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UNSHARP MASK FILTER 

Abstract 

Magnetic resonance imaging (MRI) is a key method for imaging human tissues and 

organs. The accuracy of medical diagnosis is greatly affected by the quality of MRI 

images. Sometimes, MRI images are obtained blurry due to various inevitable 

constraints related to the imaging equipment, which affects the detection of important 

features in the image. Several sharpening methods were introduced, but not all were 

successful in this task, as artifacts may be introduced, contrast may be changed, and 

high complexity may be involved. Thus, this paper introduces a guided-subsumed 

unsharp mask filter (GSUM) to improve the sharpness of MRI images. The GSUM 

utilizes an improved guided filter instead of the low-pass Gaussian filter and a dynamic 

sharpening parameter. The improved guided filter employs a hybrid procedure instead 

of the mean filter in the smoothing process and relies on an adaptive regularization 

parameter. The applied modifications eliminated the overshooting and halo effects of 

the original unsharp masking and the guided filter, resulting in better-quality images. 

The GSUM was tested with real-blurry MRI images, evaluated using three no-reference 

metrics, and compared with six other algorithms. The metric scores indicate that the 

proposed filter can surpass existing methods, as it produced better results with average 

readings of 24.2074 in PIQE, 0.6878 in BLUR, and 5.7944 in FISH. It also scored a 

fast computation time, averaging 0.3384 seconds. 

1. INTRODUCTION 

Medical imaging techniques are procedures for taking pictures of the human body or 

specific areas for scientific, medicinal, or diagnostic reasons. MRI is the most employed 

medical imaging method. MRIs are used to diagnose a wide range of diseases, especially 

those that affect the brain and nervous system, due to their superior accuracy in visualizing 

soft tissues (Singh & Choubey, 2021; Jeevakala & Therese, 2018). Blurriness in medical 

images can be caused by imaging equipment, the patient's movements, or the transmission 

method. Blurring makes the image's edges less intense, obscuring the visibility of the 
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image’s information and tiny details and affecting its clarity, which is crucial to the diagnosis 

and treatment process in the medical field (Habee, 2021).  

Sharpness is strongly correlated with blur, significantly affecting how well an image is 

perceived (Li et al., 2016). It is a simple measurement of edge lucidity in a specific area of 

an image (Gui & Liu, 2011). Enhancing blurry features or bringing attention to fine details 

is the primary goal of image sharpening techniques. Sharpening also focuses on enhancing 

features in the high-frequency range by using the scaled edge information close to object 

boundaries (Zafeiridis et al., 2016; Chen, 2019). Sharpening is an essential pre-processing 

procedure that increases the contrast between the bright and dark areas to highlight edge 

details. It draws attention to the already present minor components, making the edges 

steeper. Most studies concentrate on improving the borders of subtle tissues or organs since 

they have a greater perceptual significance (Jeevakala & Therese, 2018). 

During the past few years, there has been a growing amount of study on image sharpening 

with varying degrees of complexity depending on the concept, proposing several well-

known methods in this field. Among the most well-known techniques are shock filtering 

(Osher & Rudin, 1990), unsharp masking (Ngo et al., 2020), Laplacian filtering (Yang, 

2014), and neighborhood operators (Gui & Liu, 2011). Despite broad developments in 

computer vision and digital image processing, image sharpening is an active research subject 

because of various practical challenges like staircase (Calder et al., 2010), overshoot 

(Kheradmand & Milanfar, 2015), image noise amplifying (Sheppard et al., 2004), and over-

sharpening (Kal et al., 2011) effects. These effects make using such sharpening methods in 

the medical field undesirable. As mentioned earlier, many concepts are applied for image 

sharpening. Among them, the unsharp mask has gained the attention of many researchers 

over the past years because it is fast and simple to apply. Still, it produces an overshoot 

effect, inevitably reducing the quality of the processed image. This effect makes the edges 

of the image appear to have noticeable white shades on either side (Cao et al., 2011). Thus, 

it is necessary to enhance the unsharp mask's processing capability to provide sharper and 

artifacts-free results. Even with the widespread prosperity of image sharpening, there is still 

a potential to improve this filter. 

