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Abstract 

This study aims to map three main benthic habitats (coral, seagrass, and sand) in 

Kapota Atoll (Wakatobi, Indonesia) using a single-beam echosounder (SBES) Simrad 

EK15. The acoustic data were processed using Sonar5-Pro software. Eight acoustic 

parameters were used as input for the classification and prediction of benthic habitats, 

including depth (D), five acoustic parameters of the first echo (BD, BP, AttSv1, DecSv1, 

and AttDecSv1), and cumulative energy of the second and third echoes (AttDecSv2 and 

AttDecSv3). The classification and prediction process of benthic habitats uses two 

machine learning algorithms, Random Forest (RF) and Support Vector Machine 

(SVM), in XLSTAT Basic+ software. The study results show that 49 combinations of 

acoustic parameters produce benthic habitat maps that meet the minimum accuracy 

standards for benthic habitat mapping (≥60%). Using eight acoustic parameters 

produces a more accurate benthic habitat map than using only two main SBES 

parameters (DecSv1 and AttDecSv2 parameters or E1 and E2 in the RoxAnn system 

indicating the roughness and hardness indices). The RF and SVM algorithms produce 

benthic habitat maps with the highest accuracy of 79.33% and 78.67%, respectively. 

Each acoustic parameter has a different importance for the classification of benthic 

habitats, where the order of importance of each acoustic parameter in the overall 

classification follows the following order: AttDecSv2 > D > DecSv1 > BD > AttDecSv3 

> AttSv1 > AttDecSv1 > BP. Overall, using more acoustic parameters can significantly 

improve the accuracy of benthic habitat maps. 
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1. INTRODUCTION 

Developments in benthic habitat mapping have resulted in various approaches, data 

types, technologies, and models that can be used to understand and map the distribution 

patterns of biotic and abiotic components on the seafloor (Misiuk & Brown, 2024). Various 

hydroacoustic instruments for seafloor habitat mapping have developed rapidly with varying 

degrees of effectiveness (Anderson et al., 2008; Brown et al., 2011; Pijanowski & Brown, 

2022; Wölfl et al., 2019). Scientific echosounders, such as single-beam echosounders 

(SBES), have been reported as reliable instruments for detecting objects in the water column 

(Manik et al., 2014; Moszynski & Hedgepeth, 2000; Pujiyati et al., 2022) and for classifying 

and mapping the seafloor (Henriques et al., 2015; Lee & Lin, 2018; McLaren et al., 2019; 

Reshitnyk et al., 2014; Sánchez-Carnero et al., 2023; Solikin et al., 2018; Vassallo et al., 

2018). SBES have become standard instruments in recent decades due to their affordable 

cost (Anderson et al., 2008; Fajaryanti & Kang, 2019; Sánchez-Carnero et al., 2023) and 

standard data processing procedures (Anderson et al., 2008). 

The accuracy level in the classification process and spatial mapping of benthic habitats 

and seabed substrates is a fundamental problem. The selection of classification methods is 

an important factor in improving map accuracy (Shao et al., 2021). Various studies have 

used multiple methods to classify and map seabed habitats or substrates from SBES 

instruments, such as Principal Component Analysis (PCA) (Bartholomä et al., 2020; Bravo 

& Grant, 2020; Fajaryanti & Kang, 2019; Freitas et al., 2011; Reshitnyk et al., 2014) and 

clustering analysis (Henriques et al., 2015; Lee & Lin, 2018; Poulain et al., 2011; Reshitnyk 

et al., 2014; Riegl & Purkis, 2005). Most of the classifications using PCA and clustering 

analysis are based on the working principles of the software used, namely the QTC View 

system and RoxAnn system. 

Many studies have used machine learning classification methods to classify seabed 

habitats based on acoustic backscatter strength and characteristics. The use of various 

machine learning algorithms to classify hydroacoustic data has increased significantly and 

has replaced manual interpretation (Misiuk & Brown, 2024), and has shown more accurate 

benthic habitat classification results in several studies (Gumusay et al., 2018; Misiuk & 

Brown, 2024; Shao et al., 2021). 

