
 

Applied Computer Science, vol. 20, no. 4, pp. 77–99 

doi: https://doi.org/10.35784/acs-2024-41 

 

77 

Submitted: 2024-09-26 | Revised: 2024-10-18 | Accepted: 2024-10-21 

Keywords: Pupil Diameter (PD), Major Depressive Disorder (MDD), Machine Learning (ML), 

Hilbert–Huang Transform (HHT), Cross-Validation (CV) 

Islam MOHAMED [0009-0001-4408-7190]*,  

Mohamed EL-WAKAD [0000-0003-2637-1048]**, Khaled ABBAS [0009-0002-0913-4163]***, 

Mohamed ABOAMER [0000-0002-4433-776X]****,  

Nader A. Rahman MOHAMED [0000-0001-7680-306X]***** 

PUPIL DIAMETER AND MACHINE LEARNING FOR 

DEPRESSION DETECTION: A COMPARATIVE 

STUDY WITH DEEP LEARNING MODELS 

Abstract 

According to the World Health Organization, the Global Mental Health Report 

estimated that between 251 and 310 million individuals worldwide experienced 

depression during the first year of the COVID-19 pandemic. Most methods for detecting 

depression rely on clinical diagnoses and surveys. However, the American Psychiatric 

Association reports that over 50% of patients do not receive appropriate treatment. 

This study aims to utilize machine learning and pupil diameter features to identify 

depression and evaluate the accuracy of these classifiers in comparison to our previous 

deep learning model. While limited research has explored the use of pupillary diameter 

as a classification tool for distinguishing between individuals with and without 

depression, several studies have focused on EEG signals for this purpose. The study 

involved 58 participants, with 29 classified as depressed and 29 as healthy. The 

classification was based on statistical features extracted from the Hilbert-Huang 

Transform. Results showed a significant improvement in average accuracy compared 

to the authors’ prior work, with the current study achieving 77.72% accuracy, 

compared to 64.78% in their previous research. Machine learning methods, 

particularly Bagging, outperformed deep learning models such as AlexNet when 

classifying data from the left and right eyes individually (90.91% vs. 78.57% for the 

left eye; 90.91% vs. 71.43% for the right eye). However, when combining data from 

both eyes, deep learning using AlexNet demonstrated superior performance (98.28% 

accuracy compared to 93.75% using Bagging with statistical features from both eyes). 

Despite the higher accuracy of deep learning, machine learning is recommended for 

its faster execution times. 
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1. INTRODUCTION 

The Global Mental Health Report indicated that between 251 and 310 million persons 

worldwide experienced depression during the first year of the COVID-19 pandemic ( World 

Health Organization, 2022). Most depression detection methods use clinical diagnoses and 

subjective structured scales, which are subjective, time-consuming, and resource-intensive. 

As a result, traditional methods may delay diagnosis and treatment in many cases, even in 

severe cases. The American Psychiatric Association reports that over 50% of patients do not 

get appropriate therapy (Skowron et al., 2022). 

There has been a growing focus in recent years on investigating objective physiological 

markers for the diagnosis of depression. Out of these markers, pupil diameter (PD) has 

shown as a very promising measure for differentiating between those with depression and 

those without. The path of this research, which directed author’s attention towards PD, 

represents a wider pattern in the integration of psychology and artificial intelligence with the 

objective of creating more precise and effective algorithms to diagnose the depression. 

Recent developments in both fields have emphasized the capacity of several 

physiological indicators in detecting depressed conditions. For example, studies using 

response time measured by (Li et al., 2014), functional magnetic resonance imaging (fMRI) 

by Drysdale et al. (2017) and electroencephalography (EEG) by Newson & Thiagarajan 

(2019) have shown their effectiveness in identifying depression. While each of these 

methods provides distinct perspectives on the physiological basis of depression, they 

frequently need complicated and resource-intensive procedures. 

Eye movement measurements have therefore become a feasible option in this context. 

Previous research showed eye movements as a highly important behavioral indicator for 

diagnosing depression according to (Suslow et al., 2020; Zhu et al., 2020). Particularly, the 

measurement of pupil diameter, which is a measurable component of eye movement, has 

been shown to be a dependable and may be accurately measured automatically (Zhong et al., 

2022). Moreover, the study done by (Zhao et al., 2019) evaluated several eye movement 

characteristics for the purpose of identifying human emotions. The researchers found that 

pupil diameter had a higher level of discriminative ability in categorizing emotions 

compared to other indicators of eye movement. 

The study (Siegle et al., 2011) provided more evidence for the importance of PD in 

depression research, where, according to (Siegle et al., 2001), by showing statistically 

significant differences in the pupillary responses of depressed patients compared to healthy 

controls. The results of their study revealed that those with depression had more prominent 

and prolonged dilatation of the pupils in reaction to emotional stimuli, compared to those 

without depression. In addition, Jones et al. (2015) investigated the correlation between 

motivational states and affective processes, providing evidence that the depressed people 

had more prominent pupillary responses. The study conducted by (Wang et al., 2014) 

showed a significant difference in the reactions of depressed individuals to light stimuli 

compared to normal controls. This finding supports the idea that pupil width might be a 

reliable indicator of depression. (Siegle et al., 2003) conducted a more precise examination 

of the initial differences in PD between those with depression and those without and 

discovered a significant difference. The results of their investigation indicated that the 

average initial PD for those with depression was 3.5 mm, whereas for those without 

depression it was 4.0 mm. This difference had a statistically significant effect size (d = 0.8, 
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p < 0.01). Such a significant difference again and again highlights the capacity of baseline 

PD as a biomarker for depression. 

