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Abstract 

Rapid industrial growth in developing countries requires robust maintenance, and predictive maintenance 

(PdM) is a key solution to minimize downtime and costs. However, complex industrial systems and the 

acute scarcity of tagged data, particularly in African contexts, pose significant implementation challenges 

for traditional PdM approaches. This research proposes a novel predictive maintenance approach using a 

Variational Autoencoder (VAE) specifically designed to address data scarcity and improve interpretability 

in complex industrial systems in developing countries. The VAE is trained on real operational data and 

learns complex system patterns. Its interpretability is a key feature, achieved through visualization and 

analysis of latent space, providing deeper insight into system behavior. The VAE model demonstrates strong 

and consistent performance in anomaly detection and data reconstruction, as evidenced by low Mean 

Squared Error (MSE) and favorable R² values, and is rigorously validated through cross-validation, 

confirming its robustness and generalizability. This underscores its ability to accurately model complex 

system dynamics across diverse data subsets. This interpretable VAE model offers a powerful and 

promising predictive maintenance solution for improving the reliability of complex industrial systems in 

developing countries. By enabling early anomaly detection, synthetic data generation, and improved 

decision making, this approach has the potential to significantly contribute to the growth and sustainability 

of industries in these regions through reduced downtime and optimized resource utilization. 

1. INTRODUCTION 

1.1. Background and motivation 

Developing countries are experiencing a rapid industrialization process, with significant investments in 

manufacturing, mining, and energy sectors. This growth is crucial for economic development and social 

progress, offering pathways to improved livelihoods and sustainable growth. However, the sustained growth 

and competitiveness of these industries critically hinge on the reliability and efficiency of their industrial 

systems. Downtime due to equipment failures can lead to significant financial losses, not only through direct 

repair costs and lost production but also by disrupting supply chains, affecting market competitiveness, and 

potentially posing safety hazards to personnel. This unreliability can impede national economic targets and 

broader development goals. 

Traditional maintenance strategies, often based on scheduled inspections and reactive repairs, are proving 

increasingly inadequate in addressing the complexities and dynamic nature of modern industrial systems 

(Geisbush & Ariaratnam, 2023; Nunes et al., 2023). These reactive approaches often result in unplanned 

downtime, inefficient resource allocation, and suboptimal operational performance. 

Predictive Maintenance (PdM) offers a promising and advanced solution by leveraging data-driven 

techniques to anticipate potential failures and schedule maintenance proactively (Ma et al., 2024; Nunes et al., 

2023). PdM systems utilize sensors to collect real-time data on equipment performance, which is then 
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rigorously analyzed using sophisticated machine learning algorithms to identify anomalies and predict 

potential failures (Chen et al., 2023; Shahin et al., 2023). This proactive approach enables more efficient 

resource allocation, significantly reduces costly unplanned downtime, extends equipment lifespan, and 

fundamentally improves overall system reliability and operational efficiency. For developing countries, 

embracing such advanced methodologies is essential to maximize the return on industrial investments and 

foster sustainable growth. 

1.2. Challenges in applying PdM in developing countries contexts 

Despite the transformative potential of PdM, its effective implementation in African contexts faces several 

distinct and formidable challenges that limit the applicability of traditional machine learning approaches. 

Data Scarcity and Quality: Industrial data collection and management systems are often underdeveloped in 

Africa, resulting in limited availability of high-quality, comprehensive, and labeled data for training robust 

machine learning models (Tapo et al., 2024; Mwanza et al., 2023). This scarcity makes it difficult to effectively 

train traditional supervised models, which typically require large, diverse datasets. 

Complex industrial systems: Many African industries operate intricate, often aging systems with complex 

interdependencies, making it difficult to accurately model and predict their behavior using simpler statistical 

or linear models (Samuel, 2024; Schlüter et al., 2023). The underlying patterns are non-linear and high-

dimensional, requiring advanced models capable of capturing these nuances. 

Limited expertise and resources: The shortage of professionals skilled in advanced data analytics, machine 

learning, and PdM technologies, coupled with financial constraints, can significantly hinder the adoption and 

successful implementation of sophisticated PdM solutions (Baroud et al., 2024; Karippur et al., 2024). This 

underscores the need for models that are not only effective, but also interpretable and user-friendly for local 

teams. 

Cybersecurity concerns: The increasing reliance on digital technologies in industrial systems raises 

legitimate concerns about cybersecurity vulnerabilities and potential data breaches (Möller, 2023; Rahmanović 

et al., 2023). Ensuring the security and integrity of data within PdM systems is paramount to maintaining their 

reliability and trustworthiness. 

1.3. Objectives and contributions 

This research directly addresses the aforementioned challenges of applying advanced PdM in African 

contexts by proposing a novel approach based on interpretable variational autoencoders (VAEs). VAEs are 

particularly well-suited for these environments due to their ability to learn complex data distributions, generate 

synthetic data, and perform anomaly detection even with limited labeled data, while also providing ways to 

understand their internal decision making. 

The primary objective of this study is to develop a robust, data-efficient, and interpretable VAE-based 

predictive maintenance model specifically tailored for African industrial environments, where traditional 

approaches often fall short. This includes effectively capturing the complex dynamics of industrial systems 

even with limited or unlabeled data, overcoming a significant hurdle in developing regions. In addition, the 

study aims to improve the interpretability of the model by analyzing its latent space representation, providing 

critical insights into the underlying health of the system and facilitating informed, actionable decision-making 

by maintenance engineers, even those without deep AI expertise. 

Through these efforts, this research seeks to rigorously evaluate the model's performance on real-world 

industrial data from an African context, specifically from a large industrial mill. By demonstrating its practical 

potential to significantly improve system reliability and reduce maintenance costs in challenging 

environments, this work provides a practical and transferable solution for improving the operational efficiency 

of complex industrial systems. Ultimately, this research contributes to the sustainable industrial growth and 

economic progress of African nations, with the interpretability feature empowering local teams and fostering 

greater adoption and confidence in advanced maintenance technologies. 

2. LITERATURE REVIEW 

This section provides an overview of existing research on predictive maintenance (PdM) and the application 

of machine learning techniques, particularly variational autoencoders (VAEs), to improve the reliability of 
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industrial systems. We focus on recent advances in the field, highlighting relevant studies from 2022, 2023, 

and 2024. 

2.1. Predictive maintenance in industrial systems 

Predictive maintenance (PdM) has emerged as a key strategy for optimizing industrial operations and 

minimizing downtime (Abouelyazid, 2023; Dayo-Olupona et al., 2023; Chen et al., 2023). Traditional 

maintenance approaches, based on scheduled inspections and reactive repairs, are often inefficient and costly 

(Dalhatu et al., 2023; Yazdi, 2024). PdM leverages data-driven techniques to predict potential failures and 

schedule maintenance proactively, leading to improved resource allocation, reduced downtime, and increased 

system reliability (Patil et al., 2023; Ucar et al., 2024; Meddaoui et al., 2023). 