Maps of benthic habitats and seabed substrates produced from SBES data have a very 

variable level of accuracy, depending on the number of acoustic parameters used as input in 

the classification process (Bejarano et al., 2010; Sánchez-Carnero et al., 2023; Shao et al., 

2021). This study uses eight acoustic parameters, namely the first echo to the third echo 

acoustic parameters from the seabed. The assumption is that each type of seabed benthic will 

have different third echo acoustic characteristics, as in the first and second echo, and may 

play a role as an input parameter in the classification process. Until now, no study has 

defined the role of acoustic parameters in the third echo from the seabed and used it as an 

input parameter in classifying benthic habitats or seabed substrates. Therefore, this study 

aims to: (1) map benthic habitats (coral, seagrass, and sand) using various combinations of 

first echo to third echo acoustic parameters and using two machine learning algorithms for 

classification and prediction of benthic habitats, namely Random Forest (RF) and Support 

Vector Machine (SVM); and (2) determine the order of importance of acoustic parameters 

in the classification process and their influence on increasing the accuracy of benthic habitat 

maps. 
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2. METHODOLOGY 

2.1. Acoustic data recording and ground-truth data collection 

An acoustic survey to record acoustic backscatter energy from the seabed was conducted 

at Kapota Atoll, located in the waters of Wakatobi National Park, Wakatobi Regency, 

Indonesia (Figure 1). The hydroacoustic instrument used was the SBES Simrad EK15 

operating at a frequency of 200 kHz. A total of 46 acoustic survey track with an east-west 

orientation in the eastern part of Kapota Atoll (Figure 1c). The transducer was placed on the 

ship's starboard side at a depth of 0.5 m. The shipping speed during the acoustic survey was 

3.5 to 4.5 knots, which is the ideal ship speed range for acoustic surveys (Sánchez-Carnero 

et al., 2023; Shao et al., 2021). 

The ground-truth data collected represented three main types of benthic habitats in 

shallow waters: coral, sand, and seagrass. A total of 211 ground-truth data points were 

obtained, consisting of 176 data points collected right on the acoustic track and 35 data points 

not on the acoustic track (Figure 1c). Garmin 65s multi-band GPS was used to determine the 

coordinate position of each ground-truth data point. A total of 61 data points along the 

acoustic track were used as training data, where the acoustic parameter values in each 

training data could be determined by finding the closest point between the training data point 

and the acoustic data ping point. Furthermore, a 10 m buffer was created around the training 

data points, and several acoustic data pings were taken as training data. The similarity of 

benthic habitat types between the training data and acoustic data visually using high-

resolution imagery (SPOT-6 imagery) was considered when using the acoustic data pings in 

the 10 m buffer as training data. This process resulted in 506 acoustic data as training data 

used in the classification process. 

 

Fig. 1. Map of the study area: (a) waters of Wakatobi Regency (Indonesia), (b) Kapota Atoll, and (c) 

acoustic survey area 
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2.2. Acoustic data recording and ground-truth data collection 

Acoustic data was processed using Sonar5-Pro software (Balk & Lindem, 2015). Sonar5-

Pro is a tool that performs well in extracting acoustic data up to the third echo from the 

seabed. Bottom Detection tools are used to detect the seabed automatically (Balk & Lindem, 

2015; Hilgert et al., 2016). The Microphyte Top Line algorithm is used to detect the seabed 

surface so that vegetation growing on the seabed surface is detected below the seabed surface 

line. The threshold value to determine the seabed surface is -40 dB (Shao et al., 2021). 

Each acoustic data ping is used as a single sample size in the classification process. The 

acoustic parameter values of the first echo to the third echo can be exported using Sonar5-

Pro. The acoustic parameters used in the classification and prediction process include depth 

(D), bottom detection (BD; backscattered energy on the seabed surface), bottom peak (BP; 

echo peak from the seabed), attack phase energy or the energy of the first part on the first 

echo (AttSv1), decay phase energy or the energy of the last part on the first echo (DecSv1), 

and cumulative energy in the first echo (AttDecSv1), second echo (AttDecSv2), and third 

echo (AttDecSv3). An illustration of the seabed echoes showing the eight acoustic 

parameters is presented in Figure 2. The roughness and hardness energy of the seabed in the 

RoxAnn system are different from Sonar5-Pro (Hilgert et al., 2016; Poulain et al., 2011). 