In brief, our study evaluates the importance of pupil diameter as a diagnostic instrument 

for depression, expanding upon an increasing amount of information that substantiates its 

effectiveness. By prioritizing this physiological indication, the goal is to make a valuable 

contribution to the development of more unbiased and easily understandable techniques for 

detecting depression, thereby improving our capacity to identify and treat this widespread 

mental health disorder. 

Building on the growing number of research investigating physiological markers as 

indicators of depression, several studies have effectively employed pupil data to distinguish 

between healthy individuals and those with depression. 

For instance, (Ding et al., 2019) used EEG data to classify healthy controls and depressed 

patients. Participants observed neutral stimuli and emotional responses while low-cost, 

portable instruments captured their eye tracking data, EEG, and galvanic skin responses. The 

binary classification model was trained using ML classifiers, where Logistic Regression 

(LR) achieved the highest classification F1-score of 80.70%. Similarly, (Schultebraucks et 

al., 2022) used a deep neural network to categorize people with MDD using movement 

parameters (e.g., pupil dilation), speech prosody, facial features, and natural language 

content. This technique achieved an area under the curve (AUC) of 0.86. These studies 

highlight pupil data as a valuable, efficient tool for diagnosing depression. 

Based on the insights from the authors' literature review of this paper, the proposed 

approach for this study was designed to develop a unimodal and cost-effective approach to 

diagnosing depression using pupil diameter readings only. To ensure robust results, the 

authors implemented well-established preprocessing techniques, proven effective in 

previous studies for similar data types. These techniques included Z-Score Normalization, 

Median Filtering, Signal Detrending, and the Hilbert-Huang Transform (HHT). 

For instance, (Zhu et al., 2016) who used Z-Score normalization for examining internet 

activity time-frequency analysis for early depression identification. They used categorization 

and prediction models to identify the mental states of individuals. For accurate comparisons, 

they used z-score normalization to standardize internet behavior features. They used the 

Naive Bayes algorithm and attained 76.8% precision. 

Similarly, (Schumann et al., 2015) who used Median Filtering for investigating 

cardiovascular rhythms, PD fluctuations, and respiratory relationships. They found pupil 

unrest lateralization in the PDs of 29 individuals. They used a median filter with a 600-ms 

time window and 200-ms temporal smoothing to reduce eye blink impact. The relationship 

with baroreflex sensitivity and vagal heart rate regulation emphasizes the importance of left 

pupil changes in determining the status of the autonomic nervous system. 

Further supporting the utility of signal processing in physiological research, (Kramarić 

et al., 2019) who used polynomial detrending with Heart Rate Variability (HRV) data to 

detect acute stress in infants. The analysis of Receiver Operating Characteristic curve 

showed HRV indicators diagnostic usefulness as clinical markers. After polynomial 

detrending eliminated signal trends, the signals were 87.5% accurate. This research shows 

infant HRV analysis may identify acute stress. 

Finally the authors utilized the extracted statistical features from HHT output and used 

the cross validation technique for machine learning as supported by research conducted by 

(Aboamer et al., 2014) who employed time, frequency, HH, and a hybrid combination of 
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those features to classify healthy and paranoid patients. Hybrid features had the greatest 

classification success rate of 95.24 % in validation and 97.5 % in training using IMF1 and 

six folds. 

Several other researchers have conducted studies that are comparable to ours. Later, we 

will compare our findings with theirs in the results and discussion sections. Those 

researchers are: 

(Zeng et al., 2019) who proposed a unimodal approach using eye movement data, which 

is more accessible and cost-effective compared to EEG and functional magnetic resonance 

imaging (FMRI) data. Their model achieved a 76.04% accuracy result by using SVM 

classifier with a 10-Fold CV. 

(Li et al., 2020) who proposed a multimodal approach integrating eye movement 

behavioral features and physiological signal features. They also evaluated a unimodal 

approach using eye movement physiological signals, which achieved 76.84% accuracy by 

using a KELM classifier with a 10-Fold CV. 

(Shen et al., 2021) who introduced a unimodal approach based on psychological features 

extracted from eye movement data, considering both free viewing and frame tracking stages. 

Their model achieved a 77% accuracy result by using SVM classifier with a 10-Fold CV. 

(Zhu et al., 2023) who developed a multimodal approach (MIBFM) that uses pupil area 

signals to select EEG electrodes based on mutual information. They also tested the use of 

pupil area as a unimodal approach which achieved a 72.1% accuracy result through a 10-

Fold CV. 

(Yang et al., 2023) who proposed a multimodal approach (TSTCCA) for depression 

recognition, combining facial expression and pupil diameter, and evaluated pupil diameter 

only as a unimodal approach, which achieved a 64.78% accuracy result by utilizing SVM 

classifier. 

Few studies have investigated PD as a marker of normal and depressed states. In contrast, 

several studies have focused on EEG signals to discriminate between normal and depressed 

individuals. Pupillometry may be useful in clinical settings because some studies have 

consistently shown differences in pupillary responses between non-depressed and depressed 

individuals. Where the pupil area (Ding et al., 2019) yields the most reliable findings, not 

surpassing 90%, PD's potential as a diagnostic tool for normal and depressed individuals is 

intriguing. Additionally, computational tools may improve diagnostic speed and accuracy, 

which might help us comprehend psychiatric disorders. This article presents a novel method 

for identifying depression using ML and precise analysis of PD-derived signals. 

