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Abstract 

This paper presents a comprehensive computational system designed to evaluate the 

undetectability of video steganography from human perspective. The system assesses 

the perceptibility of steganographic modifications to the human eye while 

simultaneously determining the minimum encoding level required for successful 

automated decoding of hidden messages. The proposed architecture comprises four 

subsystems: steganogram database preparation, human evaluation, automated 

decoding, and comparative analysis. The system was tested using example 

steganographic techniques applied to a dataset of video files. Experimental results 

revealed the thresholds of human-level undetectability and automated decoding for 

each technique, enabling the identification of critical differences between human and 

algorithmic detection capabilities. This research contributes to the field of 

steganography by offering a novel framework for evaluating the trade-offs between 

human perception and automated decoding in video-based information hiding. The 

system serves as a tool for advancing the development of more secure and reliable 

video steganographic techniques. 

1. INTRODUCTION 

Steganography, a discipline dedicated to concealing information within various media, 

traces its theoretical roots to Shannon’s information theory introduced in 1948 (Shannon, 

1948). The field was later established as a distinct area of research through Kahn’s seminal 

work in 1967 (Kahn, 1967). The primary goal of steganography is to embed data into digital 

or analog covers while ensuring that the hidden information remains imperceptible to 

unintended recipients (Johnson & Jajodia, 1998).  

The effectiveness of steganographic techniques is determined by their ability to balance 

three critical attributes: undetectability, capacity, and robustness (Fridrich, 2009). These 

characteristics are interdependent, requiring careful trade-offs during the design process to 

meet specific application requirements and address potential security threats. Undetectability 

refers to the capacity of a steganographic method to conceal information in such a way that 

it evades detection, either by human perception or statistical analysis. Capacity measures the 
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amount of information that can be embedded without compromising the integrity of the 

cover medium. Robustness reflects the technique’s ability to maintain the hidden 

information’s integrity despite transformations such as compression, filtering, or format 

conversion. 

Steganographic methods are employed across a variety of media, including text, images, 

audio, video, and network data (Petitcolas et al., 1999). The selection of an appropriate 

technique depends on the characteristics of the cover medium, the desired payload size, and 

the required levels of robustness and imperceptibility (Sencar et al., 2004). Ultimately, the 

success of a steganographic system relies on achieving an optimal balance between these 

properties while preserving the cover medium’s integrity and evading detection (Cox et al., 

2007). 

1.1. Video steganography 

Video steganography garners significant research interest because video files inherently 

offer large data capacities and complex temporal relationships, making them highly suitable 

carriers for covert communication. Unlike static images, videos enable more sophisticated 

embedding strategies that exploit frame-to-frame variations, motion vectors, and predictive 

coding, thereby increasing the difficulty of detection. Additionally, the dynamic nature of 

video data introduces more nuanced perceptual thresholds, allowing steganographic 

modifications to remain imperceptible not only to automated detection systems but also to 

human observers under various viewing conditions. As a result, video steganography 

presents both a robust framework for information hiding and a rich domain for exploring 

new techniques that balance imperceptibility, capacity, and computational efficiency 

(Majeed et al., 2024). 

Video steganography techniques leverage the unique attributes of video data, such as its 

temporal dimension, to embed information in a manner that is imperceptible to both human 

and automated detection systems. Early methods in video steganography often adapted 

techniques from image and audio steganography, using individual frames as static covers for 

embedding data. Techniques such as Least Significant Bit (LSB) substitution (Chan & 

Cheng, 2004) and Discrete Cosine Transform (DCT) were among the first to be utilized 

(Kadhim et al., 2019). 

More advanced approaches have since been developed, exploiting motion vectors, inter-

frame prediction mechanisms, and frame-to-frame differences to encode information. These 

techniques enhance undetectability by leveraging the temporal relationships inherent in 

video sequences. The dynamic nature of video content and its inherent complexity provide 

additional layers of security, making video steganography a robust choice for covert 

communication (Kunhoth et al., 2023). 

1.2. The problem of undetectability in video steganography 

Undetectability in video steganography can be assessed from two perspectives: resistance 

to automated steganoanalysis and imperceptibility to the human eye (Huynh-Thu & 

Ghanbari, 2008; Wang et al., 2004). While much of the existing research has focused on 

developing methods that evade automated detection systems (Hossain et al., 2024), this 

study emphasizes human imperceptibility, particularly in scenarios where analog distortions 
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or transformations render automated systems less effective (Anderson & Petitcolas, 1998; 

Katzenbeisser & Petitcolas, 2000). 