The energy at the tail of the first echo shows the roughness index (E1) by the RoxAnn system 

and the DecSv1 energy by Sonar5-Pro, which is obtained directly from Sonar5-Pro. The 

entire second echo energy shows the hardness index (E2) by the RoxAnn system and are 

assessed from the AttDecSv2 energy in Sonar5-Pro. 

 

Fig. 2. Illustration of the division of the first, second, and third seabed echoes, as well as the acoustic 

parameters used as classification input 
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Mathematically, the AttSvx and DecSvx values of the first, second and third echo can be 

calculated using equations (Balk & Lindem, 2015): 

 𝐴𝑡𝑡𝑆𝑣𝑥 = 10log (
1

𝑁𝐴
∑ (10𝑆𝑣1/10𝐴𝐼2

𝑖=𝐴𝐼1
)       (1) 

 𝐷𝑒𝑐𝑆𝑣𝑥 = 10log (
1

𝑁𝐷
∑ (10𝑆𝑣1/10𝐷𝐼2

𝑖=𝐷𝐼1
)       (2) 

where:    𝑥 – the echoes from the first, second or third bottom, 

𝑁𝐴 – number of attack samples (8), 

   𝑁𝐷 – number of decay samples (24), 

   𝐴𝐼1 – bottom index. 

AI2, DI1, and DI2 can be calculated using equations (Balk & Lindem, 2015): 

 𝐴𝐼2 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑖𝑛𝑑𝑒𝑥 + 𝐴𝑡𝑡𝑎𝑐𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠       (3) 

 𝐷𝐼1 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑖𝑛𝑑𝑒𝑥 + 𝐴𝑡𝑡𝑎𝑐𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 1       (4) 

 𝐷𝐼2 = 𝐵𝑜𝑡𝑡𝑜𝑚 𝑖𝑛𝑑𝑒𝑥 + 𝐴𝑡𝑡𝑎𝑐𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 1 + 𝐷𝑒𝑐𝑎𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠    (5) 

The values of AttDecSv1, AttDecSv2, and AttDecSv3 can be calculated from the values 

of AttSvx and DecSvx at each echo using the equation (Balk & Lindem, 2015; Poulain et al., 

2011): 

 𝐴𝑡𝑡𝐷𝑒𝑐𝑆𝑣𝑥 = 10log (
1

𝑁𝐴+𝑁𝐷
(NA×10

Atti
10  + ND×10

Deci
10 ))     (6) 

In determining the AttDecSv value, the first attack sample is not used when integrated 

into the DecSv value, so the ND value used is 23 (Poulain et al., 2011). 

2.3. Training data classification and benthic habitat prediction 

Classification of 506 labelled acoustic data (training data) and prediction of benthic 

habitats were performed using XLSTAT Basic+ software (Lumivero, 2023). The results of 

the training data classification were used to predict observation data (16447 unlabeled 

acoustic data) into certain benthic habitat classes based on the values of their acoustic 

parameters, which were used as input variables in the classification process. There were 

three schemes of acoustic parameter combinations in the classification and prediction 

process of benthic habitats (Table 1), namely using only the first echo acoustic parameter 

(14 combinations), a combination of the first and second echo acoustic parameters (10 

combinations), and a combination of the first, second, and third echo (10 combinations). 
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Tab. 1. Combination of acoustic parameters for the classification process 