Machine learning (ML) algorithms have played a crucial role in the development of sophisticated PdM 

systems (Rosati et al., 2023; Ooko & Karume, 2024; Daoudi et al., 2023). These algorithms can analyze sensor 

data to identify patterns, detect anomalies, and predict future equipment behavior. Various ML techniques 

have been employed for PdM, including: 

− Regression models: Linear regression, support vector regression, and decision trees are commonly used 

to predict remaining useful life (RUL) or failure probability (Xu et al., 2020; Drakaki et al., 2022). 

− Classification models: Logistic regression, support vector machines, and random forests are used to 

classify device states as healthy or faulty (Yurek et al., 2022; Niyonambaza et al., 2020). 

− Clustering algorithms: K-means and hierarchical clustering can identify groups of similar equipment 

behavior, facilitating anomaly detection and condition monitoring (Carratù et al., 2023). 

2.2. Deep learning for predictive maintenance 

Deep learning (DL) techniques, particularly deep neural networks (DNNs), have shown promising results 

in PdM applications due to their ability to handle complex data patterns and learn hierarchical representations 

(Wang et al., 2022; Khalil et al., 2021; Pandey et al., 2023). Several DL architectures have been explored for 

PdM, including: 

− Convolutional Neural Networks (CNNs): CNNs are effective in extracting spatial features from sensor 

data, making them suitable for applications involving image or time-series data (Moskolaï et al., 2021; 

Wang et al., 2021; Wang et al., 2023). 

− Recurrent Neural Networks (RNNs): RNNs are designed to handle sequential data, making them well-

suited for analyzing time-series data from industrial systems (Weerakody et al., 2021; Fatima & Rahimi, 

2024; Mienye et al., 2024). 

− Long Short-Term Memory (LSTM) Networks: LSTMs are a type of RNN that can effectively capture 

long-term dependencies in time-series data, improving the accuracy of RUL predictions (Ma & Mao, 

2020). 

2.3. Variational autoencoders for predictive maintenance 

Variational Autoencoders (VAEs) are a powerful generative model that can learn a compressed 

representation of the input data, enabling efficient data reconstruction and anomaly detection (Oluwasanmi et 

al., 2021; Neloy & Turgeon, 2024; Ehrhardt & Wilms, 2022). VAEs have recently gained attention in the field 

of PdM due to their ability to: 

− Dealing with data scarcity: VAEs can effectively learn from limited data by capturing the underlying 

data distribution and generating synthetic data for training other models (Akkem et al., 2024; Goyal & 

Mahmoud, 2024; Figueira & Vaz, 2022). 

− Improve anomaly detection: VAEs can detect anomalies by reconstructing the input data and measuring 

the reconstruction error. Large reconstruction errors indicate potential deviations from normal behavior 

(Niu et al., 2020; Angiulli et al., 2020). 

− Improve interpretability: The latent space representation learned by VAEs can provide insight into 

system behavior and facilitate interpretation of anomaly detection results (Neloy & Turgeon, 2024; 

Costa & Sánchez, 2022). 
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3. MATERIALS AND METHODS 

This section outlines the core concepts and develops the mathematical background for the reliability of 

complex industrial systems. To facilitate a clear understanding of the generative models central to this research, 

Fig.1 presents the basic architecture of a Variational Autoencoder (VAE), which forms the foundation of our 

proposed predictive maintenance model. 

 

Fig. 1. Basic architecture of a VAE 

3.1. Theoretical background 

3.1.1. Variational autoencoders 

Variational Autoencoders (VAEs) are a powerful class of generative models that combine the principles of 

deep learning with probabilistic inference. Unlike traditional autoencoders, which focus primarily on learning 

compact representations, VAEs introduce a probabilistic framework that enables them to generate new data 

samples and perform various tasks related to representation learning. 

3.1.2. Core concepts 

The central concept behind VAEs is the use of latent variables, which are low-dimensional representations 

that capture the essential characteristics of the input data. These latent variables are assumed to be drawn from 

a prior distribution. The VAE architecture employs two neural networks: 

1. Encoder: The encoder maps the input data to a distribution over the latent space. This distribution is 

parameterized by its mean and variance, which are the outputs of the encoder network. 

2. Decoder: The decoder network takes a sample from the latent space and attempts to reconstruct the 

original input data. The decoder is trained to maximize the likelihood of the input data given the latent 

sample. 

3.1.3. The variational objective 

The training of a VAE revolves around the optimization of a variational objective function consisting of 

two terms: 

1. Reconstruction Loss: This term measures the discrepancy between the reconstructed data and the 

original input. It encourages the VAE to learn meaningful representations that can be used to accurately 

reconstruct the input. 



80 

2. KL Divergence: This term quantifies the difference between the learned posterior distribution over the 

latent space and the prior distribution. It acts as a regularizer, encouraging the learned posterior to be 

close to the prior. 

3.1.4. Notation 

− 𝐷: The full data set. 

− 𝑋: Represents the observed data or model input. 

− 𝑋~𝐷 indicates that the observed data X is sampled from 𝐷. 

− 𝑍: Represents a latent representation or an abstract version of the input data 𝑋capturing its most 

important features. 

− 𝑃𝜃(𝑍|𝑋): The conditional probability of 𝑍 given 𝑋 also called the posterior distribution. It encodes input 

data X into the latent space𝑍 ; (inference). 

− 𝑃𝜃(𝑋|𝑍): The conditional probability of 𝑋 given 𝑍 also called the likelihood. 

− 𝑃𝜃(𝑋): The marginal probability. It decodes or generate new data 𝑋 from the latent representation 𝑍 

(generation). 

3.1.5. Problem formulation 

The core idea is to find a common distribution: 

𝑃𝜃(𝑧, 𝑥) = 𝑃𝜃(𝑧). 𝑃𝜃(𝑥|𝑧)                                                         (1) 

Where 𝑃𝜃(𝑧, 𝜃) is a multivariate unit Gaussian. The goal is to obtain the optimal parameters θ for the model 

such that𝑃𝜃(𝑥) ≈ 𝑃𝜃(𝑥, 𝜃). This is achieved by maximizing the marginal likelihood𝑃𝜃(𝑥, 𝜃). 

It can be extended by showing that the marginal probability can be expressed as an integral over the latent 

space𝑧 

𝑃𝜃(𝑥) = ∫ 𝑃𝜃(𝑧, 𝑥)𝑑𝑧
𝑍

= ∫ 𝑃𝜃(𝑧). 𝑃𝜃(𝑥|
𝑍

𝑧)𝑑𝑧                                         (2) 

Equation (2) reflects the core idea of modeling the data 𝑥 as generated from some underlying latent 

representation𝑧. The joint distribution 𝑃𝜃(𝑧, 𝑥) is factorized into the product of a prior distribution over the 

latent space 𝑃𝜃(𝑧) and the likelihood 𝑃𝜃(𝑥|𝑧), which describes how the observed data is generated from the 

latent variables. 

However, directly computing this integral is often intractable due to the complexity of the latent space and 

the potentially high-dimensional nature of the data. To address this intractability, we resort to the Bayesian 

framework. 

Bayes' theorem allows us to express the posterior distribution 𝑃𝜃(𝑧|𝑥), which represents the probability of 

the latent representation given the observed data: 

𝑃𝜃(𝑧|𝑥) =
𝑃𝜃(𝑧).𝑃𝜃(𝑥|𝑧)

𝑃𝜃(𝑥)
                                                             (3) 

However, both the marginal likelihood 𝑃𝜃(𝑥) and the posterior distribution 𝑃𝜃(𝑧|𝑥) remain intractable. 

