

AIS+NIpos3 4187.74 123977 140303 130886.17 10.97 

kroA100 

AIS+NIpos1 1168.93 29530 34520 32106.20 13.67 

AIS+NIpos2 1207.85 28867 33704 30900.77 40.80 

AIS+NIpos3 957.09 29932 33274 31351.47 13.53 

eil101 

AIS+NIpos1 24.76 790 886 845.97 13.37 

AIS+NIpos2 24.88 784 873 834.17 41.00 

AIS+NIpos3 24.37 792 878 838.27 13.30 

bier127 

AIS+NIpos1 5255.51 170032 193897 181716.97 37.53 

AIS+NIpos2 5135.55 165274 186768 179777.73 100.53 

AIS+NIpos3 5759.61 170559 195591 182738.73 16.40 

rat195 

AIS+NIpos1 189.54 4944 5569 5303.60 81.17 

AIS+NIpos2 196.19 4767 5448 5075.37 320.37 

AIS+NIpos3 231.54 4897 5598 5264.20 79.13 

a280 

AIS+NIpos1 376.263 8046 9744 8681.00 90.23 

AIS+NIpos2 268.47 7668 8972 8163.80 343.67 

AIS+NIpos3 319.32 7669 9126 8487.17 37.00 
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Higher values of generated solutions increase the likelihood of finding reasonable 

solutions but require longer computational times. The AIS parameters used in this 

experiment were as follows: the number of antibodies (P) was set to 10, the number of 

iterations (Imax) was set to 500, and the percentage of antibody elimination (%B) was set to 

10%. 

Each algorithm's computational runs were repeated 30 times with different random seed 

numbers for each TSP dataset. The experimental results were analyzed in terms of standard 

deviation (SD), the shortest, longest, and average distance of tours obtained from each 

method, and execution time (in seconds), as shown in Tables 1 and 2 for STSP and ATSP, 

respectively. 

Table 1 shows the results for solving STSP. It can be seen that the quality of the traveled 

tour in terms of average solutions (obtained from AIS+NIpos2) was considerably better than 

the results for AIS+NIpos1 and AIS+NIpos3 for almost all problem sizes except the smallest 

STSP instance (eil51) for which AIS+NIpos3 found the shortest average tour. Moreover, the 

experimental results for ATSP instances shown in Table 2 were similar to the findings for 

STSP. The shortest tour of the smallest instance (br17) was obtained using all methods. For 

the remaining instances, AIS+NIpos2 outperformed AIS+NIpos1 and AIS+NIpos3 in terms of 

the average solution. However, higher performance usually requires extended computational 

time, as Tables 1 and 2 show. 

Tab. 2. Results of experiment A for ATSP instances 

Problem  

sizes 

Hybrid AIS 

Types 

Quality of solutions (tours) obtained 
Time (s) 