Combination Acoustic parameters 

First echo 

A1 AttSv1-DecSv1 

A2 BD-AttSv1-DecSv1 

A3 BP-AttSv1-DecSv1 

A4 BD-BP-AttSv1-DecSv1 

A5 D-AttSv1-DecSv1 

A6 D-BP-AttSv1-DecSv1 

A7 D-BD-AttSv1-DecSv1 

A8 D-BP-DecSv1-AttDecSv1 

A9 D-BD-DeSv1-AttDecSv1 

A10 D-AttSv1-DecSv1-AttDecSv1 

A11 D-BD-BP-AttSv1-DecSv1 

A12 D-BD-AttSv1-DecSv1-AttDecSv1 

A13 D-BP-AttSv1-DecSv1-AttDecSv1 

A14 D-BD-BP-AttSv1-DecSv1-AttDecSv1 

First and second echoes 

B1 DecSv1-AttDecSv2 

B2 D-DecSv1-AttDecSv2 

B3 BP1-DecSv1-AttDecSv2 

B4 D-BP-DecSv1-AttDecSv2 

B5 BD-DecSv1-AttDecSv2 

B6 D-BD-DecSv1-AttDecSv2 

B7 BD-BP-DecSv1-AttDecSv2 

B8 D-BD-BP-DecSv1-AttDecSv2 

B9 D-BD-BP-AttSv1-DecSv1-AttDecSv2 

B10 D-BD-BP-AttSv1-DecSv1-AttDecSv1-AttDecSv2 

First, second, and third echoes 

C1 DecSv1-AttDecSv2-AttDecSv3 

C2 D-DecSv1-AttDecSv2-AttDecSv3 

C3 BP1-DecSv1-AttDecSv2-AttDecSv3 

C4 D-BP-DecSv1-AttDecSv2-AttDecSv3 

C5 BD-DecSv1-AttDecSv2-AttDecSv3 

C6 D-BD-DecSv1-AttDecSv2-AttDecSv3 

C7 BD-BP-DecSv1-AttDecSv2-AttDecSv3 

C8 D-BD-BP-DecSv1-AttDecSv2-AttDecSv3 

C9 D-BD-BP-AttSv1-DecSv1-AttDecSv2-AttDecSv3 

C10 D-BD-BP-AttSv1-DecSv1-AttDecSv1-AttDecSv2-AttDecSv3 

 

The machine learning algorithms used for the classification and prediction process of 

benthic habitats are the RF and SVM. The RF algorithm is one of the algorithms that 

implement multiple decision trees that use a combination of tree predictors, where each tree 

depends on the value of an independent random sample vector (Belgiu & Drăguţ, 2016; 

Breiman, 2001). This study uses the Bagging (bootstrap aggregating) method for benthic 

habitat classification (Breiman, 1996). In the Bagging method, classification trees are built 

from different bootstrap samples, modifying predictions and building a diverse collection of 

predictors. Accuracy increases proportionally with the number of predictors at a certain level 
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(Gislason et al., 2006). For classification optimization in this study, the scales applied to the 

minimum node size, minimum son size, and maximum depth tree are 2, 1 and 25, 

respectively. The number of trees applied is 500, as recommended by Belgiu and Drăguţ 

(2016). 

The SVM algorithm is a non-parametric technique developed from statistical learning 

theory (Vapnik, 1999). The SVM algorithm exploits a model based on the concept of margin 

maximization, where the algorithm will select a hyperplane that separates the data set into 

two different classes by maximizing the distance between the hyperplane and the nearest 

observation from the training data set (Cortes & Vapnik, 1995). In this study, the kernel 

function used for benthic habitat classification is the Linear Kernel. For classification 

optimization in this study, the scales used for the regularization parameters and tolerance 

values used are 1 and 1×10-3, respectively. 

2.4. Spatial mapping of benthic habitats and accuracy assessment 

Kriging interpolation technique is used to interpolate the results of benthic habitat 

predictions from acoustic data into spatial maps (McLaren et al., 2019). Interpolation of 

benthic habitat prediction results was carried out using ArcMap 10.8.1 software. A mapping 

accuracy assessment was carried out to determine the accuracy of the benthic habitat map 

using 150 independent test data presented in a confusion matrix. There are three categories 

of accuracy used, namely producer accuracy (PA), user accuracy (UA), and overall accuracy 

(OA) (Congalton & Green, 2019). 

2.5. Important parameter analysis 

Parameter importance analysis aims to determine each acoustic parameter's level and 

order of importance to the accuracy of model prediction in the RF algorithm. The advantage 

of the RF algorithm is that the Out-Of-Bag (OOB) sample for each tree can be used to obtain 

a measure of the importance of each variable (Breiman, 2001), both for the overall 

classification results (Nemani et al., 2022; Shao et al., 2021; Stephens & Diesing, 2014) and 

for each classification class (Hasan et al., 2012; Sklar et al., 2024). In this study, parameter 

importance analysis was carried out to determine the important parameters in the 

combination of acoustic parameters with the highest accuracy. 