This research aims to explore the potential of machine learning (ML) and harness the 

power of the Hilbert-Huang Transform (HHT) technique to extract statistical features. Based 

on the analysis of signals obtained from pupil diameter (PD, these features will distinguish 

individuals without depression from those with depression. This study successfully achieved 

a high level of accuracy in classifying depression using PD data only. The study will examine 

the viability of PD as a diagnostic tool, with the goal of surpassing the accuracy criteria 

attained by current approaches. This study aims to make a valuable contribution to the field 

of depression identification by providing insights into the efficacy of using HHT and PD-

related signals to assist physicians in the diagnosis and monitoring of clinical depression. 
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2. METHOD 

2.1. Proposed approach 

This study presents a comprehensive methodology designed to process and analyze the 

physiological data of individuals (depressed or healthy) PD, emphasizing the 

implementation of robust techniques for feature extraction and classification. The process 

begins by uploading raw data pertaining to each PD measurement across individual cases 

into Python version 3.10.9 interface. Then, these data undergo a series of preprocessing steps 

aimed at standardizing signal sizes and reducing noise and baseline drift. These steps include 

data truncation to ensure uniform signal sizes, as well as sliding window median filtering 

spanning intervals of 200 ms and 600 ms, with alongside polynomial detrending techniques. 

Following preprocessing, the signals are subjected to decomposition using two distinct 

methodologies: Empirical Mode Decomposition (EMD) to yield Intrinsic Mode Functions 

(IMF), and conversion of each resulting IMF into a Helbert Hang Spectrum. This multi-step 

decomposition process is crucial for extracting meaningful information from physiological 

data. After decomposition, statistical features are extracted from each signal generated 

through the decomposition methods. 

 

Fig. 1. Proposed Machine Learning Model 
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These features encompass a diverse range, including mean, variance, standard deviation, 

median, maximum, minimum, first quartile (Q1), third quartile (Q3), skewness, and kurtosis. 

Such a comprehensive set of features enables a nuanced understanding of the underlying 

physiological processes within the human eye. Finally, classification tasks are undertaken 

employing six distinct machine learning algorithms: Support Vector Machine (SVM), 

Decision Tree, k-Nearest Neighbors (KNN), Bagging, Gradient Boosting, and Random 

Forest. To ensure the robustness of the findings, cross-validation is employed post data 

partitioning using a K-fold technique with a ratio of 3:10. This rigorous evaluation 

framework aims to assess the performance of the classification algorithms across various 

scenarios, thereby enhancing the reliability and applicability of the proposed methodology. 

Figure 1 illustrates the proposed Machine Learning model. 

2.2. Data collection 

A dataset from a recent study was used on cardiovascular dysfunction and pupillary 

fluctuations in major depression (Schumann et al., 2015). The MP150 polygraph from 

BIOPAC Systems Inc. in Goleta, CA, USA, recorded cardiovascular and pupillometric data 

on a group of participants. The research included 29 unmedicated persons with significant 

depression (21 females, 8 males, mean age: 37.8 ± 12.2, mean BMI: 23.8 ± 4.1) and a control 

group of 29 healthy persons (21 females, 8 males, mean age: 36.9 ± 12.5, mean BMI: 23.5 

± 4.1) (Schumann et al., 2015). Participants were individually hospitalized in inpatient wards 

under the diagnosis of a staff psychiatrist. All subjects fulfilled DSM-IV major depressive 

disorder criteria. Importantly, none of these individuals had used antidepressants before the 

study. The Hamilton Rating Scale for Depression was used to measure depression severity. 

To reduce clinical deficiencies, Hamilton (1960) recommended conversations with patients 

and healthy volunteers. All individuals also took Beck's 1961 depression evaluation. No 

psychiatric, neurological, or clinically significant disorders were present in the healthy 

control group. All participants gave informed written permission according to the Jena 

Ethics Committee policy. The studies were conducted between 2:00 pm and 7:00 pm. The 

exam room was quiet and lit by a low-intensity ambient light. Participants wore headphones 

to reduce noise. A monitor above the sofa presented a dark grey ellipse for fixation. The 

ambient temperature was 22°C. The room remained silent throughout the 20-minute exam. 

A beamer provided constant illumination. To measure eye movement in the pupillometric 

system region, a 22-inch monitor projected an ellipse across the screen. The first five minutes 

were omitted from analysis to let participants adjust. Pupil size was measured at 4-

millisecond intervals using SensoMotoric Inc.'s RED 250 infrared camera system 

(Schumann et al., 2015). The requirement to capture quick pupillary responses to emotional 

processing prompted this frequency of pupil size recording. To capture PD changes with 

great temporal precision, the 4ms period was used. The PD data was recorded in CSV files 

and then uploaded to Python version 3.10.9 as a data frame for further usage in subsequent 

phases. 

2.3. Data preprocessing 

The following steps aim to improve model accuracy. Unwanted noise may obscure model 

learning. Such noise must be eliminated. Figure 2 displays the unprocessed data signal of a 

sample that includes one example of the left pupil of both depressed and healthy patients, as 
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well as the enhancement achieved by implementing the following four steps: Normalization, 

Median Filtering for 200ms, Detrending, and Median Filtering for 600ms. 