Hence, a guided-subsumed unsharp mask filter (GSUM) is presented in this study to 

enhance the acutance without causing any undesirable effects. In the proposed unsharp mask 

filter, the image is smoothed using an improved guided filter instead of the low-pass 

Gaussian filter, and the final resulting image is produced based on a dynamic sharpening 

parameter. As for the improved guided filter, the mean filter in the smoothing process was 

replaced by a hybrid filter, which uses the new weighted mean filter, and a modified 

Butterworth low-pass filter, which utilizes an adaptive regularization parameter. This 

method eliminates the undesirable overshoot and halo effects of the unsharp mask filter and 

produces sharp images with good perceptual quality. Lastly, the proposed filter was 

evaluated using three no-reference metrics and processing time. Then, its performance was 

compared with six other algorithms. The reading results from the metrics proved the 

performance abilities of the GSUM over the other algorithms, resulting in promising 

outcomes. The organization of this paper is as follows: Section 2 introduces a review of 

previous relevant research studies. Section 3 includes a detailed explanation of the original 

and improved methods. Section 4 presents a description and analysis of the performance 

comparison between the proposed filter and other algorithms. Lastly, the conclusion of the 

paper is contained in Section 5. 
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2. RELATED WORKS 

This section explains a few research studies highlighting the fundamental concepts that 

have been applied previously in the image-sharpening field. In Jeevakala & Therese (2018), 

an innovative sharpness improvement technique that relies on the Laplacian pyramid (LP) 

and single-value decomposition (SVD) was presented. The suggested technique divides 

images into distinct and coarse sub-bands using multi-scale decomposition. Then, LP 

effectively captures edges, and the SVD approach improves the features of these edges. 

Better edge retention and detail refining are made possible by this method, which enhances 

the delicate tissue edges and raises the visual quality of magnetic resonance imaging. 

However, the lines and contours of low-contrast images introduce undesirable artifacts at 

the boundaries of subtle tissues. In Joseph et al. (2019), a fully adaptable unsharp mask was 

proposed for sharpening magnetic resonance images. The adapted filter objectively and 

adaptively calculates its operational parameters, including threshold and amount. By using 

this method, artifacts like overshoot and noise amplification can be avoided. This method 

produces sharp images by increasing the contrast in the areas adjacent to the edges, which 

leads to the appearance of "halos" around the edges.  

In (Luo et al., 2020), A novel method based on information entropy was proposed. It 

relies on two primary techniques: information entropy and sharpening processing. The 

algorithm determines an adaptive threshold and computes the information entropy for 

segmented image blocks. Image blocks with entropy values below this threshold are 

sharpened. Although this method provides balanced sharpening, it requires more 

improvements, as artifacts appear on the filtered image. In Al-Ameen et al. (2020), an 

anisotropic diffusion-based unsharp mask filter is presented. It uses an altered anisotropic 

diffusion filter instead of the conventional low-pass Gaussian filter. This filter improves the 

sharpness of digital images by lessening the overshoot effect that unsharp masking 

techniques suffer from and produces images of higher quality with adequate details, a natural 

look, and illumination that nearly mimics the source images. However, it tended to suppress 

some highlights of the outer region. In Deng et al. (2021), a new filter formulation based on 

Laplacian combined the sharpening and smoothing operations simultaneously. A patch 

interpolation model, a critical component in the filter, was employed to improve the filter's 

edge awareness and enable it to maintain significant image features during processing better. 

Also, depending on the generalized gamma distribution to estimate the parameter, this 

statistical method helps improve the filter's functionality and ability to adjust to different 

image characteristics. However, this method produced an overshoot effect in the processed 

image.  

In Huang (2021), an improving image sharpness approach based on the green function is 

proposed. It uses the retinex model, renowned for its capacity to amplify visual details. 

Additionally, the solution of Poisson's equation in the gradient domain is a crucial 

component of the suggested approach because it ensures that crucial gradient information is 

kept intact throughout the enhancement process. Although this algorithm can enhance an 

image's sharpness and contrast, it requires many computations. In Edla et al. (2022), a 

maximum local variation-based unsharp masking was proposed to address the problem of 

low sharpness in MRI images. This algorithm depends on a locally adaptive 2D Gaussian 

filter, and it aims to enhance the MR images' sharpness, which is essential for accurate 

diagnosis and treatment. Although this algorithm produces acceptable sharpeners and 
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preserves the mean brightness level of the images without any overshoot or intensity 

saturation, it depends on user-defined parameters, and this may result in producing images 

with unnatural appearances and noise amplifying if the parameters are not carefully adjusted. 

Also, the dependency on locally adaptive filters results in longer processing times, mainly 

when applied to high-resolution images. Table 1 offers a summary of the reviewed studies. 