2.6. Statistical analysis 

The statistical analysis used was Analysis of Variance (ANOVA) and Z-test using 

XLSTAT Basic+ software (Lumivero, 2023). The ANOVA analysis aims to test the 

significance level of acoustic backscatter energy similarities between benthic habitat classes 

using the Tukey HSD (Honestly Significant Difference) method with a 5% confidence 

interval (α = 0.05). 
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3. RESULTS AND DISCUSSION 

3.1. Acoustic backscatter of training data 

Figure 3 shows the variation of the acoustic backscatter energy of the first echo from the 

training data for the three types of benthic habitats. Overall, the energy of the acoustic 

parameters in the first echo (BD, BP, DecSv1, and AttDecSv1) from coral is higher than that 

of sand and seagrass vegetation, except for AttSv1 from sand and seagrass, which is higher 

than coral. However, there is no significant difference in two acoustic parameters between 

coral and sand, namely BD (p-value 0.41) and BP (p-value 0.37). Likewise, the energy for 

AttSv1 and DecSv1 between sand and seagrass are not significantly different (AttSv1, p-

value 0.87; DecSv1, p-value 0.37). 

In contrast to the first echo, the acoustic backscatter energy of the second and third echoes 

from the sand was higher than that of coral and seagrass (Figure 4). However, there was no 

significant difference in the acoustic backscatter energy for the AttSv2 parameter of the three 

benthic types in the second echo (sand vs. coral, p-value 0.872; sand vs. seagrass, p-value 

0.754; coral vs. seagrass, p-value 0.971), while the other two acoustic parameters were 

significantly different (p-value <0.05). Likewise, in the third echo, there was no significant 

difference in the acoustic backscatter energy between coral and seagrass (AttSv3, p-value 

0.404; DecSv3, p-value 0.985; AttDecSv3, p-value 0.952). 

 

Fig. 3. Boxplot: variation of acoustic parameter energy in the first echo of the training data: (a) BD, (b) 

BP, (c) AttSv1, (d) DecSv1, and (e) AttDecSv1 
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Fig. 4. Boxplot: variation of acoustic parameter energy in the second echo (top) and third echo (bottom) 

of the training data: (a) AttSv2, (b) DecSv2, (c) AttDecSv2, (d) AttSv3, (e) DecSv3, and (f) AttDecSv3 

3.2. Map accuracy of each combination of acoustic parameters 

The OA accuracy of benthic habitat maps for 68 combinations of acoustic parameters 

ranged from 48.67% to 79.33% (Figure 5). The OA accuracy when applying the RF 

algorithm ranges from 53.33% to 79.33% while using the SVM algorithm ranges from 

48.67% to 78.67%. The highest OA accuracy was obtained from a combination of eight 

acoustic parameters (combination: C10), which was 79.33% and 78.67% when using the RF 

and SVM algorithms, respectively. A total of 49 combinations of acoustic parameters 

produced benthic habitat maps that met the minimum accuracy standards for benthic habitat 

mapping (≥60%) (Green et al., 2000). Five combinations of acoustic parameters of the first 

echo (combinations: A1, A3, A5, A8, and A13) did not meet the mapping standards when 

using the RF algorithm, and all combinations of the first echo acoustic parameters (14 

combinations) did not meet the standards when using the SVM algorithm. This study's 

results indicate that more acoustic parameters can improve map accuracy. This is also shown 

in the study of Shao et al. (2021), where the use of seven acoustic parameters from the SBES 

instrument can significantly improve map accuracy compared to using only two main 

parameters from the SBES instrument (roughness and hardness index: E1 and E2 in RoxAnn 

system or DecSv1 and AttDecSv2 in this study), as in the RoxAnn system. Likewise, several 

studies using the multi-beam echosounder (MBES) instrument significantly increased map 

accuracy by adding derived parameters from the primary acoustic parameters as 

classification inputs (McLaren et al., 2019; Stephens & Diesing, 2014). 
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Fig. 5. Accuracy of benthic habitat maps from various combinations of acoustic parameters using 

different algorithms 

The results of this study show that the RF algorithm performs better in producing benthic 

habitat maps with higher accuracy than the SVM algorithm. These results are similar to the 

results of a study conducted by Shao et al. (2021), where the map accuracy of the RF 

algorithm is higher than the SVM, Generalized Discriminant Analysis, and Decision Tree 