To circumvent this challenge, we employ variational inference. This approach involves approximating the true 

posterior distribution 𝑃𝜃(𝑧|𝑥) with a more manageable distribution 𝑄𝜙(𝑧|𝑥) parameterized by𝜙. The goal is 

to find the optimal parameters 𝜙 such that the approximation 𝑄 is as close as possible to the true posterior𝑃. 

Implying we should instead approximate the posterior through variational inference which is a process to 

approximate some target distribution𝑃with an approximation 𝑄 parameterized by 𝜙 such that by optimizing 

𝜙 the two distributions (𝑃and𝑄) can be as close as possible. 

This is mathematically expressed as: 

𝑄𝜙(𝑧|𝑥) ≈ 𝑃𝜃(𝑧|𝑥)                                                              (4) 
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To measure the closeness between the two distributions, we utilize the Kullback-Leibler (KL) divergence, 

which serves as the objective function for optimization. 

The KL divergence serves as a measure of dissimilarity between two probability distributions and is 

inherently non-negative. 

Assuming that: 𝑄𝜃 = 𝑄𝜙(𝑧|𝑥) and 𝑃𝜃 = 𝑃𝜃(𝑧|𝑥) 

The KL divergence can be written as: 

𝐷𝐾𝐿(𝑄𝜙‖𝑃𝜃) = ∫ 𝑄𝜙. 𝑙𝑜𝑔(
𝑄𝜙

𝑃𝜃
)𝑑𝑧

𝑍
                                                   (5) 

= 𝐸𝑄𝜙
[𝐿𝑜𝑔 (

𝑄𝜙

𝑃𝜃
)] 

= 𝐸𝑄𝜙
[𝐿𝑜𝑔𝑄𝜙] − 𝐸𝑄𝜙

[𝐿𝑜𝑔𝑃𝜃] 

= 𝐸𝑄𝜙
[𝐿𝑜𝑔𝑄𝜙] − 𝐸𝑄𝜙

[𝐿𝑜𝑔
𝑃𝜃(𝑧, 𝑥)

𝑃𝜃(𝑥)
] 

= 𝐸𝑄𝜙
[𝐿𝑜𝑔𝑄𝜙] − 𝐸𝑄𝜙

[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥)] + 𝐸𝑄𝜙
[𝐿𝑜𝑔𝑃𝜃(𝑥)] 

= 𝐿𝑜𝑔𝑃𝜃(𝑥) − 𝐸𝑄𝜙
[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙] 

𝐿𝑜𝑔𝑃𝜃(𝑥) = 𝐷𝐾𝐿(𝑄𝜙‖𝑃𝜃) + 𝐸𝑄𝜙
[𝑙𝑜𝑔( 𝑧, 𝑥) − 𝑙𝑜𝑔 𝑄𝜙] 

(6) 

Given that 𝐷𝐾𝐿 is non-negative, 

𝐿𝑜𝑔𝑃𝜃(𝑥) ≥ 𝐸𝑄𝜙
[𝑙𝑜𝑔( 𝑧, 𝑥) − 𝑙𝑜𝑔 𝑄𝜙]                                                   (7) 

The expression from equation (6): 

𝐸𝑄𝜙
[𝑙𝑜𝑔( 𝑧, 𝑥) − 𝑙𝑜𝑔 𝑄𝜙] is referred to as the Evidence Lower Bound (ELBO). 

Our objective is to maximize the ELBO. By doing so, we indirectly maximize the log-likelihood of the 

data, 𝑙𝑜𝑔𝑃𝜃(𝑥) , and minimize the KL divergence𝐷𝐾𝐿(𝑄𝜙‖𝑃𝜃). Maximizing the ELBO allows us to 

simultaneously optimize both the generative model and the inference model without needing to explicitly 

calculate𝑃𝜃(𝑥). 

To achieve this maximization, we employ stochastic gradient descent. We define the loss function 𝐿(𝑥) as 

the negative of the ELBO: 

𝐿(𝑥) = −𝐸𝑄𝜙
[𝐿𝑜𝑔

𝑃𝜃(𝑧,𝑥)

𝑄𝜙(𝑧|𝑥)
]                                                            (8) 

𝛻𝜃,𝜙𝐿(𝑥) = −𝛻𝜃,𝜙 (𝐸𝑄𝜙
[𝐿𝑜𝑔

𝑃𝜃(𝑧,𝑥)

𝑄𝜙(𝑧|𝑥)
])                                                  (9) 

Taking the gradient of the loss function with respect to 𝜃 : 
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∇𝜃 (𝐸𝑄𝜙
(𝑧|𝑥)[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)])  = ∇𝜃(∫(𝑄𝜙(𝑧|𝑥)[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)])

𝑍

𝑑𝑧 

= ∫(𝑄𝜙(𝑧|𝑥)∇𝜃[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)])
𝑍

𝑑𝑧 

= 𝐸𝑄𝜙
(𝑧|𝑥)∇𝜃[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)] 

(10) 

This derivation shows that when optimizing ELBO with respect to θ, we can exchange the gradient and 

expectation operators, simplifying the computation and allowing the use of Monte Carlo estimation for 

efficient gradient updates. 

 
1

1
( | ) ( , ) ( | ) ( , )

L

Q i
E Z x LogP z x LogQ Z x LogP z x

L
     =

  −                          (11) 

Taking the gradient of the loss function with respect to 𝜙 : 

∇𝜙 (𝐸𝑄𝜙
(𝑧|𝑥)[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)]) = ∇𝜙(∫ (𝑄𝜙(𝑧|𝑥)[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)]𝑑𝑧)

𝑍
     (12) 

= ∫ ∇𝜙[𝑄𝜙(𝑧|𝑥). 𝐸𝐿𝐵𝑂]
𝑍

𝑑𝑧 = ∫ 𝑄𝜙(𝑧|𝑥). ∇𝜙𝐸𝐿𝐵𝑂𝑑𝑧 + ∫ 𝐸𝐿𝐵𝑂.
𝑍𝑍

∇𝜙𝑄𝜙(𝑧|𝑥)𝑑𝑧 

= 𝐸𝑄𝜙
(𝑧|𝑥)[𝐸𝐿𝐵𝑂] + ∫𝐸𝐿𝐵𝑂.

𝑍

∇𝜙𝑄𝜙(𝑧|𝑥)𝑑𝑧 
(13) 

The challenge in computing the gradient of the loss function with respect to the variational parameters 𝜙 

lies in the second term of equation (12), which involves an integral that is difficult to compute directly. The 

reparameterization trick addresses this by expressing the latent variable 𝑧 as a deterministic function 𝑔 of the 

input𝑥, the variational parameters𝜙, and an auxiliary noise variable𝜀. The noise variable 𝜀 is sampled from a 

simple distribution𝑃(𝜀), typically a standard Gaussian. The function 𝑔 is designed such that both 𝜙 and the 

input data 𝑥 influence the output 𝑧 deterministically, while the distribution of 𝑔 itself remains constant 

throughout training. This separation allows us to propagate gradients through the deterministic part of the 

reparameterization, enabling efficient optimization of the variational parameters 𝜙. 