This work introduces a novel computational framework designed to evaluate both human 

perception and automated decoding of hidden messages. The system simultaneously 

assesses two critical performance metrics: the threshold at which hidden information 

becomes perceptible to the human eye and the effectiveness of automated steganoanalysis 

tools in detecting hidden data. By comparing these metrics, the system provides a 

comprehensive evaluation of the steganographic technique’s undetectability from both 

perspectives. 

This dual analysis offers valuable insights into the effectiveness of various video 

steganographic techniques. Specifically, it determines whether a given method achieves 

sufficient undetectability for human observers while maintaining baseline robustness against 

automated detection. By focusing on human perception as the primary criterion for 

evaluating undetectability, this study advances the development of steganographic 

techniques optimized for real-world scenarios. 

The proposed framework not only enhances the understanding of human perceptibility 

thresholds in video steganography but also provides a foundation for creating more resilient 

and imperceptible methods. 

1.3. Research gap in video steganography 

Despite substantial progress in developing increasingly sophisticated video 

steganographic methods, a notable gap persists in balancing human-level imperceptibility 

with automated detection resilience. Previous research has predominantly emphasized 

evading statistical or machine-driven steganoanalysis (Jangid & Sharma, 2017), dedicating 

less attention to the threshold at which steganographic modifications become perceptible to 

the human eye. In practice, this gap is especially pronounced in scenarios where video 

content undergoes analog transformations-such as screen capture or re-recording-which can 

degrade the statistical features exploited by automated systems but may introduce perceptual 

artifacts detectable by human observers. 

Moreover, although various techniques leverage advanced embedding strategies (e.g., 

motion vectors, inter-frame differentials, and predictive coding), they often lack a rigorous, 

empirical framework that explicitly quantifies the interplay between automated detection 

rates and human perceptibility thresholds. The absence of such a framework makes it 

challenging to evaluate how effectively a given steganographic method maintains 

imperceptibility in dynamic, real-world contexts, where lighting conditions, display 

characteristics, and other environmental factors can amplify perceptual cues. 

To address these shortcomings, the present work introduces an integrated computational 

system capable of systematically measuring the human perceptibility threshold 

(HumanLevel) alongside the minimum embedding level required for successful automated 

decoding (AutomaticLevel). By providing parallel assessments of both metrics, this 

approach not only furnishes a more complete understanding of undetectability but also 

enables targeted refinements of steganographic algorithms to achieve optimal trade-offs 

between imperceptibility and decode robustness. Through this dual-focus analysis, the study 

advances the field toward practical, real-world-ready video steganography that effectively 

balances the demands of both human and machine adversaries. 
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2. THE PROPOSED SYSTEM 

2.1. Assumptions 

The proposed system is designed to operate under the assumptions shown in Tab. 1. 

Tab. 1. Assumptions of the proposed system 

Input data. The system receives the following inputs: 

1. A steganogram in the form of a video file, identified by a unique file identifier. 

2. The identifier of the steganographic technique used for encoding. 

3. A numerical parameter ranging from 0 to 5 that specifies the encoding level of the 

steganogram (0 indicates the original, unmodified cover - no steganographic encoding 

applied, 1 to 5 represent increasing levels of encoding, where higher levels introduce more 

significant changes to the cover). 

4. A unique identifier for each participant evaluating the steganogram's quality (i.e., the 

visibility or invisibility of steganographic modifications). 

Output data. The system produces the following raw output: 

1. The identifier of the evaluated steganogram, including its encoding level. 

2. The information on whether the participant identified the video as steganographic or not. 

3. An indicator of whether the hidden message in the steganogram can be automatically decoded 

at the given encoding level. 

Statistical analysis. The system provides aggregated results, including: 

1. The maximum encoding level imperceptible to the human eye for a given steganogram, 

calculated based on the specified confidence percentile. 

2. The minimum encoding level required for successful automatic decoding of the hidden 

message. 

 

The system requires encoding and decoding functions specific to each steganographic 

technique under investigation. The encoding function embeds a secret message into the 

source cover retrieved from a database, while the decoding function is executed whenever a 

participant evaluates a steganogram. 

The system is agnostic to the underlying mechanisms of the steganographic functions and 

does not compare their operational specifics. Its primary purpose is to determine the 

encoding level at which modifications become perceptible to human observers and the level 

necessary for successful automated decoding of the hidden message. 