(DT) algorithms for classifying the seabed (substrate and vegetation) from SBES data. 

Similarly, Stephens & Diesing (2014) reported that classification tree-based algorithms (RF 

and DT algorithms) produced the highest accuracy for seabed sediment mapping from 

MBES data compared to SVM, k-Nearest Neighbor (k-NN), and Neural Networks 

algorithms. Hasan et al. (2012) also reported that the performance of the RF algorithm is 

better than the SVM, Quick Unbiased Efficient Statistical Tree (QUEST) and Maximum 

Likelihood Classifier (MLC) algorithms in classifying three substratum classes, but not for 

five biota classes where the accuracy of the SVM algorithm is more accurate. Even Diesing 

et al. (2014) evaluated the performance of several classification methods, where the machine 

learning-based method using the RF algorithm produced higher accuracy than object-based 

classification, the geo-statistics approach, and manual classification. Overall, the machine 

learning method provides better results (Gumusay et al., 2018), and this also applies to 

optical remote sensing data where the RF algorithm offers high accuracy for benthic habitat 

mapping (Misiuk & Brown, 2024; Nguyen et al., 2021). 

3.3. Spatial distribution of benthic habitats 

A spatial distribution map of benthic habitat from SBES data in the study area is 

presented in Figure 6. Both algorithms mapped seagrass more dominantly at depths <2.5 m, 

especially near the outer side of the atoll (eastern part of Kapota Atoll). Corals were also 

distributed along the outer and inner sides of the atoll, but they were also found to be 

associated with seagrass vegetation. Meanwhile, sand at depths <2.5 m was predominantly 

found in the northern part of the study area, and little was mapped in the seagrass and coral 

areas. At a depth range of 2.5–5 m, corals dominate along the outer and inner sides of the 

atoll, while sand is dominant on the inner side of the atoll to shallower waters, especially in 
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the northern part of the study area. Meanwhile, seagrass was increasingly mapped very little 

with increasing water depth, and only a little was mapped at depths of 2.5–5 m. Only coral 

and sand were found at the 5–10 m depth range, 10-20 m and >20 m, where the RF algorithm 

mapped more coral than the SVM algorithm. Coral and sand are more commonly found on 

the inner side of the atoll at a depth of 5–10 m. Meanwhile, in the depth range of 10–20 m 

and >20 m, the coral on the outer side of the atoll is only mapped with a small spatial extent. 

 

Fig. 6. Spatial map of benthic habitat using a combination of eight acoustic parameters (combination: 

C10) and two different classification algorithms: RF algorithm (left) and SVM algorithm (right) 

Based on the confusion matrix in Table 2, no ideally classified and mapped benthic 

habitats were found using either the RF or SVM algorithms. Both classification algorithms 

can map corals with PA accuracy >80%, even the PA accuracy of the RF algorithm reaches 

96.00%. The PA accuracy for sand mapping is relatively low, especially when using the RF 

algorithm. This is likely due to the composition of the sand benthic class in this study, which 

consisted of sand beds and a mixture of sand and small-sized rubble. The composition of 

mixed sediment is sensitive to roughness elements at half the acoustic wavelength so that it 

can be separated from coarse sediment based on acoustic backscattering strength (Goff et 

al., 2004). The presence of a small portion of gravel in the sediment causes a significant 

increase in acoustic backscattering, where the gravel content will dominate the acoustic 

backscattering response. Several studies have also shown that acoustic backscattering 

strength is significantly correlated with the grain size of seabed sediments (Hamuna et al., 

2018; Hilgert et al., 2016; Huang et al., 2018). Therefore, rubble is estimated to impact 

acoustic backscatter energy in the composition of the sand and rubble mixture, so it has a 

relatively similar energy to the large rubble included in the corals class in this study. 