2.3.1. Normalization (Z-Score) 

Data normalization using Z-Score is the first stage in the process of data processing to 

eliminate biases and variances. This enhances research reliability. Normalization 

standardizes data to compare variables. This facilitates data integration and statistical 

interpretation. Z-Score can be calculated as follows: where, x represents a variable, μ stands 

for the mean, and σ denotes the standard deviation. 

𝑧 =
𝑥− 𝜇

𝜎
             (1) 

Z-score measures the gap size between x and μ, impacted by the standard deviation σ. A 

negative 𝑧 value indicates that 𝑥 is below the mean μ (Zhu et al., 2016). 

2.3.2. Median filtering (200ms) 

Secondly, the normalized data was subjected to median filtering. The median filter is 

known to reduce random noise, enhance signal quality, and identify key trends and patterns. 

This study employs the median filter to address eye blinks, which cause sudden PD declines.  

The median of n observations 𝑥𝑖  , 𝑖 =  1, . . 𝑛 is denoted by 𝑚𝑒𝑑(𝑥𝑖) and it is given by: 

𝑚𝑒𝑑(𝑥𝑖) = {
𝑥(𝑣+1) 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑎𝑛𝑑  𝑛 = 2𝑣 + 1

1

2
(𝑥(𝑣) + 𝑥(𝑣+1)) 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑎𝑛𝑑        𝑛 = 2𝑣

   (2) 

where:  𝑥(𝑖) – denotes the 𝑖-th order statistic.  

A one-dimensional median filter of size 𝑛 = 2𝑣 + 1 is defined through the input-output 

relation: 

𝑦𝑖 = 𝑚𝑒𝑑(𝑥𝑖−𝑣 , . . , 𝑥𝑖 , . . , 𝑥𝑖+𝑣)               𝑖 ∈ 𝑍      (3) 

The input is the sequence 𝑥ᵢ where i ∈ Z, and the output is the sequence yᵢ where i ∈ Z. 

The running median, sometimes known as the moving median (Kowalski & Smyk, 2018), 

is important in data processing. 
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Fig. 2. Preprocessing steps implementation to PD signal of depressed and healthy individuals 
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2.3.3. Nonlinear detrending (Sixth-Degree Polynomial) 

A sixth-degree polynomial detrending method was then used to remove trends from the 

signals obtained from the median filter 200ms step. The signal's fluctuations over time must 

be detrended to concentrate analysis and filtering on the fluctuations of interest. The sixth-

degree polynomial detrending prepares the data for subsequent processing, addressing trends 

before the median filter 600ms is used. Nonlinear detrending was performed using “polyfit” 

and “polyval” functions. The "polyfit" function computes the polynomial coefficients 𝑝(𝑥) 

of degree 𝑛 that optimally approximate the data in 𝑦 (Harris et al., 2020). 

𝑝(𝑥) = 𝑝1𝑥𝑛 + 𝑝2𝑥𝑛−1 + ⋯ + 𝑝𝑛𝑥 + 𝑝𝑛+1      (4) 

The coefficients in 𝑝 are arranged in a descending order of powers, and the length of 𝑝 is 

equal to 𝑛 + 1. The vector 𝑥 represents the query points that correspond to the fitted function 

values in 𝑦. The outcome 𝑦 represents the estimated values at the specific sites of interest 

specified in 𝑥. The parameter 𝑛 represents the polynomial fit degree, which determines the 

power of the coefficient on the leftmost side of 𝑝. Subsequently, the “polyval” is used to 

calculate the value of the polynomial 𝑝 at each point in 𝑥. The resulting polynomial curve is 

then subtracted from the original signal to eliminate trends (Harris et al., 2020). 

2.3.4. Median filtering (600ms) 

In the last step, a 600ms median filter was applied to eliminate sudden PD drops. 

2.4. Signal processing 

After a normalized time-based signal, free from both trend and noise, is obtained for each 

participant's PD data, it is then subjected to the following signal processing: 

HHT, a mixture of EMD and Hilbert Spectral Analysis (HSA), has been recommended 

recently in this field’s contributions (Shen et al., 2005). Which efficiently obtains 

information in the time and frequency domains from the data directly. In HHT, EMD extracts 

characteristic scales from the data to breakdown the signal into oscillation modes. Through 

IMF component representation, EMD may be used for time–frequency filtering. Fig. 3 

shows the two proposed steps for signal processing (IMF and HHS). The first raw includes 

one depressed case’s PD signal and one healthy case’s PD signal after applying EMD to 

produce many IMFs, while the second raw includes the HHS of one of the extracted IMFs 

for each case. 

2.4.1. Empirical Mode Decomposition (EMD) 

EMD is a data-driven signal-decomposing approach without a priori basis functions 

(Huang et al., 1998; Junsheng et al., 2006). Decomposing the signal into IMFs is the EMD's 

goal. An IMF function meets two conditions: 1) The number of extrema and the number of 

zero crossings must be equal or differ by one across the data set; and 2) The mean value of 

the local maxima and minima envelops must be zero at any point. A Fourier analysis simple 

harmonic function is compared to an IMF, which reflects the oscillatory mode in the data 

(Anas et al., 2010). 
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Given the detrended and filtered signal 𝑥(𝑡), the starting point of EMD involves 

identifying all the local maxima and minima. The local maxima are connected by a cubic 

spline curve to form the upper envelope (Gregory, 1985), while the local minima are 

similarly connected to form the lower envelope. 