𝑧 = 𝑔(𝜙, 𝑥, 𝜀)                                                                       (14) 

𝐿(𝑥) = −𝐸𝑃(𝜀)[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)]                                         (15) 

𝛻𝜃,𝜙𝐿(𝑥) ≈
1

𝐿
∑ 𝛻𝜃,𝜙[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)]𝐿

𝑖=1                                 (16) 

The reparameterization trick allows us to express the loss function and the ELBO as expectations over the 

noise variable ε. The ELBO is then further decomposed into the expected log-likelihood of the data given the 

latent representation and the KL divergence between the approximate posterior and the prior distribution. The 

gradient of the loss function with respect to the model parameters 𝜃 and 𝜙 can be efficiently estimated using 

Monte Carlo sampling. 

The specific form of the variational distribution 𝑄𝜙(𝑧|𝑥, 𝜃) is assumed to be a Gaussian distribution with 

mean 𝑔(𝑥, 𝜙, 𝜀) and variance𝜎2. The KL divergence between this Gaussian distribution and the prior 

distribution 𝑃𝜃(𝑧), which is also a standard Gaussian, is then computed. The final expression for the KL 

divergence involves the logarithm of the variance 𝜎2, the trace of the covariance matrix Σ, and the squared 

Euclidean norm of the mean 𝜇. 
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𝐸𝐿𝐵𝑂 = 𝐸𝑃(𝜀)[𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)]  

= 𝐸𝑃(𝜀) [𝐿𝑜𝑔 [𝑃𝜃(
𝑥

𝑧
). 𝑃𝜃(𝑧)] − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)] 

= 𝐸𝑃(𝜀) [𝐿𝑜𝑔𝑃𝜃(
𝑥

𝑧
) + 𝐿𝑜𝑔𝑃𝜃(𝑧) − 𝐿𝑜𝑔𝑄𝜙(𝑧|𝑥)] 

= 𝐸𝑃(𝜀)[𝐿𝑜𝑔𝑃𝜃(𝑥|𝑧)] + 𝐸𝑃(𝜀) [𝐿𝑜𝑔 (
𝑄𝜙(𝑧|𝑥)

𝑃𝜃(𝑧)
)] 

(17) 

The ELBO is approximated using Monte Carlo sampling, and the loss function over the entire dataset is 

defined as the average of the loss function computed on mini-batches. The number of data points in the dataset 

and the mini-batch are denoted by N and M, respectively. 

≈
1

𝐿
∑ ∇𝜃

𝐿
𝑖=1 [𝐿𝑜𝑔𝑃𝜃(𝑧, 𝑥)] − 𝐷𝐾𝐿(𝑄𝜙(𝑧|𝑥)‖𝑃𝜃(𝑧))                                          (18) 

In the next steps, we derive the KL divergence between two Gaussian distributions. We introduce the 

Gaussian probability distribution function and then apply the KL divergence formula. 

𝑄𝜙(𝑧|𝑥) = 𝑔(𝜙, 𝑥, 𝜀) = 𝒩(𝜇, 𝜎)                                                   (19) 

𝒩(𝑧, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

1

2
(

𝑧−𝜇

𝜎
)

2

                                                       (20) 

𝐷𝐾𝐿(𝑄𝜙(𝑧|𝑥)‖𝑃𝜃(𝑧)) = ∫ 𝑄𝜙(𝑧|𝑥).
𝑍

𝐿𝑜𝑔 (
𝑄𝜙(𝑧|𝑥)

𝑃𝜃(𝑧)
) 𝑑𝑧 = ∫ (𝑄𝜙(𝑧|𝑥).

𝑍
𝐿𝑜𝑔

1

𝜎
𝑒

1

2
(

𝑧−𝜇

𝜎
)

2

− 𝑧2)𝑑𝑧         (21) 

= −
1

2
∫(𝑄𝜙(𝑧|𝑥).

𝑍

[𝐿𝑜𝑔𝜎2 − 𝑧2 +
1

𝜎2
(𝑧 − 𝜇)2] 𝑑𝑧 

=
1

2
[𝐿𝑜𝑔𝜎2 ∫ 𝑄𝜙(𝑧|𝑥)𝑑𝑧 − ∫ 𝑧2𝑄𝜙(𝑧|𝑥)𝑑𝑧 +

1

𝜎2
∫(𝑧 − 𝜇)2𝑄𝜙(𝑧|𝑥)𝑑𝑧

𝑍𝑍𝑍

] 

(22) 

By taking into account the following identities: 

∫ 𝑄𝜙(𝑧|𝑥) = 1
𝑍

 , 𝜇2 + 𝜎2 = ∫ 𝑧2
𝑍

𝒩(𝑧, 𝜇, 𝜎)𝑑𝑧, 𝜎2 = ∫ (𝑧 −
𝑍

𝜇)2𝒩(𝑧, 𝜇, 𝜎)𝑑𝑧 

Equation (22) becomes: 

= −
1

2
[𝐿𝑜𝑔𝜎2 − 𝜇2 − 𝜎2 + 1]                                                       (23) 

And the ELBO becomes: 

𝐸𝐿𝐵𝑂 ≈ [
1

𝐿
∑ 𝐿𝑜𝑔𝑃𝜃(𝑥, 𝑧)𝐿

𝑖=1 ] +
1

2
[𝐿𝑜𝑔𝜎2 − 𝜇2 − 𝜎2 + 1]                            (24) 

Then we can compute the estimation of the 𝐿𝑜𝑔𝑃𝜃(𝑥, 𝑧) 

𝐿(𝑥) = −𝐸𝑃(𝜀)𝐿𝑜𝑔𝑃𝜃(𝑥, 𝑧) ≈ [
1

𝐿
∑ 𝐿𝑜𝑔𝑃𝜃(𝑥, 𝑧)𝐿

𝑖=1 ]                                 (25) 

Consequently the loss function over the entire data set is given by: 
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𝐿(𝐷) ≈
𝑁

𝑀
𝐿(𝑋𝑀) −

𝑁

𝑀𝐿
∑ 𝑙𝑜𝑔 𝑃𝜃 (

𝑥𝑗

𝑧
𝐿
𝑗=1 )                                               (26) 

𝐿(𝑋𝑀) being the loss function computed on a mini-batch 𝑋𝑀 of size dataset D. 

3.2. Proposed VAE-based predictive maintenance model 

Fig. 2 provides a schematic representation of this proposed VAE-based predictive maintenance model, 

illustrating the overall process and the interaction between its components. 

 

Fig. 2. Schematic representation of the proposed VAE-based predictive maintenance model 

3.3. Framework overview 

The proposed framework, shown in Figure 2, includes a series of interrelated steps designed to extract 

actionable insights from downtime data in industrial production systems. 

− Data Collection: Collects comprehensive downtime information, including type, cause, duration, and 

associated contextual factors, from disparate sources such as downtime logs, production data, 

maintenance records, and sensor readings. 

− Data Preprocessing: Cleans and prepares raw data by handling missing values, encoding categorical 

variables, normalizing numeric features, and removing outliers to ensure data quality and consistency. 