Tab. 1. The summary of the reviewed research studies 

Year Concept Advantages Disadvantages 

2018 Laplacian pyramid 

single-value decomposition 

Enhances the delicate tissue 

edges 

Introduces undesirable 

artifacts at the boundaries  

2019 
Unsharp mask 

Avoids overshoot and noise 

amplification 

Produces haloes around the 

edges 

2020 
Information entropy 

Provides balanced 

sharpening 

Requires more 

improvements 

2020 Anisotropic diffusion 

unsharp mask 
Produces adequate details  

Suppresses some highlights 

of the outer region 

2021 
Laplacian filter Maintains the key features 

Introduces the overshoot 

effect 

2021 Green function and 

retinex model 

Enhances the sharpness and 

contrast 

Requires many 

computations 

2022 
Maximum local variation 

unsharp masking 

Preserves the brightness 

without any overshoot or 

intensity saturation 

Depends on user-defined 

parameters 

2023 

Weighted spatial derivative 

Prevents noise 

amplification  

Fewer operational 

parameters 

Difficulties in parameter 

selection may lead to 

unnatural appearances 

2024 Wavelet fusion with 

unsharp mask 
Avoids generating artifacts 

Involves sophisticated 

processing 

 

In Simi et al. (2023), a nonlinear amplification of spatial derivative (NASD) was 

introduced. The NASD uses an inverse method to estimate the enhanced image from the 

amplified spatial derivative. The amplification factor at each pixel position is determined 

using a nonlinear function of the average of the absolute values of the gradients over eight 

different orientations at that place to prevent the amplification of noise. The NASD produces 

a better sharpness-to-noise ratio. Although the NASD algorithm uses fewer operational 

parameters than conventional techniques, some factors must be carefully adjusted, including 

noise suppression and acuity control parameters. Otherwise, it may lead to unnatural 

appearances in the results. In Bogdan et al. (2024), a multiscale method was proposed that 

integrates the wavelet image fusion with multiple dilated unsharp mask algorithms. In this 

method, the image is analyzed at multiple scales using a dilated unsharp mask to get details 

from different scales and orientations to sharpen both the subtle and the prominent image 

details. After that, a wavelet fusion combines these details adaptively into a single, sharp 

image. Despite this method showing improved image sharpness and avoiding noticeable 

artifacts, it involves sophisticated processing. The reviewed studies have shown that various 

concepts have been used for image sharpening; they share the goal of rapidly providing sharp 

results while avoiding artifact generation. However, not all these methods succeeded in 
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achieving this goal, as some of them required excessive calculations and long processing 

time, and some produced unnatural sharpness, artifacts, or insufficient enhancement. 

Therefore, developing a method that provides satisfactory results is necessary, and the 

opportunity to achieve this task is still available. 

3. PROPOSED FILTER 

This section provides a comprehensive description of the proposed sharpening filter. The 

suggested filter begins by acquiring the blurred image. Next, the improved guided filter is 

implemented to smooth the image and attenuate its high-frequency components. The 

smoothing process relies on the new weighted mean filter and a modified Butterworth low-

pass filter. It also utilizes an adaptive regularization parameter (this parameter determines 

what edge should be preserved) to avoid generating halo artifacts. Afterward, the outcome 

of this procedure is utilized as an input for the unsharp mask filter, which uses a dynamic 

sharpening parameter to produce the final image. The following sub-sections provide full 

explanations of the main stages of the proposed filter to provide a thorough understanding 

of its operational details. 

3.1. Guided filter 

Before explaining the improved guided filter, we will briefly overview the classical 

guided filter introduced by He et al. (2013). It utilizes a local linear model to produce the 

filtering output. It considers the content of a guiding image, which can be the same input or 

another distinct image. The local linear model guarantees that the output-filtered image will 

have an edge only if the guided image has an edge. The guided filter is not only a rapid edge-

preserving smoothing filter but also effectively prevents the occurrence of "gradient 

reversal" artifacts (He et al., 2013; Zhang & Wu, 2023). The basic idea of guided filtering is 

to establish a linear relationship between the output image Q and the guided image I. This 

relationship defined inside a window wk, centered at the pixel k, can be mathematically 

expressed as: 

𝑄𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘  ,    ∀𝑖 ∈ 𝑤𝑘                                               (1) 

where (ak, bk) are linear coefficients supposed to be constant in wk. To find these linear 

coefficients, a cost function E is used inside the window wk to minimize the difference 

between the input Pi and the output Qi while preserving the linear model. The function E is 

expressed as follows: 

𝐸(𝑎𝑘 , 𝑏𝑘) = ∑ ((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑃𝑖)2 + 𝜖𝑎𝑘
2) 𝑖∈𝑤𝑘

                              (2) 

where  is a regularization parameter that prevents the ak value from increasing 

excessively, the values of ak and bk that yield the best results are calculated as: 