 

Fig. 3. Processing steps implementation to pre-processed PD signals of depressed and healthy individuals 

The mean of these two envelopes is then calculated and subtracted from the original 

signal to obtain the first component ℎ1(𝑡). This process of extracting the IMF is known as 

the sifting process (Huang & Shen, 2005). Ideally, ℎ1(𝑡) should be an IMF, as its 

construction aims to meet all IMF requirements. However, since ℎ1(𝑡) still contains multiple 

extrema between zero crossings, the sifting process is repeated on ℎ1(𝑡). After repeated 

sifting, if the resulting difference satisfies the IMF properties, it is considered the first IMF 

component, denoted as 𝑐1(𝑡). A common criterion to determine the sufficiency of the sifting 

process is the standard deviation (SD) between two consecutive siftings. When the SD falls 

below a certain threshold, the first IMF 𝑐1(𝑡) is obtained. This first IMF is then separated 

from the remaining data, producing a residue 𝑟1(𝑡). It is important to note that this residue 

still contains valuable information. Therefore, the residue is treated as a new signal, and the 

sifting process is applied again to extract additional IMFs. This iterative process continues, 

with each new residue being used to extract the next IMF. 

The whole procedure terminates when either the component 𝑐𝑞(𝑡) or the residue 𝑟𝑞(𝑡) 

becomes very small or when the residue 𝑟𝑞(𝑡) becomes a monotonic function. So, the EMD 

of the original signal is given by equation: 
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𝑥(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑞(𝑡)𝑞
𝑖=1          (5) 

where:  𝑐1(𝑡), 𝑐2(𝑡),…, 𝑐𝑞(𝑡) – are all the IMFs included in the signal. 

             𝑟𝑞(𝑡) – is a negligible residue (Huang & Attoh-Okine, 2005). 

The decomposition yields 𝑞-intrinsic modes and a residue. In the presented model, the 

EMD method extracts a variable number of IMF components based on each signal intensity. 

For both the healthy and depressed groups, the first ten IMF components are utilized for 

analysis (From IMF-1 to IMF-10). So, PD signal is decomposed into (𝑞) IMF components 

with various time scales. Since the first component has the lowest time scale, it has the 

quickest signal time fluctuation. The mode mean frequency drops as the time scale grows 

during decomposition. The EMD has been used to show the relative energy distribution of 

individual IMFs to detrended PD signals, even though it lacks a precise mathematical 

definition. Thus, Hilbert transform overcomes this problem by generating a complex signal 

with instantaneous energy, phase, and frequency fluctuations regardless of whether the 

signal is stationary or nonstationary and produced by linear or nonlinear processes. 

After decomposition, we got 10 IMF signals for each of the 29 healthy persons' left and 

right eye PDs, 29 depressed individuals' left and right eye PDs. Then statistical features will 

be extracted as follows. 

2.4.2. IMF statistical features extraction 

Statistical features, such as mean, variance, standard deviation, median, maximum, 

minimum, quartiles (Q1 and Q3), skewness, and kurtosis, are then computed for each set of 

IMFs. Which might be a better tool than using the huge amounts of data have been collected. 

After processing all subjects, the individual feature data frames for the right and left eyes are 

concatenated to create combined data frames for each condition. The features and labels are 

separated into different data frames, which are then exported to Excel files for further 

analysis. The exports include separate files for right eye features, left eye features, both eye 

combined features, and their corresponding labels. 

2.4.3. Hilbert Huang Transform (HHT) 

For individual IMFs, the Hilbert Huang transform has been calculated using the Cauchy 

principal value integral (Huang & Attoh-Okine, 2005). As a result, we may compute the 

instantaneous frequencies, instantaneous phase, and instantaneous energy magnitude. The 

HT can show how the power and frequency change over time. Converting the actual signal 

to its complex analytic version is beneficial since using the real signal will result in cross-

terms due to the existence of positive and negative frequencies. Furthermore, it permits the 

calculation of the signal's phase and magnitude without requiring an estimate that the signal 

is stationary or the result of a linear process. Additionally, when employing a genuine signal, 

an analytical signal will provide an accurate description of the average frequency and remove 

the requirement to sample at double the Nyquist rate. The so-called Hilbert spectrum (HS) 

is obtained if the instantaneous frequency and the temporal variation of energy (envelope) 

are connected at the same moment. 
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2.4.4. HS statistical features extraction 

Similarly to the approach used in extracting statistical features from IMF in the IMF 

statistical features extraction method, after all Hilbert Spectra (HS) have been obtained for 

each individual IMF component of each preprocessed PD signal, Statistical features, 

including mean, variance, standard deviation, median, maximum, minimum, quartiles (Q1 

and Q3), skewness, and kurtosis, were obtained from the power spectrum of the detrended 

PD signal. These features represent the energy for the following frequency bands: ultra-low 

frequency ([ULF]: 0–1 Hz), very low frequency ([VLF]: 1–3 Hz), low frequency ([LF]: 3–

6 Hz), and high frequency ([HF]: 6–10 Hz). Again, the individual feature data frames for the 

right and left eyes are concatenated to create combined data frames for each condition. The 

features and labels are separated into different data frames, which are then exported to Excel 

files for further analysis. The exports include separate files for right eye features, left eye 

features, both eye combined features, and their corresponding labels. 