− Feature Engineering: Uses domain expertise and statistical methods to select, extract, and transform 

relevant features from the preprocessed data. Dimensionality reduction techniques can be applied to 

capture essential information while reducing noise and complexity. 

− VAE Training: Uses a Variational Autoencoder (VAE) to learn a compressed representation of the 

engineering features, capturing the underlying structure and relationships within the data. 

− Applications: Uses the trained VAE for anomaly detection, failure prediction, data visualization, and 

generation of synthetic failure scenarios to facilitate proactive maintenance and improved system 

understanding. 

− Feedback Loops: Incorporates bi-directional feedback mechanisms between the Applications phase and 

the Data Collection & Feature Engineering phases. Lessons learned from VAE applications inform and 

refine data collection strategies and feature engineering techniques, fostering continuous improvement. 

This framework provides a systematic approach to harnessing the power of VAE for downtime data 

analysis, enabling proactive maintenance, anomaly detection, and improved understanding of system behavior 

in industrial production environments. 

The VAE architecture is designed to address the challenges of data scarcity and complexity in African 

industrial environments. By learning a compressed representation of the data, the model can effectively capture 

the intricate relationships within the operation of the system, even with limited data availability. 

3.4. Training process 

The VAE model is trained using a variational inference approach that minimizes a loss function that 

balances two objectives: 

Reconstruction Loss: This measures the difference between the reconstructed data and the original input 

data. The model aims to minimize this loss to ensure accurate data reconstruction. 
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KL Divergence Loss: This measures the difference between the distribution of the latent representation and 

a standard normal distribution. Minimizing this loss encourages the latent space to have a well-defined and 

interpretable structure. 

The training process involves iteratively feeding the model with sensor data and adjusting the model 

parameters to minimize the overall loss function. This iterative process allows the model to learn the complex 

dynamics of the industrial system and identify potential anomalies. 

3.5. Model functionalities 

The proposed VAE-based model provides several key features to improve predictive maintenance: 

Anomaly detection: The model can detect anomalies by comparing the reconstruction error of the input 

data to a predefined threshold. Large reconstruction errors indicate potential deviations from normal behavior, 

suggesting potential equipment failures. 

Data Generation: The VAE can generate synthetic data that resembles the distribution of real-world sensor 

data. This capability is particularly useful in scenarios where data is scarce, allowing for the augmentation of 

training data sets and improving model performance. 

Interpretability: The latent space representation learned by the VAE provides insight into system behavior. 

By analyzing the latent variables, engineers and maintenance personnel can gain a deeper understanding of the 

system dynamics and identify potential failure modes. 

3.6. VAE model architecture and training details 

The Variational Autoencoder (VAE) implemented in this study is specifically designed for time series 

analysis, explicitly modeling sequential dependencies. Its architecture utilizes 1D convolutional layers for both 

the encoder and decoder to process sequential windows of data. The model takes a window of 10 observations 

as input, where each time step contains 5 features. The latent space, a key hyperparameter, is generally set to 

a latent_dim of 16 for the robust evaluation, but was 8 for the initial evaluation. 

The Encoder takes the input sequence and processes it through a series of 1D convolutional layers combined 

with pooling operations. These layers progressively extract features and reduce the sequence length. The 

processed output is then flattened and projected to the mean and log-variance parameters of the latent 

distribution through dedicated dense layers, utilizing linear activation. 

The Reparameterization Trick is employed to enable backpropagation through the sampling process. A 

latent vector is sampled from these parameters. This involves a random component from a standard normal 

distribution, which is scaled by the standard deviation derived from the log-variance, and then shifted by the 

mean. This sampled vector (with dimensions varying based on the specific evaluation phase) is subsequently 

passed to the decoder. 

The Decoder takes the latent sample, expands it through an initial dense layer, and then reshapes it into a 

suitable sequence format. It utilizes 1D deconvolutional (Conv1DTranspose) layers to progressively 

reconstruct and upsample the data back to the original input sequence length. The final output layer is a 

Conv1D layer, reconstructing the original 5 features for each time step in the sequence with a linear activation 

function. 

For training, the model employs the Adam optimizer (gradient descent-based optimization algorithm) with 

a fixed learning rate of 0.001 for the initial evaluation, 2e-05 for the robust evaluation, and a batch size of 64 

for both evaluations. The VAE's total loss, based on the Evidence Lower Bound (ELBO), combines a 

Reconstruction Loss (Mean Squared Error) and a KL Divergence Loss (which regularizes the latent 

distribution against a standard normal prior), with a KL Divergence Weight of 1.0 for initial evaluation and 

0.005 for the robust evaluation. The model is trained for 1000 epochs for initial evaluation and 2000 epochs 

for the robust evaluation. Additionally, Dropout with a rate of 0.2 is applied within the network to prevent 

overfitting. 

3.7. System description 

To understand the operational challenges and improvement opportunities within a typical industrial plant, 

consider the visual data shown in Figure 3. It provides a concise overview of the actual plant, its control panel, 

the frequency of major equipment failures, and the leading causes of production downtime. 
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Fig. 3. The real industrial plant with key components failures frequencies 

3.7.1. Dataset 

The model was evaluated using a real data set collected from an industrial plant LA PASTA located in 

Central Africa, specifically in Douala Cameroun. The industrial system under study consists of 76 different 

pieces of equipment and components. The original data set shows frequent occurrences across 750 recorded 

instances, spanning five critical dimensions: the equipment involved, the nature of the shutdown, the 

underlying cause, and the resulting downtime. The original data is shown in Figure 4. 

 

Fig. 4. Original dataset 

Before training the model, the dataset was preprocessed to handle missing values, normalize the data, and 

prepare it for the VAE architecture. The data frame represents frequencies associated with various aspects of 

plant operations and shutdowns, spanning the period from January 1, 2020 to October 31, 2020 (Figure 5). It 

consists of 750 rows (data points) and 5 columns, each representing a specific frequency metric. 
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Fig. 5. Encoded dataset 

− freq_equipment: The range of values indicates the relative frequency of equipment related events. 

Higher values indicate more frequent occurrences, which can help prioritize maintenance or root cause 

investigations. 

− freq_cause_shutdown: This shows the percentage of equipment events that result in shutdowns. Lower 

values compared to freq_equipment are still positive and show system resilience, but areas with higher 

ratios may need attention to improve fault tolerance. 

− freq_Type_of_Shutdown: The dominance of one type of shutdown (0.92) is critical. This type probably 

represents the most common reason for shutdowns, making it a prime target for process optimization or 

preventive measures. 

− freq_Downtime: These values now indicate the percentage of time the mill is down. Although they're 

relatively low, the economic impact of downtime in an industrial plant can be significant and warrants 

further analysis to identify opportunities for improvement. 

− freq_Nature_of_Shutdown: The most frequent value (0.624000) represents the predominant type or 

category of shutdown. Understanding the causes of this category could lead to targeted interventions to 

minimize its occurrence. 

3.7.2. Evaluation metrics 

The following metrics were used to evaluate the performance of the model: 

Reconstruction error: This metric measures the difference between the reconstructed data and the original 

input data. Lower reconstruction error indicates better model performance in capturing the underlying data 

distribution. The specific reconstruction error metric used is Mean Squared Error (MSE), R-squared (R2) was 

also evaluated. 