However, the PA accuracy of sand still meets the minimum standards for shallow water 

benthic habitat mapping (≥60%) (Green et al., 2000). 

The three classes of benthic habitat (coral, sand, and seagrass) mapped in this study are 

the main benthic habitats in shallow waters. The number of classes significantly differs from 

the number of benthic habitat classes in Kapota Atoll mapped from Sentinel-2A imagery, 

with five homogeneous benthic classes and four mixed benthic classes (Hamuna et al., 

2023). The number of benthic classes in this study is relatively similar to the results of the 

studies of McLaren et al. (2019), who mapped three benthic classes (coral class and two 
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classes of submerged vegetation), Hamouda et al. (2019) who mapped three substrate classes 

(hard substrate class, and two sand classes), and Bejarano et al. (2010) who mapped four 

benthic classes (Gorgonian community, sand patch class, and two coral classes). 

Tab. 2. Confusion matrix of benthic habitat mapping using two different classification algorithms on a 

combination of eight acoustic parameters (combination: C10) 

Benthic classes Seagrass Sand Coral UA (%) OA (%) 

RF algorithm 

Seagrass 42 3 1 91.30 79.33 

Sand 2 29 1 90.63 

Coral 8 16 48 66.67 

PA (%) 80.77 60.42 96.00  

SVM algorithm 

Seagrass 42 5 4 82.35 78.67 

Sand 4 35 5 79.55 

Coral 6 8 41 74.55 

PA (%) 80.77 72.92 82.00  

 

Compared with the mapping accuracy of several previous studies, the highest OA 

accuracy obtained in this study is considered comparable to the accuracy of several studies 

that mapped benthic habitats, substrates, and vegetation using SBES instruments, such as in 

the studies conducted by Bejarano et al. (2010), McLaren et al. (2019), Reshitnyk et al. 

(2014), Riegl & Purkis (2005), and Shao et al. (2021) with maximum accuracies of 61%, 

88.8%, 80.7%, 66%, and 80%, respectively. The five studies also produced several benthic 

classes comparable to this study (3–6 classes). A larger number of benthic classes (seven 

classes) with an accuracy level of 80.6% were successfully mapped in the study by 

(Henriques et al., 2015). Meanwhile, McIntyre et al. (2018) and Sánchez-Carnero et al. 

(2023) successfully mapped substrate and aquatic vegetation separately with mapping 

accuracy of >80% (substrate) and >70% (aquatic vegetation). However, it should be noted 

that some of these studies used cross-validation methods for assessing map accuracy, which 

can cause bias (Wadoux et al., 2021) and can produce over-estimated accuracy (Henriques 

et al., 2015). 

3.4. Important acoustic parameters in RF algorithm 

The eight acoustic parameters used as classification input have different levels of 

importance in the classification of benthic habitats (Figure 7). The higher the mean decrease 

accuracy, the higher the level of importance of the parameter in the benthic habitat 

classification process. The order of importance of each acoustic parameter in classifying the 

entire benthic habitat and for each benthic class is different. Figure 7a shows the level of 

importance of each acoustic parameter in the classification of the whole of the benthic habitat 

with a mean decrease accuracy ranging from 4.07 to 67.46. The mean decrease accuracy for 

the classification of each benthic class ranges from -1.16 to 23.92 for the classification of 

the coral class (Figure 7b), 2.75 to 54.75 for the classification of the seagrass class (Figure 

7c), and 1.11 to 56.18 for the classification of the sand class (Figure 7d). Five acoustic 

parameters have the highest importance in benthic habitat classification as indicated by the 

mean decrease accuracy values and should be considered as input parameters of SBES 
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acoustic data, namely AttDecSv2, D, DecSv1, BD, and AttDecSv3. However, only four 

acoustic parameters (AttDecSv2, D, DecSv1, and BD) are consistently highly important 

when applied to the benthic habitat type level classification. Only the AttSv1 parameter 

negatively influences coral classification, so it cannot be used as an input parameter for coral 

thematic mapping. 