2.5. K-Fold Cross-Validation 

K-fold Cross-Validation divides the extracted statistical features of both IMF and HS into 

𝑘 equal-sized folds. After that, 𝑘 training and validation iterations are performed, with each 

iteration holding out a different data fold for validation and using the remaining 𝑘 − 1 folds 

for learning (Lendasse et al., 2003). Stratifying data before splitting into 𝑘 folds is frequent. 

Stratification reorganizes data to make each fold indicative of the whole. This method's 

sequence is: 

1. Split the features extracted data sets 𝑋 of 𝑛 into 𝐾 nearly equal-sized sets. The 

validation set 𝑋𝑣𝑎𝑙 contains the 𝑘th set. Other sets constitute 𝑋𝑙𝑒𝑎𝑟𝑛, a learning dataset. 

(The model was evaluated for 𝐾 one- to ten-folds.) 

2. 𝑋𝑙𝑒𝑎𝑟𝑛 used to train model g, and the error 𝐸𝑘(g) is determined as: 

𝑥𝐸𝑘(g) =
∑ (g(𝑥𝑖

𝑣𝑎𝑙−𝑦𝑖
𝑣𝑎𝑙)2

𝑛
𝐾
𝑖=1

𝑛

𝐾

          (6) 

where:  𝑥𝑖
𝑣𝑎𝑙, 𝑦𝑖

𝑣𝑎𝑙 – are the elements of 𝑋𝑣𝑎𝑙. 

             g(𝑥𝑖
𝑣𝑎𝑙) – the approximation of 𝑦𝑖

𝑣𝑎𝑙 by model g. 

Steps 1 and 2 are repeated for 𝐾 varying from 1 to 𝐾. The average error 𝐸̂𝑘(g) is 

calculated according to: 

𝐸̂𝑘(g) =
∑ 𝐸𝑘(g)𝐾

𝑘=1

𝐾
           (7) 

2.6. Classification 

Many classification and clustering methods can predict initial psychiatric disorders 

(Kamel & Selim, 1994; Mao & Jain, 1996; Selim & Alsultan, 1991; Yu & Yuan, 1995). 

They can also help psychiatry decide on medication and treatment cycles. Discriminant 

functions like KNN (Benvenuto et al., 2002), and SVM (Zhang et al., 2011) can be used to 

classify psychiatric disorders. In this research, six different classification methods and 

machine learning algorithms were applied: SVM, Decision Tree, KNN, Bagging, Gradient 
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Boosting, and Random Forest have been applied on the first ten IMFs extracted statistical 

features. 

2.7. System evaluation 

The Confusion Matrix (CM) is often used in system assessment to assess the 

effectiveness of a proposed machine learning model. It includes many parameters that 

effectively measure the model's performance. The values for these parameters are 

determined by The Equations shown below (Sokolova & Lapalme, 2009): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑝+𝑇𝑛+𝐹𝑛
× 100                                       (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝+𝐹𝑝
× 100                                                (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑝

𝑇𝑝+𝐹𝑛
× 100                                   (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑛

𝑇𝑛+𝐹𝑝
× 100                                          (11) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑇𝑝

2𝑇𝑝+𝐹𝑝+𝐹𝑛
                                               (12) 

where: "True Positive" (𝑇𝑝) – case count when model predicted positive class. 

            "False Positive" (𝐹𝑝) – shows model mispredictions of positive class. 

            "True Negative" (𝑇𝑛) – case count when model predicted negative class. 

            "False Negative" (𝐹𝑛) – shows model mispredictions of negative class. 

The classification was performed by classifying depressed individuals as "positive" and 

healthy individuals as "negative". The data analysis will focus on accuracy, precision, 

specificity, sensitivity (recall), and F1-score. The accuracy represents the model's ability to 

differentiate between depressed and normal people. The precision determines the model's 

ability to correctly detect relevant cases without misclassifying too many irrelevant cases as 

positive; the sensitivity determines the ratio of depressed patients correctly classified; and 

the F1-score considers the model's recall and precision. 

3. RESULTS AND DISCUSSION 

All results have been analyzed using Power BI to get the best model for classification 

between healthy and depressed cases. Features may be classified with respect to various 

perspectives. The conducted work was built upon the following selected categorization. 

3.1. IMF features 

The extracted IMF's statistical features contribute significantly to achieving high 

classification accuracy results. Based on the following insights, it is evident that the 

proposed model can effortlessly achieve high-accuracy results, where: 
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− “IMF-6” obtained the highest classification accuracy, achieving 93.8% accuracy, 

88.9% precision, 87.5% specificity, 100% sensitivity, and 94.1% F1-score. That was 

achieved by applying sevenfold cross-validation by utilizing the statistical features of 

the combined Both Pupils signal and employing Bagging as a classification method. 

− As shown in Fig. 4, "IMF-1" emerged 113 out of 773 times to produce high 

classification accuracy results over 80% across all CV folds, demonstrating the power 

of IMF-1 as a signal that can enhance the proposed model's classification accuracy. 

− Figure 5 shows that “Random Forest” stands out with 193 out of 773 contribution 

times in achieving high classification accuracy results above 80% compared with 

other classifiers across all CV folds. 

− Figure 6 shows that about half of the pupil data contributions resulted in high 

classification accuracy over 80% achieved by using the combined "Both Pupil" data. 

As a result, it is evident that the inclusion of "Both Pupil" data is critical for improving 

the model's accuracy. 