𝑎𝑘 =

1

|𝑤|
∑ 𝐼𝑖𝑃𝑖−𝐼𝑘̅𝑃̅𝑘𝑖∈𝑤𝑘

𝜎𝑘
2+𝜖

                                                   (3) 
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𝑏𝑘 = 𝑃̅𝑘 − 𝑎𝑘𝐼𝑘̅                                                       (4) 

where 𝐼𝑘̅ and 𝜎𝑘
2 represent the mean and variance of I in the 𝑤𝑘 , 𝑃̅𝑘 is the mean of P in 

the 𝑤𝑘, and |𝑤| represent the number of pixels within 𝑤𝑘 . Finally, the filter output is 

computed as: 

𝑄𝑖 = 𝑎̅𝑖𝐼𝑖 + 𝑏̅𝑖                                                        (5) 

where  𝑎̅𝑖 =
1

|𝑤|
∑ 𝑎𝑘𝑘∈𝑤𝑖

   and    𝑏̅𝑖 =
1

|𝑤|
∑ 𝑏𝑘𝑘∈𝑤𝑖

 , which are the outputs of an average 

filter. However, the guided filter has some drawbacks. One of them is that the guided filters 

focus the blurring effect mostly on the edges, resulting in the appearance of halos artifacts, 

which diminishes the image's visual fidelity. Halo artifacts primarily occur because of the 

fixed regularization parameter in the guided filter, which governs the filtering process (Shi 

et al., 2021). Another problem arises when applying the guided filter to transfer the structure 

from the guidance to the filtering output. Even if the filtering input is smooth, it is still 

possible for noise to be copied to the filtering output if the guidance contains noise. Resulting 

in unforeseen noise in the filtered output, referred to as guidance noise artifact (Zhang & 

Wu, 2023).   

3.2. Butterworth low-pass filter 

The Butterworth low-pass filter is a popular technique used for image blurring. The 

system keeps frequencies inside the radius D0 and discards values outside to achieve a 

progressive change from 0 to 1. The equation for a Butterworth low-pass filter of order n 

and a cutoff frequency D0 is given as follows (Sadah et al., 2013): 

𝐻(𝑢, 𝑣) =
1

1+(
𝐷(𝑢,𝑣)

𝐷0
)

2𝑛                                                 (6) 

where D(u,v) is the distance between the point (u,v) and the frequency center, and H(u,v) 

is the blurring mask produced by the Butterworth low-pass filter. To filter a given image, 

the first step is to transform the input image to the frequency domain, represented by A(u,v). 

Next, the image is multiplied by H(u,v) using the following equation: 

 𝐵(𝑥, 𝑦) = 𝑖𝑓𝑓𝑡[𝐴(𝑢, 𝑣). 𝐻(𝑢, 𝑣)]                                       (7) 

where B(x,y) represents the final filtered image. In this paper, an adjusted version of the 

above filter is utilized, where the order n parameter is eliminated to decrease the number of 

inputs to the hybrid filter and achieve good blurring outcomes. The following equations 

illustrate the adjustment (Al-Ameen et al., 2019): 

𝐻̂(𝑢, 𝑣) =
1

1+(
𝐷̂(𝑢,𝑣)

𝐷0
)

2                                                 (8) 

𝐹2(𝑥, 𝑦) = 𝑖𝑓𝑓𝑡[𝐼(𝑢, 𝑣). 𝐻̂(𝑢, 𝑣)]                                       (9) 
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where 𝐷̂(𝑢, 𝑣) is computed from the guided image I(x,y) after transform it to the 

frequency domain, 𝐻̂(𝑢, 𝑣) is the blurring mask for the guided image; F2(x,y) is the final 

blurred result. 

3.3. Weighted mean filter 

The weighted mean filter is a smoothing filter. It has better effects on minimizing blurring 

throughout the smoothing phase and edge preservation capabilities than a simple mean filter 

due to its ability to diminish the influence of distant pixels, which are less likely to represent 

the actual pixel value accurately. This is done by assigning varying weights to pixels based 

on their distance to the central pixel. Following are examples of 3 × 3 smoothing (weighted 

mean) filters (Li et al., 2021): 

𝑤1 = [
1 1 1
1 2 1
1 1 1

]         𝑤2 = [
1 2 1
2 4 2
1 2 1

] 

This study utilized a modified weighted mean filter for smoothing after conducting 

experiments on the weighted mean filter. It yielded superior outcomes in the smoothing 

process. A modified weighted mean filter is as follows: 

𝑤 = [
0.7 1 0.7
1 2 1

0.7 1 0.7
] 

The smoothed image F1 is computed as follows (Gonzalez & Woods, 2008): 

𝐹1(𝑥, 𝑦) =
∑ ∑ 𝑤(𝑖,𝑗)𝐼(𝑥+𝑖,𝑦+𝑗)𝑘

𝑗=−𝑘
𝑘
𝑖=−𝑘

∑ ∑ 𝑤(𝑖,𝑗)𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘

                                    (10) 

where k is the neighborhood radius, I is the guided image, I(x+i, y+j) represents the pixel 

intensity at the neighborhood position, w(i,j) represents the weight assigned to the pixel at 

point i,j. 