SD Shortest Longest Average 

br17 

AIS+NIpos1 0 39 39 39.00 11.47 

AIS+NIpos2 0 39 39 39.00 11.57 

AIS+NIpos3 0 39 39 39.00 11.47 

ftv35 

AIS+NIpos1 94.21 1595 2054 1808.63 16.17 

AIS+NIpos2 106.14 1513 1998 1804.03 31.80 

AIS+NIpos3 96.83 1644 2057 1821.5 16.17 

ft53 

AIS+NIpos1 685.64 8347 11786 10033.3 17.37 

AIS+NIpos2 663.01 8268 11446 9828.27 44.20 

AIS+NIpos3 553.45 8985 11424 9958.87 17.27 

ftv70 

AIS+NIpos1 176.52 3280 3960 3565.43 25.40 

AIS+NIpos2 220.94 2969 3904 3404.33 87.00 

AIS+NIpos3 175.65 3126 3872 3522.07 25.37 

kro124p 

AIS+NIpos1 2760.56 50935 58005.8 58005.80 34.70 

AIS+NIpos2 1853.27 49777 61364 57116.50 46.47 

AIS+NIpos3 3238.56 50912 63796 57737.50 36.00 

ftv170 

AIS+NIpos1 476.76 9196 11001 10294.90 58.60 

AIS+NIpos2 439.14 8937 10597 9765.97 202.07 

AIS+NIpos3 540.19 9152 11559 10223.40 58.53 

rbg323 

AIS+NIpos1 98.52 2868 3313 3081.43 124.57 

AIS+NIpos2 89.56 2790 3111 2946.43 378.03 

AIS+NIpos3 84.66 2909 3293 3081.93 115.83 

rbg443 

AIS+NIpos1 130.78 4699 5211 4936.47 175.17 

AIS+NIpos2 142.972 4503 5133 4757.30 592.13 

AIS+NIpos3 128.98 4611 4872.77 4872.77 173.23 
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The results indicate that integrating NI at position 2 within the AIS (AIS+NIpos2) 

consistently yielded better average solutions than integrating NI at positions 1 and 3. This 

improvement can be attributed to several factors: 

1. Target of Improvement: The first and third positions for integrating NI target the best 

antibody directly, aiming to refine the top-performing solution at the beginning and 

end of the iterations. In contrast, the second position applies NI to clones, meaning 

the entire antibody population undergoes improvement, potentially leading to a more 

widespread enhancement of solutions. 

2. Diversity and Quality: Applying NI to the clones at position 2 improves the overall 

quality of the antibody population. This approach ensures that the diversity of 

solutions is maintained while simultaneously enhancing the quality of multiple 

solutions rather than focusing solely on the best one. This broader application can 

prevent premature convergence and promote better solution space exploration. 

3. Effective Use of Computational Resources: Computational resources are used more 

effectively by improving the clones during the iterative process. Early-stage 

improvements help guide the search process towards better regions of the solution 

space, while late-stage refinements ensure that the best solutions are adequately 

polished. 

4. Balanced Search Strategy: Integrating NI at position 2 provides a balanced approach 

between exploration and exploitation. This mid-iteration improvement helps adapt the 

search strategy dynamically, allowing the algorithm to explore new solutions initially 

and then focus on refining them, leading to better overall performance. 

In conclusion, the superior performance of AIS+NIpos2 can be attributed to its strategy of 

improving the entire population of clones rather than focusing solely on the best antibody. 

This broader application of NI promotes diversity and quality in the solutions, leading to 

more effective use of computational resources and a balanced search strategy that enhances 

the overall performance of the AIS. 

5.2. Experiment B 

Experiment B aimed to benchmark the performance of AIS with and without 

improvement techniques.  

Tab. 3. AIS Algorithms and parameter settings 

AIS  

algorithm 
Detail The setting parameters of AIS 

AIS 

AIS without improving technique and  

setting parameters according to  

those used in other research (Chandrasekaran 

et al., 2006). 

P = 10, Imax = 500, %B = 30,  

inverse and pairwise interchange mutations 

AIS-t AIS with fine-tuned parameters. 
P = 10, Imax = 500, %B = 10,  

inversion and shift operation mutations 

AIS-h 
AIS with hybridizing with other heuristics 

(Nipos2). 

P = 10, Imax = 500, %B = 30,  

inverse and pairwise interchange mutations, 

hybridized with NIpos2 

AIS-th 
AIS with both fine-tuning and hybridizing  

techniques. (same as AIS+NIpos2) 

P = 10, Imax = 500, %B = 10,  

inversion and shift operation mutations,  

hybridizing with NIpos2 
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The study focused on comparing four types of AIS configurations, each with specific 

parameter settings for antibody size (P), number of iterations (Imax), and percentage of 

antibody elimination (%B). Table 3 provides a detailed description of these AIS algorithms 

and their respective parameter settings. 

The different settings for %B and the AIS with tuning techniques (indexed with t) were 

used to study the impact of mutation operations (inversion and shift operation mutations). 

As established in Experiment A, the hybridizing technique (indexed with h) involved 

modifying AIS using NIpos2. 