 

Fig. 7. Important acoustic parameters in the benthic habitat classification using the RF algorithm 

AttDecSv2 (E2 in RoxAnn system) and DecSv1 (E1 in RoxAnn system) parameters as 

the main acoustic parameters in the SBES system are essential in classifying the seabed 

(Hamilton, 2001; Penrose et al., 2006). For the importance level in this study's overall 

classification, the hardness index (AttDecSv2) is more effective for high-accuracy 

classification than the seabed roughness (DecSv1). However, AttDecSv2 is very susceptible 

to conditions during field data acquisition (ship speed, changes in depth or slope and sea 

surface conditions) (Sánchez-Carnero et al., 2023). In general, the roughness and hardness 

of the seabed are different from aquatic vegetation, which shows that the three types of 

benthic can be distinguished based on their roughness and hardness levels. 

In this study, parameter D (water depth) is the second most important parameter for 

overall classification and is the most important acoustic parameter for sand and seagrass 

classification. Parameter D is a counterweight to the decrease in acoustic backscatter energy 

with increasing depth. Several studies have shown that water depth is the most important 

parameter that significantly influences the results of seabed classification (Henriques et al., 

2015; Nemani et al., 2022; Sánchez-Carnero et al., 2023; Shao et al., 2021). In the study of 

(Shao et al., 2021), parameter D plays an important role in vegetation classification because 

the presence of vegetation tends to decrease with increasing depth. The BD parameter 
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indicates the energy at the beginning of one acoustic pulse length that hits the seabed (the 

object's surface). The BD parameter is of higher importance for overall classification and 

coral classification. 

Another important acoustic parameter that should be considered as input in the 

classification process is AttDecSv3. The AttDecSv3 parameter is the cumulative energy of 

the third echo, such as AttDecSv2 in the second echo. Although the AttDecSv3 parameter 

has never been discussed in all seabed acoustic studies, the results of this study show its 

importance in the classification of benthic habitats. The AttDecSv3 parameter plays a more 

significant role in the classification of corals and seagrasses than in the classification of sand. 

The energy of the AttDecSv3 parameters of corals and seagrasses is significantly different 

from sand, so it will be easy to discriminate them. 

4. CONCLUSSION 

In this study, 49 combinations of acoustic parameters from 68 combinations can produce 

benthic habitat maps (coral, sand, and seagrass) with accuracy that meets the minimum 

accuracy standards for benthic habitat mapping (≥60%). The use of eight SBES acoustic 

parameters as classification input parameters can improve the accuracy of benthic habitat 

mapping with an overall accuracy of 79.33% when applying the RF algorithm and 78.67% 

when applying the SVM algorithm. This accuracy is higher than using only two main 

acoustic parameters from SBES, which are usually applied in the RoxAnn system 

(combination of B1; DecSv1 and AttDecSv2 parameters or E1 and E2 in the RoxAnn system 

indicating the roughness and hardness indices) with an accuracy of 66.67% when using the 

SVM algorithm and 63.33% when using the RF algorithm. Each acoustic parameter is of 

different importance level for benthic habitat classification. The order of importance of the 

eight acoustic parameters used in the overall classification of benthic habitats is AttDecSv2 

> D > DecSv1 > BD > AttDecSv3 > AttSv1 > AttDecSv1 > BP. A different order of 

importance of acoustic parameters was obtained when classifying each benthic habitat class, 

namely D > DecSv1 > BD > AttDecSv2 > AttDecSv3 > AttDecSv1 > BP > AttSv1 for the 

classification of coral classes, D > AttDecSv2 > DecSv1 > BD > AttDecSv3 > AttSv1 > BP 

> AttDecSv1 for the classification of seagrass classes, and AttDecSv2 > DecSv1 > D > BD 

> AttSv1 > AttDecSv3 > AttDecSv1 > BP for the classification of sand classes. Overall, map 

accuracy can be significantly increased when two or more acoustic parameters are added 

simultaneously as input into the RoxAnn system classification, which uses only two main 

acoustic parameters (E1 or DecSv1 and E2 or AttDecSv2). 
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