3.4. Adjusted guided filter 

As mentioned above, the classical guided filter has some drawbacks that must be 

addressed. This paper proposes methods to attenuate these drawbacks and obtain a smoothed 

free-artifact image. Firstly, a spatially varying adaptive regularization parameter is employed 

instead of a fixed one to eliminate the halo artifacts, using edge-aware weighting obtained 

from the Sobel gradient magnitude(S_GM) for the guided image. This offers insight into the 

strength and orientation of edges. S_GM is calculated as follows (Holder & Tapamo, 2017): 

𝑆_𝐺𝑀 = √𝐺𝑥
2 + 𝐺𝑦

2                                                 (11) 

where Gx and Gy are the horizontal and vertical approximations of the derivatives, 

respectively, obtained by convolving the guided image I(x,y) with horizontal and vertical 
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Sobel operator masks. Now, we can replace the fixed  by the adaptive regularization 

parameter 
𝜖

𝑆_𝐺𝑀
 .  

Secondly, to address the problem of guidance noise artifacts, we proposed a hybrid filter 

instead of the box filtering (mean filter) used in the classical guided filter. The hybrid filter 

integrates a new weighted mean filter with a modified Butterworth low-pass filter in the 

smoothing process. The hybrid filter (WM_B) is constructed using the following formula: 

𝑊𝑀_𝐵 = 𝛼 × 𝐹1 + (1 − 𝛼) × 𝐹2                                     (12) 

where α is a constant; its suitable value is 0.65. F1 represents the result of the weighted 

mean filter, and F2 represents the result of the modified Butterworth filter. The final 

improved guided filter formulas are now modified as the proposed weighting S_GM in 

Equation (11) is incorporated into the cost function E in Equation (2). The new cost function 

formula is defined as: 

𝐸(𝑎𝑘 , 𝑏𝑘) = ∑ ((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑃𝑖)2 +
𝜖

𝑆_𝐺𝑀
𝑎𝑘

2)𝑖∈𝑤𝑘
                         (13) 

The values of ak and bk that yield the best results based on the new cost function formula 

are calculated as: 

𝛼𝑘 =
𝐼𝑖𝑃𝑖̿̿ ̿̿ ̿−𝐼𝑘̿̿̿.𝑃𝑘̿̿ ̿̿

𝜎𝑘
2+

𝜖

𝑆_𝐺𝑀

                                                      (14) 

𝑏𝑘 = 𝑃𝑘
̿̿ ̿ − 𝛼𝑘𝐼𝑘̿                                                    (15) 

where 𝐼 ̿, 𝑃̿ represent I, P after processing by the hybrid filter (WM_B), 𝐼𝑃̿̿ ̿ represent I×P 

after processing by the hybrid filter (WM_B). The final output of the improved guided filter 

is computed as follows: 

𝑄𝑖 = 𝛼𝑖𝐼𝑖 + 𝑏𝑖                                                      (16) 

3.5. Proposed unsharp masking 

This filter is used in several imaging applications to enhance the acutance. The process 

entails subtracting a blurred version of an image from the original image and then adding 

the outcome back to the original image. The unsharp mask filter is defined as follows (Kim 

& Allebach, 2005): 

𝑈(𝑥, 𝑦) = 𝑃(𝑥, 𝑦) + 𝜆[𝑃(𝑥, 𝑦) − 𝐺(𝑥, 𝑦)]                             (17) 

where (x,y) are the coordinates, P is the original image, G is the image P after filtered by 

low pass Gaussian filter, U is the sharp image, and λ is the sharpening parameter. In this 

study, a dynamic sharpening parameter λ is used instead of a fixed one to control the degree 

of amplification in the high-frequency range and adaptively enhance image details. This 

method utilizes image variance and calculates the difference between each pixel and its 

neighboring pixels to modify the sharpening parameter dynamically. As a result, pixels at 



 

200 

various locations are enhanced adaptively. The calculation of the unsharp mask filter 

becomes as follows: 