3.7.3. Experimental procedure 

The following steps were taken to evaluate the performance of the model: 

The data set was divided into training, validation, and test sets. The training set was used to train the VAE 

model, the validation set was used to tune the hyperparameters of the model, and the testing set was used to 

evaluate the final performance of the model. The data set was divided into 70% training, 10% validation, and 

20% test sets. Early stopping techniques, which monitor the model's performance on a withheld portion of the 

training data during training, were used. 

The VAE model was trained on the training set using the variational inference approach described in 

Section 3.1. The training process was continued until the model converged and achieved a satisfactory level 

of performance on the validation set. However, early stopping techniques were used to monitor the model's 

performance on a withheld portion of the training data during training. 

The trained model was evaluated on the test set using the metrics described in Section 3.2. The performance 

of the model was compared to other benchmark models in the literature, such as traditional machine learning 

algorithms and other deep learning architectures. 
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4.  RESULTS, INTERPRETATIONS AND VALIDATION 

This section presents the results of the proposed interpretable VAE-based predictive maintenance model, 

focusing on its performance in terms of reconstruction error, anomaly detection, and data generation. We also 

discuss the interpretability of the model by analyzing the latent space representation. 

4.1. Initial performance evaluation (Regression aspect of the autoencoder) 

While VAEs are primarily known for generative tasks, their ability to learn a compressed representation 

and reconstruct data makes them suitable for applications with a regression component. This justifies the use 

of regression metrics like Mean Squared Error (MSE) and R-squared (R²) in evaluating VAE performance. 

Specifically, MSE is valuable for assessing the accuracy of data reconstruction, which is crucial in applications 

like dimensionality reduction and denoising. Furthermore, when VAEs are applied to time series prediction 

like in this study, MSE measures the accuracy of forecasting future values. Even in anomaly detection, where 

the primary goal isn't regression, MSE can quantify the reconstruction error, with higher values indicating 

potential anomalies. Therefore, considering the inherent reconstruction capabilities of VAEs and their 

applicability to tasks with regression elements, employing MSE and R² provides a comprehensive evaluation 

of VAE performance. 

For this initial evaluation, the VAE model was trained for 1000 epochs. The model employs the Adam 

optimizer (gradient descent-based optimization algorithm) with a fixed learning rate of 0.001, and a batch size 

of 64. The VAE's total loss, based on the Evidence Lower Bound (ELBO), combines a Reconstruction Loss 

(Mean Squared Error) and a KL Divergence Loss (which regularizes the latent distribution against a standard 

normal prior), with a KL Divergence Weight of 1.0. Additionally, Dropout with a rate of 0.2 was applied 

within the network to prevent overfitting. 

 

Fig. 6. VAE training loss vs validation loss 

The plot demonstrates the model's learning process, showing a rapid initial decrease in both training and 

validation losses, followed by a gradual convergence. This suggests the model's potential for both timely 

anomaly detection and long-term, reliable deployment. 
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Tab. 1. Comparison of model performance with literature 

Model Dataset MSE R² 

Proposed VAE industrial mill LA PASTA 0.0152 0.9807 

XGBRegressor 
mechanical properties of  

rubberized concrete 
0.33 0.976 

CNN-LSTM 

Tensile Strength of Friction Stir Welded AA7075-T651 

Aluminum Alloy5 (Vibration sensor data from bearings under 

different operating conditions.) 

0.002 0.976 

 

Table 1 compares the performance of the proposed VAE model with other relevant models from the 

literature. It presents different machine learning approaches, including ensemble methods such as 

XGBRegressor and deep learning models such as CNN-LSTM. 

It is important to note that the performance metrics presented for these baseline models are derived from 

various studies in the existing literature. For example: 

The results for the XGBRegressor are from SenthilVadivel et al. (2024), which focuses on predicting static 

mechanical properties of rubberized concrete using experimental data. This represents a different problem 

domain and data set characteristic of continuous time series data. 

The CNN-LSTM performance is cited from Song et al. (2023), which addresses a problem related to 

vibration sensor data from bearings under different operating conditions for predicting tensile strength. 

Although these are time-series data, the specific data set, problem formulation (e.g., direct strength prediction 

vs. anomaly detection/RUL), and characteristics may still differ from our primary industrial system data. 

As a result, these external studies used data sets with different characteristics, which often included 

differences in raw data dimensionality, specific feature engineering, and time horizons. Therefore, this table 

serves as an illustrative summary of the general landscape of methods and their typical performance ranges in 

different application contexts across the field, rather than a direct, controlled benchmark comparison on a 

single, unified dataset. This approach is consistent with a qualitative benchmarking perspective and provides 

a contextual understanding of the VAE's standing in the broader field. Furthermore, it is critical to emphasize 

that the VAE is a generative model, a fundamental distinction from the discriminative nature of many of these 

baseline models, which enables unique capabilities relevant to industrial system monitoring, such as learning 

the underlying data distribution for robust future anomaly detection.  

4.2. Robustness evaluation through cross-validation 

This section focuses on the rigorous evaluation of the Variational Autoencoder (VAE) model, with 

particular emphasis on demonstrating its robustness and consistent performance across different data subsets. 

By employing a comprehensive cross-validation strategy, we aim to establish the reliability of the model and 

its ability to effectively generalize to unseen operational data. 

4.2.1. Cross-validation methodology 

To ensure a robust and generalized assessment of the performance of the Variational Autoencoder (VAE) 

model, a K-fold cross-validation strategy was implemented. This approach is particularly important for 

moderate-sized datasets, such as the 750 instances used in this study, as it provides a comprehensive 

assessment of model stability and mitigates the risk of reporting results influenced by a single, arbitrary data 

split. 

The VAE architecture employed a sequential design, processing data through windows of 10 timesteps, 

each containing 5 features. The model projects these inputs into a latent space of 16 dimensions, balancing 

reconstruction quality with a KL divergence weight of 0. 005.Training was performed with an Adam optimizer 

at a learning rate of 2e-05, using abatch size of 64 and applying a dropout rate to prevent overfitting. 

The dataset was split into 5 folds, with the data randomly shuffled prior to splitting to ensure representative 

subsets. In each iteration, the VAE model was independently initialized and trained on the data from four folds, 

while the remaining fold served as the test set. This process was repeated five times to ensure that each data 

instance contributed to both the training and evaluation phases. Each model instance was trained for 2000 

epochs to facilitate convergence and thorough learning of the underlying data patterns. The training set for 

each fold consisted of approximately 592-593 instances, providing sufficient data for model training. 
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4.2.2 Reconstruction performance analysis 

The primary metric used to evaluate the performance of the VAE was the Mean Squared Error (MSE ) of 

the reconstruction. This metric quantifies the average squared difference between the input sequential data and 

its reconstruction by the VAE. A lower MSE indicates a higher fidelity of reconstruction, indicating the model's 

effectiveness in capturing and representing the "normal" patterns within the time series data. This capability is 

fundamental to subsequent anomaly detection tasks, where significant deviations from this learned normal 

reconstruction error indicate anomalous behavior. 