 

Fig. 4. IMFs’ contribution number of times for achieving classification accuracy above 80% by using 

IMF features 

 

Fig. 5. Classifiers’ contribution number of times for achieving classification accuracy above 80% by 

using IMF features 
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Fig. 6. Pupil diameter data contribution ratios in achieving classification accuracy above 80% by using 

IMF features 

Following the analysis of the previous results, the authors optimized the model by 

utilizing the most powerful factors that contributed to achieving high accuracy results. This 

was achieved by applying the statistical features extracted from the IMF-1 of the combined 

Both Pupil data and using Random Forest as a classification method. Using Four-folds cross-

validation, the model was able to achieve 93.8% accuracy, 88.9% precision, 87.5% 

specificity, 100% sensitivity, and 94.1% F1-score. 

3.2. Hilbert–Huang Spectrum Features 

Hilbert–Huang features produced the highest success rate and were better than the use of 

IMF features in classification between depressed and healthy cases, where CV and 

subsequent classification by means of the same six classifiers have been applied to all 

Hilbert–Huang statistical features that have been extracted from the different frequency 

bands of HS of the first ten IMFs. The main observations and results are summarized below: 

− The LF band statistical features of the HS of “IMF-1” obtained the highest 

classification accuracy result, where it was able to achieve 93.3% accuracy, 87.5% 

precision, 87.5% specificity, 100% sensitivity, and a 93.3% F1-score. That was 

achieved by applying Eight-fold CV, utilizing the statistical features of Both Pupil’s 

signals, and employing Bagging as a classification method. 

− “IMF-1” emerged 441 out of 1372 times to produce high classification accuracy 

results exceeding 80% across all CV folds, as shown in Fig. 7. 

− Figure 8 shows that “Random Forest” stands out with 279 out of 1372 contribution 

times (20.3%) in achieving high classification accuracy results above 80% compared 

with other classifiers across all CV folds. 

− “Both Pupil” data significantly contribute 41.3% to achieving high accuracy results, 

as shown in Fig. 9. 

− Configurations with the “ULF” band were able to achieve high accuracy more 

frequently than the other bands, so it became the most frequent band achieving high 

classification accuracy results regardless of the classifier used, as shown in Fig. 10,11. 
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Fig. 7. IMFs’ contribution number of times for achieving classification accuracy above 80% by using HS 

features across all frequency bands 

 

Fig. 8. Classifiers contribution number of times for achieving classification accuracy above 80% by using 

HS features across all frequency bands 

 

Fig. 9. Pupil diameter data contribution ratios in achieving classification accuracy above 80% by using 

HS features across all frequency bands 
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Fig. 10. A comparative analysis of all classifiers and its most frequent Frequency Bands utilized in 

attaining above 80% accuracy by using HS features 

 

Fig. 11. Frequency bands contribution number of times for achieving classification accuracy above 80% 

by using HS features across all classifiers 

3.3. Summary of results 

The research compared the classification accuracy of IMF features and each frequency 

band of HS features for distinguishing between healthy and depressed cases. Here are the 

key findings for each technique used: 

IMF Features: 

IMF-6 achieved the highest classification accuracy of 93.75% using Bagging as a 

classifier and statistical features from the Both Pupils signal. Despite the fact that IMF-6 

achieved the highest classification accuracy, IMF-1 consistently produced high accuracy 

across multiple cross-validation folds, emphasizing its importance in enhancing 

classification accuracy. Also, despite Bagging achieving the highest classification accuracy, 

Random Forest was notably effective, contributing significantly to achieving high accuracy 

results in various scenarios. The inclusion of Both Pupil data was significant for enhancing 

model accuracy by leveraging combined pupil signals. 

Hilbert–Huang Spectrum Features: 

LF band features of HS from IMF-1 achieved the highest accuracy of 93.33%, employing 

Bagging with Both Pupil’s signals. Similar to IMF features, despite Bagging achieving the 

highest classification accuracy, Random Forest demonstrated strong performance in 

achieving high accuracy. ULF band configurations were particularly successful, achieving 

the highest accuracy results more frequently across different classifiers. 
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The following Tab. 1 presents the highest attained results across all signals that had been 

processed, where different classifiers were applied to PD signals for the classification of 

depressed and healthy individuals. 

Tab. 1. The highest attained results obtained from our proposed approach 

 Classifier IMF PD Signal CV Accuracy Precision Specificity Sensitivity 
F1-

Score 

IMF Bagging IMF-6 Both 7-Fold 93.75% 88.89% 87.50% 100.00% 94.12% 

HS – ULF 

band 
Bagging IMF-9 Both 6-Fold 92.86% 100.00% 100.00% 85.71% 92.31% 

HS – VLF 

band 

Decision 

Tree 
IMF-3 Both 9-Fold 91.67% 100.00% 100.00% 83.33% 90.91% 

HS – LF 

band 
Bagging IMF-1 Both 8-Fold 93.33% 87.50% 87.50% 100.00% 93.33% 

HS – HF 

band 

Gradient 

Boosting 
IMF-1 Left 7-Fold 87.50% 100.00% 100.00% 75.00% 85.71% 

3.4. Comparison with the authors’ previous research results 

The following comparative analysis shown in Tab. 2 and Fig. 12 between the authors’ 

recent proposed Machine Learning model and their previous contribution in the same field 

utilizing the same modality of Pupil Diameter signals using Deep Learning model (Ismail et 

al., 2024) reveals that the combined data from both pupils significantly enhances 

classification accuracy in distinguishing between depressed and healthy individuals. 