𝑁_𝑑 = 𝑃(𝑖 − 1, 𝑗) − 𝑃(𝑖, 𝑗)                                        (18) 

𝑆_𝑑 = 𝑃(𝑖 + 1, 𝑗) − 𝑃(𝑖, 𝑗)                                         (19) 

𝐸_𝑑 = 𝑃(𝑖, 𝑗 + 1) − 𝑃(𝑖, 𝑗)                                         (20) 

𝑊_𝑑 = 𝑃(𝑖, 𝑗 − 1) − 𝑃(𝑖, 𝑗)                                         (21) 

𝑇_𝑑𝑖𝑓𝑓(𝑥, 𝑦) = |𝑁_𝑑 + 𝑆_𝑑 + 𝐸_𝑑 + 𝑊_𝑑|                             (22) 

𝜆(𝑥, 𝑦) =
𝑒𝑥𝑝(−𝜎2)

0.18+𝑇_𝑑𝑖𝑓𝑓
                                               (23) 

𝑈(𝑥, 𝑦) = 𝑃(𝑥, 𝑦) + 𝜆(𝑥, 𝑦)[𝑃(𝑥, 𝑦) − 𝑄(𝑥, 𝑦)]                          (24) 

where (x,y) are the coordinates, 𝜎2 is the variance of P, Q is the output of the improved 

guided filter, T_diff is the absolute total difference between each pixel and its neighboring 

pixels, and N_d, S_d, E_d, and W_d represent the detected differences at the north, south, 

east, and west, respectively. The GSUM filter is further described in the following 

pseudocode. 

 
The pseudocode of the proposed GSUM filter  

Input: Low-acutance image P(x,y),  

Set guided image I = P 

Compute the smoothed image F1 using Eq.10 

Compute the smoothed image F2 using Eq.9 

Compute the improved guided filter using Eq.16  

Compute the sharp image using Eq.24 

Output: Sharpen image U(x,y) 

4. RESULTS AND DISCUSSION 

This section presents the results of the relevant comparisons and analyses to verify the 

efficiency of the proposed GSUM filter. The evaluation is based on about 150 real blurry 

images taken from the CTisus website, the Johns Hopkins Hospital repository for real 

medical images, which can be reached at https://www.ctisus.com/. The GSUM's ability to 

sharpen dissimilar images is also evaluated by comparing it with several existing algorithms, 

such as generalized unsharp masking (GUM) (Deng, 2010), nonlinear unsharp masking 

(NUM) (Ngo et al., 2020), low-light image enhancement based on a sharpening-smoothing 

image filter (LL_SSIF) (Demir & Kaplan, 2023), edge-aware smoothing-sharpening filter 

(EA_SSIF) (Deng et al., 2021), anisotropic diffusion-based unsharp masking (ADUSM) (Al-

Ameen et al., 2020), and amended unsharp masking (AUSM) (Al-Ameen et al., 2019). As 

for the image quality evaluation methods, three no-reference methods are utilized, namely, 

no-reference perception-based image quality evaluator (PIQE) (Venkatanath et al., 2015), 
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no-reference perceptual blur metric (Blur metric) (Crete et al., 2007), and fast image 

sharpness metric (FISH) (Vu & Chandler, 2012). 

The PIQE metric utilizes local information to forecast an image's quality and quantifies 

distortion visibility. A lower index means reduced distortion visibility and higher visibility. 

The Blur metric is sufficient to estimate the blur artifact in an image. It is based on 

discriminating between different levels of blur perceptible on the same picture. Its value 

ranges from 0 to 1, respectively, the best and the worst quality regarding blur perception. 

The FISH measures the perceived sharpness of the image. It utilizes a three-level separable 

DWT to decompose the input image. Then, the estimating process is done based on a 

weighted geometric mean for the energies belonging to DWT’s sub-bands. The higher the 

FISH index, the stronger the perceived sharpness. Figures 1 and 2 present the experimental 

results of applying the GSUM filter. Tables 2 and 3 present the recorded metrics scores 

related to the image samples in Figures 1 and 2. Figures 3 to 6 show the results when 

compared with other sharpening algorithms. Tables 4 to 7 present the recorded metrics 

scores and the processing times. Figures 7 to 10 show the recorded metrics scores and the 

processing times as charts. 