Computational runs using each AIS type were repeated 30 times with different random 

seed numbers for each symmetric and asymmetric TSP instant dataset. Tables 4 and 5 present 

the experimental results regarding both the quality of the solutions obtained and 

computational time usage. 

Tab. 4. Performance comparison for STSP 

Problem  

sizes 

AIS  

algorithms 

Quality of solutions (tours) obtained 
Time (s) 

SD Shortest Longest Average 

eil51 

AIS 22.35 551 592.01 592.07 6.06 

AIS-t 8.83 442 480 460.10 9.77 

AIS-h 21.27 475 567 529.70 18.43 

AIS-th 8.54 425 464 427.57 19.13 

berlin52 

AIS 429.20 9760 11517 10552.60 4.47 

AIS-t 232.50 7848 8921 8291.90 5.57 

AIS-h 324.39 8761 10067 9349.70 18.50 

AIS-th 294.62 7553 8748 8122.40 18.13 

pr76 

AIS 15321.39 214455 292037 241995.10 8.17 

AIS-t 4193.55 127438 143004 136821.20 8.23 

AIS-h 12359.29 171977 215772 194261.57 63.30 

AIS-th 4173.78 121069 139274 130034.27 28.47 

kroA100 

AIS 3008.92 46241 58808 51667.97 8.83 

AIS-t 1234.97 32549 38073 34454.67 15.47 

AIS-h 2255.87 34825 43361 39685.03 48.37 

AIS-th 1207.85 28867 33704 30900.77 40.80 

eil101 

AIS 50.37 1125 1346 1245.00 8.93 

AIS-t 21.80 848 940 907.30 15.60 

AIS-h 40.59 960 1110 1018.03 54.50 

AIS-th 24.88 784 873 834.17 41.00 

bier127 

AIS 7146.29 235023 264670 248642.57 11.60 

AIS-t 6269.90 180596 207933 195079.10 14.60 

AIS-h 9451.14 189079 225388 206012.53 59.50 

AIS-th 5135.55 165274 186768 179777.73 100.53 

rat195 

AIS 413.39 9823 11632 10519.90 19.57 

AIS-t 123.84 6052 6505 6286.33 24.27 

AIS-h 507.18 6041 8305 7489.80 104.93 

AIS-th 196.19 4767 5448 5075.37 320.37 

a280 

AIS 574.76 15445 17779 16442.23 29.30 

AIS-t 238.55 10740 11742 11222.50 36.73 

AIS-h 497.22 9984 12032 11050.17 524.60 

AIS-th 268.47 7668 8972 8163.80 343.67 

 

Tables 4 and 5 show that the performance of conventional AIS was outperformed by AIS 

with improving techniques (AIS-t, AIS-h, and AIS-th) across all datasets. The average 
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distance of the tours obtained using AIS-t was relatively better than those generated using 

AIS-h for all ATSP and 7 out of 8 STSP instant datasets. These results confirm that optimal 

parameter settings, especially for metaheuristic algorithms, significantly affect the quality 

of the solution. 

Furthermore, it was found that the modified AIS (combining both tuning and hybridizing 

techniques as AIS-th) outperformed AIS, AIS-t, and AIS-h in terms of the quality of the 

solutions obtained for both STSP and ATSP instant datasets. However, the average 

execution time taken by AIS-th was the longest, followed by AIS-h, AIS-t, and AIS. 