Specifically: 

The accuracy of 90.91% from the Bagging method in the left eye significantly surpasses 

the 78.57% accuracy of AlexNet. This indicates that machine learning provides a more 

effective classification for the left eye dataset. 

Similarly, the accuracy of 90.91% from machine learning approaches outperforms 

GoogLeNet’s 71.43% accuracy for the right eye. This further highlights the superior 

performance of machine learning methods in handling the right eye data. 

In comparing the accuracy of machine learning and deep learning, the machine learning 

approach with IMF-6 achieved the highest classification accuracy of 93.75% by using 

Bagging as a classifier and statistical features from both eyes’ pupils. In contrast, the Deep 

Learning method utilizing AlexNet reached an accuracy of 98.28% by combining data from 

both eyes’ pupils, significantly surpassing the machine learning results. 

In conclusion, while both machine learning and deep learning methods demonstrate 

strong accuracy, machine learning is typically preferred for its faster execution times. 

Tab. 2. Comparative analysis between Deep Learning and Machine Learning classification accuracy 

results 

Method Deep Learning Machine Learning 

PD 

Dataset 
Left Right Combined Left Right Combined 

Model AlexNet GoogLeNet AlexNet 

Bagging, 

Gradient 

Boosting, or 
Random 

Forest 

SVM 

Gradient 
Boosting, or 

Random 

Forest 

Bagging 

Accuracy 78.57% 71.43% 98.28% 
90.91% 
(IMF) 

90.91% 
(ULF, VLF) 

90.91% 
(LF) 

93.75% 
(IMF) 
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Fig. 12. Comparative analysis between Deep Learning and Machine Learning classification accuracy 

results 

3.5. Comparison with other researchers results 

The following Tab. 3 presents a comparative analysis of the highest classification average 

accuracy results for our model against those achieved by other researchers over the past five 

years in the field of depression recognition. The results indicate that our proposed 

classification method outperforms other methods using a unimodal approach with only 3-

fold CV which uses a lower processing time. 

Tab. 3. Comparative analysis of different depression recognition methods 

Reference Modality Classifier CV Accuracy Precision Specificity Sensitivity 
F1-

Score 

Ours 
Pupil 
Diameter 

Random 
Forest 

3-Fold 77.72% 83.33% 82.76% 71.85% 76.09% 

Yang et 

al., 2023 

Pupil 

Diameter 
SVM NI 64.78% NI 67.16% 63.88% 63% 

Zhu et al., 
2023 

Pupil Area SVM 10-Fold 72.1% NI NI NI NI 

Shen et 

al., 2021 

Eye 

movement 
SVM 10-Fold 77% NI 70.3% 69% NI 

Li et al., 
2020 

Eye 
movement 

KELM 10-Fold 76.84% NI 79.34% 75.95% 76.66% 

Zeng et 

al., 2019 

Eye 

movement 
SVM 10-Fold 76.04% NI NI NI NI 

NI: Refers that the result for that item was “Not Included”. 

4. CONCLUSION 

The conducted research demonstrates that employing advanced machine learning 

classifiers on pupil diameter signals significantly enhances the accuracy of depression 

recognition systems. Among the various classifiers tested, the Random Forest and Bagging 

classifiers consistently produced the highest performance metrics across different IMFs and 

frequency bands of the HS. 

The results of this work indicate that the use of the extracted statistical features from the 

IMFs of the individual PD signals, in conjunction with the easy and fast processing machine 
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learning model proposed by the authors, can significantly boost the classification accuracy 

of depression recognition systems. This is further corroborated by the comparative analysis 

with other researchers' results over the past five years, which highlights the superior 

performance of our proposed model, especially in terms of accuracy, precision, and 

specificity. 

Overall, this study underscores the potential of leveraging machine learning and signal 

processing techniques in analyzing pupil diameter signals for the effective classification of 

depressed and healthy individuals. The high classification accuracy achieved using our 

approach suggests that it could be a valuable tool in clinical settings for early and accurate 

depression detection. In the following points you can find the advantages of our proposed 

model: 

1. It attained higher classification accuracy results compared with the other unimodal 

approaches. 

2. Its CV outperforms other methods using only 3-fold which costs less processing time. 

3. It is a cost-effective approach where utilizing only pupil diameter readings which can 

be measured with relatively low-cost equipment, makes the model practical and 

accessible for widespread clinical use, unlike other utilized data like EEG or FMRI. 

4. The model's reliance on well-known machine learning algorithms and statistical 

feature extraction techniques makes it straightforward to implement and deploy. This 

ease of use can facilitate quicker adoption in clinical and research settings. 

5. In recent years, the eye tracking and measuring of PD have become more and more 

easily accessible than ever. In the future, with the development of cameras and sensors 

in mobile phones, we can even make an app for depression detection using PD 

measurement; it can even be used directly and give a diagnosis very fast with high 

accuracy. 

So, by combining these advantages, the proposed model not only sets a new benchmark 

in the field of depression recognition but also offers practical benefits that enhance its 

viability for real-world applications. 

5. FUTURE WORK 

In the future, the authors will primarily focus on enhancing the depression detection 

algorithm and employing alternative experiments not only to leverage the ability of PD data 

to classify between depressed and healthy individuals but also to measure depression 

severity. This will result in more dependable classification accuracy for real-time 

applications, thereby establishing eye tracking as a more convenient, cost-effective, and 

widely adopted method for detecting depression. 
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