 

Fig. 1. Results of the GSUM with real-degraded MR images (Set 1). (a1-d1) are real-blurred MR images; 

(a2-d2) are images processed by the GSUM filter 

Tab. 2. The values of PIQE, BLUR, and FISH metrics for sample images in Figure 1 

Metrics 
Set 1 

Average 
a b c d 

PIQE ↓ 
blur image 52.2279 47.3474 46.2581 52.4226 49.5640 

GSUM filter 33.1688 26.5412 37.7157 35.6862 33.2780 

BLUR ↓ 
blur image 0.8007 0.8234 0.7161 0.8316 0.7930 

GSUM filter 0.7260 0.7049 0.6453 0.7449 0.7053 

FISH ↑ 
blur image 2.3404 2.2321 2.2478 1.7349 2.1388 

GSUM filter 6.1208 6.1004 5.8429 5.1334 5.7994 
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Fig. 2. Results of the GSUM with real-degraded MR images (Set 2). (a1-d1) are real-blurred MR images; 

(a2-d2) are images processed by the GSUM filter 

Tab. 3. The values of PIQE, BLUR, and FISH metrics for sample images in Figure 2 

Metrics 
Set 2 

Average 
a b c d 

PIQE ↓ 
blur image 54.9516 49.7475 30.9298 59.2502 48.7198 

GSUM filter 37.8877 30.3014 25.9352 37.0035 32.7820 

BLUR ↓ 
blur image 0.7504 0.7592 0.7288 0.7989 0.7593 

GSUM filter 0.6504 0.6597 0.6666 0.6915 0.6671 

FISH ↑ 
blur image 2.1163 2.6171 1.9400 2.1604 2.2085 

GSUM filter 5.4920 6.5835 5.4120 5.7854 5.8182 

 

Figures 1 and 2 show that the resulting images appear more natural with sufficient details 

and have good illumination like their degraded counterparts. Thus, the proposed method 

produces highly sharp images without causing any visual artifacts. This explains why it 

obtains better average values than its degraded counterpart in PIQE, BLUR, and FISH 

metrics, as shown in Tables 2 and 3.  
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Fig. 3. The comparison outcome using real-blurred MR image (Set 1). (a) the original blurred MR 

image; images from (b-h) are obtained by (b) GUM, (c) NUM, (d) LL_SSIF, (e) EA_SSIF, (f) ADUSM, 

(g) AUSM, (h) Proposed GSUM filter 

 

Fig. 4. The comparison outcome using real-blurred MR image (Set 2). (a) the original blurred MR 

image; images from (b-h) are obtained by (b) GUM, (c) NUM, (d) LL_SSIF, (e) EA_SSIF, (f) ADUSM, 

(g) AUSM, (h) Proposed GSUM filter 
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Fig. 5. The comparison outcome using real-blurred MR image (Set 3). (a) the original blurred MR 

image; images from (b-h) are obtained by (b) GUM, (c) NUM, (d) LL_SSIF, (e) EA_SSIF, (f) ADUSM, 

(g) AUSM, (h) Proposed GSUM filter 

 

Fig. 6. The comparison outcome using real-blurred MR image (Set 4). (a) the original blurred MR 

image; images from (b-h) are obtained by (b) GUM, (c) NUM, (d) LL_SSIF, (e) EA_SSIF, (f) ADUSM, 

(g) AUSM, (h) Proposed GSUM filter 

Tab. 4. The values of the PIQE ↓ metric 

Fig. GUM NUM LL_SSIF EA_SSIF ADUSM AUSM Proposed 

3 33.6553 28.0730 37.5335 34.6899 21.8829 25.6985 14.6384 

4 56.6545 54.5559 50.0052 53.7705 35.4017 41.3351 21.6108 

5 62.6822 59.3607 68.4821 59.7502 42.7271 49.1641 39.1730 

6 50.8885 46.4142 53.1515 49.2083 30.7943 37.3876 21.4075 

Average 50.9701 47.1010 52.2931 49.3547 32.7015 38.3963 24.2074 
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Fig. 7. The chart of average reading for PIQE measure 

Tab. 5. The values of the Blur ↓ metric 

Fig. GUM NUM LL_SSIF EA_SSIF ADUSM AUSM Proposed 

3 0.6811 0.6599 0.6930 0.7004 0.6758 0.6741 0.6434 

4 0.7991 0.7325 0.8043 0.8149 0.7614 0.7695 0.7397 

5 0.7548 0.7235 0.7833 0.7927 0.7424 0.7692 0.7220 

6 0.7070 0.6626 0.7244 0.7342 0.6778 0.6853 0.6462 

Average 0.7355 0.6946 0.7513 0.7606 0.7144 0.7245 0.6878 

 

 

Fig. 8. The chart of average reading for Blur measure 
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Tab. 6. The values of the FISH ↑ metric 