Tab. 5. Performance comparison for ATSP 

Problem  

sizes 

AIS  

algorithms 

Quality of solutions (tours) obtained 
Time (s) 

SD Shortest Longest Average 

br17 

AIS 2.57 39 53 39.57 11.10 

AIS-t 0 39 39 39.00 11.27 

AIS-h 0 39 39 39.00 11.50 

AIS-th 0 39 39 39.00 11.57 

ftv35 

AIS 159.22 1986 2594 2221.83 13.40 

AIS-t 90.58 1625 1984 1823.07 15.20 

AIS-h 107.92 1831 2294 2032.20 30.03 

AIS-th 106.14 1613 1998 1804.03 31.80 

ft53 

AIS 1090.36 11538 15337 13344.20 15.07 

AIS-t 610.83 8950 11415 10078.10 15.77 

AIS-h 976.00 10715 14484 12551.80 28.37 

AIS-th 663.01 8468 11446 9828.27 44.20 

ftv70 

AIS 353.81 4283 5758 4996.57 16.83 

AIS-t 185.15 3133 4039 3662.37 23.03 

AIS-h 219.44 3667 4507 4181.07 43.70 

AIS-th 220.94 2969 3904 3404.33 87.00 

kro124p 

AIS 4590.96 71465 89759 79640.50 20.10 

AIS-t 2396.78 55892 65199 61567.80 31.00 

AIS-h 4058.04 57070 74149 64503.40 64.63 

AIS-th 1853.27 53777 61364 57116.50 46.47 

ftv170 

AIS 994.43 13583 17660 15885.20 28.50 

AIS-t 341.89 10715 12163 11547.50 51.70 

AIS-h 479.93 10932 13344 12366.60 135.90 

AIS-th 439.14 8937 10597 9765.97 202.07 

rbg323 

AIS 87.18 5058 5736 5276.80 80.07 

AIS-t 67.31 3411 3673 3551.70 107.87 

AIS-h 200.14 3832 4692 4191.97 232.17 

AIS-th 89.56 2790 3111 2946.43 378.03 

rbg443 

AIS 77.90 7094 7462 7303.30 149.23 

AIS-t 64.39 5250 5514 5387.33 152.80 

AIS-h 204.74 5835 6604 6124.77 376.20 

AIS-th 142.972 4503 5133 4757.33 592.13 

 

The results clearly emphasize the importance of fine-tuning parameters and hybridizing 

with NI. Fine-tuning (as seen in AIS-t) optimizes the algorithm's performance by adjusting 

parameters to suit the specific problem better, resulting in improved solution quality and 

consistency. Hybridization (as seen in AIS-h) further enhances the algorithm by 

incorporating additional heuristics, such as NI, to refine the search process and avoid local 

optima. 
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Figures 3 and 4 present the percentage improvements of AIS variants for both STSP and 

ATSP problems. In Figure 3, the AIS-th variant demonstrates the highest improvement for 

the majority of STSP problems, with significant gains observed for pr76 (46.27%) and a280 

(50.36%). Similarly, Figure 4 shows the AIS-th variant continuing to outperform other 

variants in ASTSP problems, particularly in rbg443 (34.84%) and ft53 (26.35%). These 

figures highlight the consistent advantage of hybridization and parameter tuning across 

different problem sizes. 

 

Fig. 3. Percentage improvement of AIS variants over baseline (STSP) 

 

Fig. 4. Percentage improvement of AIS variants over baseline (ATSP) 
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To ensure statistical significance, a paired t-test was applied to compare the performance 

of each algorithm variant. The comparison is based on three key metrics: Shortest Tours (the 

best possible solution found by the algorithm), Average Tours (the average performance 

across multiple runs), and Best-to-Worst Difference (the difference between the longest and 

shortest tours found by each algorithm, indicating performance consistency). 

A paired t-test was used to statistically compare the performance of each AIS variant with 

the others across these metrics. The results, summarized in Table 6, report only the p-values 

for each paired comparison. 

 Tab. 6. Paired t-test P-values for Shortest Tours, Average Tours and Best-to-Worst Difference 

Comparison 
Shortest Tours 

(p-value) 

Average Tours 

(p-value) 

Best-to-Worse Difference 

(p-value) 

AIS vs AIS-t 0.028 0.12 0.06 

AIS vs AIS-t 0.037 0.08 0.10 

AIS vs AIS-t 0.023 0.10 0.04 

 

The Shortest Tours comparison measures the best solution found by each algorithm. The 

p-values for the comparisons between AIS and its variants (AIS-t, AIS-h, AIS-th) are all 

below the 0.05 threshold (0.028, 0.037, and 0.023, respectively). This indicates that the 

difference between AIS and each variant is statistically significant, suggesting that the tuned 

and hybrid version of AIS consistently outperforms the core AIS in finding the shortest tours. 