The cross-validation produced the following aggregated reconstruction MSE results 

− Mean Reconstruction MSE: 0.0074 

− Standard Deviation of Reconstruction MSE: 0.0002 

− 95% Confidence Interval for Mean Reconstruction MSE: (0.0072, 0.0076) 

The individual reconstruction MSE for each of the five folds was observed to be: Fold 1: 0.0076, Fold 2: 

0.0074, Fold 3: 0.0074, Fold 4: 0.0071, and Fold 5: 0.0074. These results, including the number of training 

instances per fold, are visually presented in Figure 7. 

The results demonstrate the remarkable stability and consistent performance of the VAE model across 

different subsets of the data. The exceptionally low standard deviation of 0.0002 highlights the minimal 

variance in reconstruction performance across different data partitions, confirming the robustness and 

generalizability of the model. Furthermore, the very narrow 95% confidence interval of (0.0072, 0.0076 ) 

provides a precise statistical estimate of the expected mean reconstruction MSE, reinforcing confidence in the 

model's predictive performance on unseen, similar industrial systems. 

 

Fig. 7. Reconstruction mean Squared error per cross-validation fold 

4.3. Anomaly detection and data generation 

The VAE's ability to reconstruct the input data with low error allows for effective anomaly detection. Large 

reconstruction errors indicate potential deviations from normal behavior, signaling potential equipment 

failures. 
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4.3.1. Unveiling system dynamics: A temporal and predictive analysis of downtime frequency 

 

Fig. 8. Downtime frequency comparison 

The Downtime Frequency Comparison graph (Figure 8) is a powerful tool for understanding both historical 

and potential future downtime patterns in an industrial system. By charting the evolution of downtime 

frequency and comparing actual data with the output of a predictive model, it provides actionable insights for 

improving system reliability and performance. 

The temporal analysis reveals the inherent variability of the system, with both data sets showing significant 

fluctuations in downtime occurrences. This dynamic behavior underscores the system's sensitivity to a 

spectrum of influencing factors, from external conditions to component wear. While the generated data is 

generally consistent with the original, there are discrepancies that highlight the need for continued model 

refinement to improve predictive accuracy. Peaks observed in both datasets pinpoint periods of heightened 

vulnerability, prompting focused investigation into their causes and enabling proactive preventative measures. 

From a predictive standpoint, the model's ability to mimic the original data trends, despite its imperfections, 

underscores its potential to predict future downtime patterns. This predictive capability is critical for 

implementing proactive maintenance strategies, allowing organizations to anticipate and address periods of 

elevated downtime risk before costly disruptions occur. In addition, insights gained from the model's analysis 

of downtime drivers can inform operational optimization efforts, helping to reduce downtime and improve 

system availability. 

Looking deeper, the seemingly random nature of the variation in downtime frequency points to the 

stochastic nature of the industrial system, where unpredictable events and factors can have a significant impact 

on its operation. This underscores the inherent complexity of such systems, where myriad components and 

processes interact, often with cascading effects that defy precise prediction. 

The occasional spikes in both data sets potentially represent critical downtime points or thresholds, 

indicating increased system vulnerability. Identifying these critical points enables maintenance teams to 

proactively implement preventive measures, such as predictive maintenance or operating parameter 

adjustments, to minimize downtime and associated costs. 

The model's ability to closely replicate the statistical characteristics of the original data speaks to its 

effectiveness in capturing the essential dynamics of the system. This opens the door to various applications, 

including simulation, scenario testing, and data augmentation, all of which can contribute to a deeper 

understanding of the system's behavior. 

However, even subtle differences between the original and generated data contain valuable information. 

These differences may indicate anomalies or unexpected behavior not fully captured by the model. Examining 

these nuances can lead to new insights, potentially revealing hidden system vulnerabilities or opportunities for 

optimization. 

In summary, this graph transcends its visual simplicity to provide a profound window into the complexity 

and dynamics of an industrial system. By carefully analyzing its patterns and variations, we can gain invaluable 

insight into system behavior, identify critical points of failure, and optimize both maintenance and operational 

strategies. The resulting improvements in system reliability, efficiency, and overall performance ultimately 

translate into significant cost savings and improved productivity. 
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4.3.2. Analysis of shutdown cause frequency data: Implications for a complex industrial system 

 

Fig. 9. Shutdown cause frequency comparison 

The line graph (Fig. 9.) compares the frequency of shutdown causes between the original and generated 

data of the industrial mill, providing insight into the operational dynamics and potential failure modes of a 

complex industrial system. The original data shows a relatively stable pattern, suggesting well-established 

operating procedures and maintenance practices. Occasional spikes, however, indicate underlying weaknesses 

or recurring problems that warrant further investigation. 

In contrast, the data generated to predict future failures exhibits a wider range of frequencies, indicating the 

potential for increased instability or unanticipated events. This variability may be intentional to represent a 

broader range of scenarios for risk assessment and proactive maintenance. 

While the generated data is broadly consistent with the full range of observed frequencies, the increased 

volatility underscores the potential for rare but high-impact events. This discrepancy highlights opportunities 

for model refinement and underscores the importance of considering both frequent and infrequent shutdown 

causes in risk management strategies. 

In the context of a complex industrial system, understanding and predicting the frequency of shutdown 

causes is critical to optimizing operations, minimizing downtime, and ensuring system reliability. The analysis 

presented suggests that the generative model, despite its limitations, is a promising tool for proactive 

maintenance and risk mitigation. By further refining the model and integrating it into decision support systems, 

the industrial system can increase its resilience and achieve greater operational efficiency. 

4.3.3. Analysis of equipment-related event frequencies in a complex industrial system 

 

Fig. 10. Equipment event frequency: Original vs. generated 

This section analyzes the graph comparing the frequency of equipment-related events in a complex 

industrial system shown in Figure 10, using both original and generated data. The original data shows relative 
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stability, mostly fluctuating around 0.05, indicating a well-controlled system. However, occasional spikes 

indicate periods of disturbance or problems that require further investigation. Most frequencies fall below 0.2, 

indicating that equipment events are relatively rare during normal operation. 

In contrast, the generated data has a much wider range of frequencies (0 to 0.8), indicating that the model 

explores different scenarios, including low probability, high impact events. The generated frequencies are more 

evenly distributed, indicating consideration of multiple factors and their complex interactions. This wider 

range could help identify potential failure scenarios or situations with increased equipment-related events. 

The difference between the original and generated data highlights the complexity of the system. The 

generative model captures a wider range of potential behaviors, which is critical for anticipating unusual 

situations or failures. This data can be used for predictive maintenance by identifying critical frequency 

thresholds, enabling alerts and preventive actions. It also enables risk assessment by exploring high-frequency 

scenarios to evaluate system resilience and identify vulnerabilities. Finally, the model can simulate the impact 

of different operational strategies or system modifications on event frequency, optimizing overall performance 

and reliability. 

4.4. Interpretability and explainability: Unveiling the VAE's inner workings and system dynamics 

The ability of t-SNE and UMAP to preserve nonlinear relationships in the projections provides a window 

into how the Variational Autoencoder (VAE) has learned to model the complex interactions inherent in the 

industrial system. This visualization provides valuable insight into both the behavior of the model and its 

understanding of the underlying data. The distribution of variables within the projections reveals those that 

have the most significant impact on clustering and data segregation. For example, the central position of 

freq_equipment in several clusters suggests its central role in the VAE's understanding of system behavior. 