2.2. System architecture 

The system is composed of four primary subsystems: 

1. Steganogram Database Preparation Subsystem - creates a database of steganograms from 

source covers, 

2. Human Evaluation Subsystem - conducts experiments with human participants, 

3. Automated Decoding Subsystem - tests the automatic decoding of hidden messages from 

the steganograms, 

4. Comparative Analysis Subsystem - compares results from human evaluations and 

automated decoding to derive insights. 

A schematic representation of the system architecture is provided in Fig. 1. 
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Fig. 1. System architecture 

2.3. Creation of the steganogram database 

In the research experiment, the preprocessing phase began with standardizing the source 

video files to ensure consistent resolution, frame rate, and format - an essential step for 

achieving reliable steganographic performance. All videos were transcoded into MP4 format 

using the H.264 codec with uniform frame rates and resolutions, thereby minimizing any 

inadvertent variability introduced by differing compression schemes or container formats. 

The steganographic embedding process itself was carried out using two distinct methods: 

one based on the Least Significant Bit (LSB) technique and the other employing a Discrete 

Cosine Transform (DCT) approach. These methods were implemented through custom 

Python scripts (see Fig. 5 and 6) leveraging libraries such as OpenCV and FFmpeg for frame-

level manipulation and re-encoding. During the encoding phase, the predefined message was 

embedded at levels 1 through 5, where each incrementally higher level introduced more 

pronounced modifications to the video content. In contrast, level 0 was reserved for the 

unaltered source file. As a result of this procedure, the final steganogram database contained 

six times the original number of video files, each assigned a unique identifier of the form 

“CoverId_LevelId.mp4.” This systematic preprocessing and encoding pipeline ensured that 

all generated steganograms were both comparable and reproducible, facilitating subsequent 

analyses of their imperceptibility and automated decodability. An example directory 

structure for the source and steganogram databases is shown in Fig. 2. 
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Fig. 2. Sample cover database and steganogram database 

2.4. Experimental process 

The experimental process operates as follows: 

1. Parameters. Researchers specify: 

− the number of video files to be displayed, 

− whether to display only unique videos or allow repeated presentations of the same 

cover with different encoding levels. 

2. Video Selection. The system randomly selects a sequence of videos from the 

steganogram database for each participant. 

3. Video Display. Videos are displayed sequentially. After each video, participants are 

prompted to decide whether the video has been modified steganographically. The interface 

for participant input is shown in Fig. 3. 

Each evaluation is recorded in the results database, including the video identifier, 

participant identifier, and the participant’s decision (binary: modified or unmodified). 

 

Fig. 3. Sample screens from interface of user application 
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2.5. Automated decoding process 

Simultaneously with participant evaluations, a smartphone camera records the displayed 

videos and transmits the footage to a server. The server attempts to decode the hidden 

message using the decoding function of the steganographic technique under investigation. 

The decoding result (binary: success or failure) is stored alongside the participant evaluation 

data in the results database. 

An example of the decoding process is illustrated in Fig. 4, where a QR code embedded 

in the video gradually becomes recognizable as more frames are analyzed. 

 

Fig. 4. Example of incremental increasing information in decoded message 

2.6. Data analysis and results 

After data collection, the system performs statistical analysis based on the following 

metrics: 

1. Human-Level Undetectability (HumanLevel). Defined as the minimum encoding level at 

which more than 10% of participants correctly identify the video as steganographically 

modified. This threshold can be adjusted for different studies. 

2. Automatic Decoding Threshold (AutomaticLevel). Defined as the minimum encoding 

level required for the decoding function to successfully extract the hidden message. 

For each cover video, the system calculates HumanLevel and AutomaticLevel, storing 

the results in the output database. An example structure of database tuple is shown as 

follows: (PersonId, TechniqueId, CoverId, Level, HumanLevel, AutomaticLevel). 

3. EXAMPLE OF SYSTEM OPERATION 

The system was implemented and tested through a research experiment with the 

following setup: 

−  A source video database of 20 publicly available files from Pixabay.com was created, 

ensuring compliance with non-commercial use licenses (Pixabay.com, 2024). For this 

purpose, over 600 random files were downloaded from Pixabay.com, from various 

thematic categories and characterized by different dynamics and colors. Then, 20 files 

were randomly selected from the downloaded files, which constituted the basis for 

testing. 