The Average Tours metric provides a broader view of the algorithms' performance across 

multiple runs. None of the p-values in this category (0.12, 0.08, and 0.10) fall below the 

significance threshold of 0.05, indicating that the differences in average performance 

between AIS and its variants are not statistically significant. This suggests that while the 

variants may occasionally find better solutions, their average performance is comparable to 

that of the core AIS algorithm. 

The Best-to-Worst Difference reflects the variability or consistency of the algorithms. A 

lower difference indicates more consistent performance. The comparison between AIS and 

AIS-th shows a significant p-value of 0.04, indicating that AIS-th is more consistent in 

performance than AIS. However, no significant differences were found between AIS and the 

other variants (AIS-t and AIS-h), with p-values of 0.06 and 0.10, respectively. 

The results demonstrate that the AIS variants, particularly AIS-th, are capable of finding 

shorter tours and exhibit more consistent performance compared to the core AIS algorithm. 

However, in terms of average performance, the differences are not statistically significant, 

suggesting that the overall improvements provided by the variants may be more subtle and 

situational. These findings highlight the importance of selecting the appropriate variant of 

AIS based on specific performance goals, such as optimizing the best solution or ensuring 

consistent performance. 

This analysis indicates that the hybrid and tuned AIS variants offer tangible 

improvements over the core AIS, particularly when focusing on the best solution or 

performance consistency. 
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6. CONCLUSIONS 

This study demonstrates the effectiveness of enhancing the Artificial Immune System 

(AIS) through hybridization with the Neighborhood Improvement (NI) heuristic and fine-

tuning parameters for solving the Traveling Salesman Problem (TSP). The research was 

conducted in two main experiments: Experiment A, which investigated the optimal positions 

for integrating NI within AIS, and Experiment B, which benchmarked the performance of 

various AIS configurations. 

Experiment A identified that integrating NI at position 2 (AIS+NIpos2) consistently 

yielded better average solutions than integrating NI at positions 1 and 3 for almost all 

problem sizes. This strategic integration improves the overall quality and diversity of the 

antibody population by refining solutions in the middle of the iterative process, leading to a 

more balanced search strategy. Experiment B demonstrated the importance of fine-tuning 

parameters and hybridizing with NI. The results showed that AIS configurations with both 

fine-tuning and hybridization (AIS-th) outperformed other configurations regarding solution 

quality for both symmetric and asymmetric TSP datasets. Despite requiring more 

computational time, the superior quality of solutions obtained by AIS-th justifies the 

increased computational effort. 

The study contributes to the field of combinatorial optimization by providing a detailed 

analysis of how hybridization and parameter tuning can enhance AIS performance. The 

proposed approach of integrating NI within AIS at optimal positions and fine-tuning 

parameters can be generalized and applied to other combinatorial optimization problems 

beyond TSP. The findings underscore the importance of strategic hybridization and 

parameter tuning in developing robust optimization algorithms. Combining these techniques 

allows for more effective exploration and exploitation of the solution space, leading to 

higher-quality solutions and more efficient use of computational resources. 

Future research could explore adaptive strategies for hybridization and real-time 

parameter adjustment to enhance AIS performance further. Additionally, extending the 

proposed approach to other combinatorial optimization problems, such as scheduling and 

resource allocation, could provide valuable insights into the generalizability of the 

techniques. Integrating other local search heuristics and advanced metaheuristic frameworks 

with AIS could also yield significant improvements. 

In conclusion, this study demonstrates the potential of hybridizing AIS with NI and fine-

tuning parameters to solve complex optimization problems effectively. The proposed 

approach enhances the performance of AIS and provides a foundation for future research in 

this area. 
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