The quality of the clusters in the projections, particularly the clear separation observed in t-SNE, indicates that 

the VAE has learned robust representations capable of handling unseen scenarios, suggesting good 

generalization ability. Furthermore, the consistent and accurate representation of different data groups in both 

projections suggests that the VAE has learned a fair and unbiased representation, minimizing the risk of 

discriminatory or misleading predictions in industrial applications. The following detailed analysis in Section 

4.5, accompanied by Figure 11, further elaborates on how these abstract projections are interpreted to provide 

deep insights into the VAE's learned representations. 

 

Fig. 11. Latent space visualization with t-SNE and UMAP 
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4.5. Deeper insights into the VAE model's behavior: Beyond descriptive analysis of the industrial system 

Figure 11 shows two visualizations of latent space using t-SNE and UMAP. These techniques are powerful 

nonlinear dimensionality reduction algorithms that allow high-dimensional data (in this case, the VAE's 

learned latent representations) to be projected into a lower, more interpretable two-dimensional space. This 

visualization facilitates the interpretation of complex relationships between variables as understood by the 

VAE. 

It is important to clarify the interpretation of these plots, particularly with respect to the axes. The numerical 

scales on the axes of the t-SNE and UMAP visualizations are abstract and do not represent specific physical 

units or directly correspond to the original input features. In addition, the specific ranges and numerical values 

on the t-SNE axes will inherently differ from those on the UMAP axes. This difference arises because each 

algorithm uses a different mathematical approach to construct its low-dimensional embedding: 

t-SNE focuses on preserving local neighborhoods by using a probability distribution to map distances, and 

its scale is influenced by a "perplexity" parameter that can stretch or compress the final output. This often 

results in plots where distinct clusters are well separated, but the absolute distances between clusters may be 

less meaningful. 

UMAP aims to preserve both local and global structure by constructing a fuzzy simplicial complex. Its 

optimization process also yields an arbitrary scale. While UMAP tends to preserve global structure better than 

t-SNE, its axes, like t-SNE's, are scaled in a way that is unique to its embedding process and not directly 

comparable to other projections or real-world units. 

Therefore, the exact numerical values on the axes for either plot, or the difference in those values between 

the two plots, have no direct interpretability. 

The interpretability of these visualizations comes primarily from the relative positions of the data points 

and the formation of clusters within this two-dimensional projection, not from the absolute values on the axes. 

Points that are close together in this projected space are considered very similar by the VAE in its high-

dimensional understanding of the industrial system. Conversely, points that are far apart represent different or 

dissimilar characteristics. The color-coding of points by specific frequency-coded variables (e.g., 

freq_equipment, freq_cause_shutdown) is critical to this interpretation, allowing immediate visual 

identification of which variables contribute to particular clusters or occupy specific regions of latent space. 

By analyzing these clusters and patterns within the latent space, engineers and maintenance personnel can 

gain a deeper understanding of system dynamics and identify potential failure modes. Technically, T-SNE and 

UMAP projections reveal how VAEs understand complex industrial data, especially when it is frequency 

coded. Distinct clustering patterns (such as the tight coupling of freq_equipment and freq_cause_shutdown in 

t-SNE) highlight the VAE's ability to prioritize key features for distinguishing system states. Furthermore, the 

contrasting distributions in t-SNE (characterized by clear, often discrete clusters) and UMAP (with smoother 

transitions) suggest a balance within the VAE's learned representation between discrete categorization and the 

capture of subtle variations. Well-defined clusters, particularly evident in t-SNE, indicate robust 

representations and suggest good generalization to unseen data. The consistent and accurate representation of 

different data groups in both projections further suggests that the VAE has learned a fair and unbiased 

representation, minimizing the risk of discriminatory or misleading predictions in industrial applications. 

These insights enable targeted maintenance (e.g., prioritizing freq_type_of_shutdown based on potential 

impact), anomaly detection, and root cause analysis. 

4.6. Discussion 

The results demonstrate the effectiveness of the proposed interpretable VAE-based predictive maintenance 

model in capturing the complex dynamics of industrial systems with limited data. The model's ability to 

reconstruct the input data with low error, generate synthetic data, and provide insights into the latent space 

representation highlights its potential for improving the reliability of complex industrial systems in the context 

of developing countries. 

The interpretability of the model is a key advantage, enabling engineers and maintenance personnel to 

understand system behavior and make informed decisions. This approach contributes significantly to the 

growth and sustainability of industries in developing countries by reducing downtime, optimizing resource 

utilization, and promoting a culture of proactive maintenance. 
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However, it is important to note that the performance of the model depends on the quality and quantity of 

data available. Further research is needed to investigate the generalizability of the model to other types of 

industrial systems and data sets. 

The proposed VAE-based model offers a promising solution for improving the reliability of complex 

industrial systems in developing countries. The interpretability of the model, coupled with its ability to handle 

data scarcity and complexity, makes it a valuable tool for predictive maintenance and optimization of industrial 

operations. 

5. CONCLUSION AND FUTURE PERSPECTIVES 

This research proposes a novel predictive maintenance approach using a Variational Autoencoder (VAE) 

specifically designed to improve the reliability of complex industrial systems, particularly addressing the 

challenges posed by data scarcity in developing countries. The developed VAE model, with its carefully tuned 

architecture and optimized parameters, demonstrates a robust ability to learn complex normal operating 

patterns from real-world time-series data. 

The comprehensive K-fold cross-validation study clearly validated the model's high stability and 

generalization performance. This rigorous evaluation provides robust confirmation of the VAE's effectiveness, 

reinforcing the promising capabilities observed in initial assessments and definitively establishing its reliability 

across diverse data subsets. The consistently low mean reconstruction MSE and exceptionally low standard 

deviation across all folds indicate that the model's performance is remarkably consistent. This strong evidence 

of robustness directly addresses concerns about overfitting and variability, and establishes the VAE as a 

reliable tool for accurately characterizing normal system behavior and, by extension, identifying deviations 

indicative of potential perturbations. The low and stable reconstruction error underlying this approach positions 

it as a highly effective method for anomaly detection in continuous industrial monitoring. 

Building on the robust foundation established in this work, several promising avenues for future research 

emerge: 

1. Enhanced interpretability of latent space: Further efforts will be directed at deepening the interpretability 

of the latent space of the VAE. This could include developing novel visualization techniques to represent 

complex feature relationships, or using advanced machine learning interpretability methods (e.g., 

SHAP, LIME) to better understand which specific features or combinations of features contribute most 

to normal and anomalous patterns. This provides richer, more actionable insights for maintenance 

engineers. 

2. Real-world deployment and edge computing: Investigate the deployment of the VAE model in real-time 

industrial environments, potentially on edge computing devices. This will include optimizing the model 

for computational efficiency and exploring its integration with existing IoT infrastructures to enable 

rapid anomaly detection in the field without constant cloud connectivity. 

3. Multi-source data fusion: Extending the model to integrate and leverage data from multiple 

heterogeneous sensors or data sources (e.g., vibration, temperature, pressure, electrical signals) to build 

a more holistic understanding of system health and detect more complex, multimodal anomalies. 
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