Fig. GUM NUM LL_SSIF EA_SSIF ADUSM AUSM Proposed 

3 6.2466 6.5558 6.5078 5.9690 5.5126 5.6657 7.3542 

4 4.0132 3.9323 4.1992 3.4387 3.4655 3.2515 4.6084 

5 4.4086 4.2995 3.7747 3.7153 3.6275 3.2611 4.9649 

6 5.6240 5.5649 5.1274 4.8438 4.8769 4.6888 6.2502 

Average 5.0731 5.0881 4.9023 4.4917 4.3706 4.2168 5.7944 

 

 

Fig. 9. The chart of average reading for FISH measure  

Tab. 7. The values of the Runtimes ↓ (in seconds) 

Fig. GUM NUM LL_SSIF EA_SSIF ADUSM AUSM Proposed 

3 0.2160 0.8461 0.2997 0.3110 0.4701 2.9728 0.3056 

4 0.2109 0.8217 0.2993 0.2990 0.4770 3.0797 0.3727 

5 0.2917 1.4638 0.4331 0.4441 0.7333 5.1217 0.4534 

6 0.1786 0.7246 0.1877 0.2040 0.2825 2.1322 0.2220 

Average 0.2243 0.9641 0.3049 0.3145 0.4907 3.3266 0.3384 

 
The comparison results in Figures 3 to 10 and Tables 4 to 7 show that the proposed 

GSUM filter performed satisfactorily. It recorded the best in PIQE, Blur, and FISH 

measures, providing images with adequate sharpness without any obvious defects. It also 

has a fast computation time. Despite providing well-sharpened edges, the GUM attained 

third place in the FISH metric and had the fastest processing time since it noticeably changed 

both the contrast and the brightness of the results. This change reduced the visual quality, 

thus scoring sixth in PIQE and fifth in Blur metrics. Although the NUM recorded is slower 

in processing time, it provides good sharp edges, as recorded by the Blur and FISH metrics, 

where it gets the second-best values but scores moderately in PIQE. 
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Fig. 10. The chart of average reading for Runtime 

The LL_SSIF method was unsuccessful in delivering images with sufficient sharpness, 

which explains why it got a moderate FISH score and was ranked sixth in Blur. It also 

introduced an unwanted artifact and increased brightness in the resulting image, which 

reduced its integrity, as obvious from the worst PIQE score it attained. It was also ranked as 

having the second-fastest processing time. The EA_SSIF method introduced an 

overshooting effect. This effect makes the edges of the image appear to have noticeable 

white shades on either side, reducing the quality and information integrity. It also resulted 

in a slight increase in noise, scoring fifth in PIQE, seventh in Blur, and fifth in FISH. It was 

also the third fastest method. 

In contrast, the results of ADUSM and AUSM have good visual quality, obtaining the 

second and third ranks in PIQE, respectively. However, there is still some blurring, which 

affects the sharpness of the edges. This explains why ADUSM gets the third and sixth scores 

in Blur and FISH metrics, respectively. It also has slow implementation, while AUSM gets 

the fourth and seventh scores in Blur and FISH metrics, respectively. It has the slowest 

processing time. To summarize, improving a standard filter to produce better results is 

difficult. This paper presents the GSUM filter, which gives acceptable results and 

satisfactory performances. The images produced by the GSUM filter have good sharpness, 

adequate brightness, natural contrast, and no artifacts, which makes this method suitable for 

many real-world applications, especially medical-related ones. 

5. CONCLUSION 

This study introduces a developed GSUM filter that enhances the acutance of MR images 

without causing undesirable effects. The improvements include using a modified guided 

filter with a new weighted mean filter and a modified Butterworth low pass filter instead of 

the mean filter in the smoothing process, relying on an adaptive regularization parameter. 

Subsequently, the outcome of this procedure is utilized as an input for the unsharp mask 

filter, resulting in the final image using a dynamic sharpening parameter. The GSUM filter 
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is tested with many real-blurry images from a credible website to evaluate its sharpening 

abilities. The comparison results are then assessed with four measures. Accordingly, the 

GSUM filter performed satisfyingly, generating sharp MR images with enhanced visual 

quality and providing a more natural appearance, adequate detail, and optimal lighting 

without introducing visual artifacts. In addition, the GSUM filter performances are evident 

from the results produced by the used measures. Moreover, the results of the GSUM filter 

were shown to a radiologist and MRI specialist, Dr. Naser Kashmola. He examined the 

resulting images and remarked that they were better than their degraded counterparts in 

sharpness and detail clarity. For future work, better automation methods can be exploited for 

improved computerization. 
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