− Ten participants evaluated the videos to determine the visibility of steganographic 

modifications. 
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− The system was configured with two simple steganographic techniques: Technique 1 

- LSB-based encoding in the spatial domain (the pseudocode is presented in Fig. 5) 

and Technique 2 - DCT-based encoding in the transform domain (the pseudocode is 

presented in Fig. 6). 

We emphasize that very basic implementations of both techniques for encoding messages 

in individual video frames were used solely to verify the functionality of the proposed 

system, not to analyze their specific properties. Therefore, drawing substantive conclusions 

about the characteristics of these techniques based on the results presented in this study is 

unwarranted. 

 

Fig. 5. Technique 1 pseudocode example 
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Fig. 6. Technique 2 pseudocode example 

The hidden message was a QR code (DensoWave, 2024) containing the text “Grom,” 

encoded using OpenCV. Example QR code specifications are shown in Fig. 7. 
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Fig. 7. Hidden message coded in steganograms as a QR code 

3.1. Experimental results 

Results for Technique 1 are illustrated in Fig. 8, while results for Technique 2 are 

presented in Fig. 9. 

 

Fig. 8. Results for technique 1 

 

Fig. 9. Results for technique 2 
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3.2. Discussion 

The experimental results provide a multifaceted view of undetectability in video 

steganography, underscoring the efficacy of our proposed system in revealing both the 

human perceptibility threshold (HumanLevel) and the minimum encoding level required for 

automatic decoding (AutomaticLevel). By systematically quantifying these two parameters, 

we have derived a data-driven means of assessing the trade-off between robustness against 

automated detection and imperceptibility to human observers. The resultant Diff 

(HumanLevel – AutomaticLevel) serves as a valuable indicator of how effectively a 

steganographic method balances these often-competing objectives. 

First and foremost, the study confirms that conventional assumptions about 

steganographic performance can be overly narrow if they rely solely on automated 

steganoanalysis. While these automated techniques typically focus on statistical anomalies 

in the spatiotemporal or transform domains, they might fail to capture subtle perceptual cues 

that are evident to human participants. This outcome is particularly salient in scenarios where 

steganograms undergo analog transformations (e.g., screen capture by a smartphone camera) 

that degrade or alter the statistical artifacts commonly exploited by automated methods). As 

a result, the human visual system may become the more sensitive “detector” in real-world 

usage contexts, stressing the importance of foregrounding human-level perceptibility in 

steganographic evaluations. 

Moreover, the fact that negative or zero Diff values surfaced in some trials indicates that 

under certain encoding levels, participants were able to detect modifications before or at the 

same threshold required for successful automated decoding. This finding underscores a 

potential vulnerability in the steganographic methods tested, as it implies that even a 

modestly trained or attentive human observer could accurately flag a video containing 

hidden information at lower embedding intensities than those necessary for reliable message 

recovery. Such results offer direct feedback to steganographers aiming to optimize their 

techniques. Specifically, they highlight a pressing need to refine embedding algorithms to 

remain imperceptible to human vision while simultaneously ensuring that the hidden 

message can be robustly retrieved. 

From a methodological standpoint, the proposed system’s architecture - encompassing 

database preparation, human evaluation, automated decoding, and comparative analysis - 

demonstrates strong adaptability and scalability. By decoupling the steganographic 

technique from the core data collection and analysis framework, researchers can substitute 

or integrate newer, more advanced methods without substantially altering the experimental 

pipeline. As innovation in the domain of neural-network-based steganography and deep-

learning-based steganalysis accelerates, it will be relatively straightforward to incorporate 

these novel approaches into the current system architecture. This flexibility is crucial given 

the rapidly evolving nature of digital video formats and transmission infrastructures. 

Despite these positive outcomes, it is essential to acknowledge certain limitations of the 

present study. First, the experimental dataset comprised only 20 videos, which may not fully 

reflect the diversity of video content, compression artifacts, and motion characteristics 

encountered in practical usage. The use of simple steganographic methods - limited to LSB 

and basic DCT-based embedding - further restricts the generalizability of the findings. 

Although these techniques suffice for demonstrating the concept and the system’s 

functionality, the insights gleaned would likely evolve once more sophisticated embedding 
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approaches (e.g., advanced transform-domain methods, adaptive or key-based embedding) 

are tested. Additionally, the participant pool of ten individuals might not capture the full 

variability in human visual sensitivity; expanding the demographic and size of the participant 

group would more robustly validate the system’s findings. 

Looking ahead, the results open several exciting avenues for future research. One 

promising direction lies in refining the human evaluation protocol to include psychophysical 

experiments that quantify just-noticeable differences (JND) (Stern & Johnson, 2010) for 

various types of artifacts introduced by steganography. Controlled laboratory settings that 

account for viewing conditions such as screen brightness, resolution, and motion patterns 

can offer deeper insights into why certain participants detect specific distortions while others 

do not. Furthermore, incorporating eye-tracking technologies could elucidate which regions 

of the video draw the most scrutiny and whether steganographic content in these regions is 

more easily identifiable. 

Another critical extension involves systematically exploring the resilience of 

steganograms to lossy transformations beyond the smartphone camera capture scenario 

tested in this study. Real-world video content frequently undergoes compression, 

transcoding, and partial frame drops during transmission. By exposing steganograms to an 

expanded set of distortions - including heavy compression, random bit errors, or resolution 

scaling-researchers could observe whether these operations reduce or elevate the risk of 

human perception, as well as their implications for successful automatic decoding. Such 

investigations would help refine the design of robust, real-world-ready steganographic 

solutions. 

Overall, the present work underscores the fundamental importance of balancing human 

imperceptibility and automated decodability. Video steganography systems can no longer 

prioritize automated detection resistance alone without accounting for the innate perceptual 

abilities of human observers. By introducing a framework that systematically captures and 

compares HumanLevel and AutomaticLevel for each video, this study advances a more 

holistic approach to evaluating steganographic performance. We anticipate that future 

research efforts will refine this evaluation protocol, expand the repertoire of tested 

steganographic techniques, and incorporate additional metrics (e.g., embedding capacity, 

computational overhead, resilience to signal processing operations) to build ever more 

imperceptible and robust video steganography methods. 

4. CONCLUSIONS 

This study introduced a novel computational system for evaluating the imperceptibility 

of steganographic modifications in video files by integrating human perception tests with 

automated decoding processes. Through the dual assessment of HumanLevel (the encoding 

level detectable by human observers) and AutomaticLevel (the encoding level required for 

successful machine-based decoding), the system offers a comprehensive framework for 

quantifying the balance between undetectability and functional robustness. The experimental 

findings underscore the significance of identifying potential discrepancies between human 

perception and automated decoding, particularly in scenarios where human observers detect 

steganographic modifications more readily than machines can decode them. 
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Beyond confirming the need to consider both human and automated adversarial 

perspectives, this work highlights several promising research directions. One avenue is the 

refinement of experimental protocols to include psychophysical methodologies that measure 

just-noticeable differences and isolate specific conditions (brightness, resolution, and motion 

patterns) that influence detectability. Incorporating eye-tracking technologies could further 

elucidate how visual attention is distributed across video frames, offering deeper insights 

into where and why certain steganographic artifacts become perceptible. 

Additionally, broadening the scope of evaluation to encompass real-world distortions-

such as heavy compression, transcoding, random bit errors, and resolution scaling-will yield 

more realistic assessments of a technique’s robustness in typical transmission and processing 

workflows. By simulating conditions encountered in practical settings, including video 

streaming platforms or mobile networks, researchers can systematically probe the 

vulnerability of steganographic systems to artifacts introduced by variable bandwidth, 

intermittent signal interference, and cross-platform transcoding. These investigations help 

refine methods to ensure reliable decoding while maintaining minimal visibility of 

embedded information, ultimately enabling more secure and imperceptible embedding of 

sensitive data across diverse real-world deployment scenarios. 

The modular and adaptable architecture of the proposed system supports iterative testing 

of a wide spectrum of steganographic techniques under diverse settings. This flexibility not 

only facilitates the optimization of encoding strategies but also enables the exploration of 

emerging methods for information hiding. As the field progresses, incorporating additional 

metrics - such as embedding capacity, computational overhead, and resilience to signal 

processing - will be critical for advancing the practical adoption of video steganography. 

Ultimately, the findings presented here underscore that robust and truly imperceptible 

video steganography must address both human perceptual thresholds and automated 

detection capabilities. By systematically comparing these two facets, the proposed system 

establishes a foundational platform for further research and development. Ongoing 

refinement of this framework will guide the creation of next generation steganographic 

methods that more effectively balance security with invisibility, thereby enhancing their 

suitability for real-world scenarios. 
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