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Abstract

Rapid industrial growth in developing countries requires robust maintenance, and predictive maintenance
(PdM) is a key solution to minimize downtime and costs. However, complex industrial systems and the
acute scarcity of tagged data, particularly in African contexts, pose significant implementation challenges
for traditional PdM approaches. This research proposes a novel predictive maintenance approach using a
Variational Autoencoder (VAE) specifically designed to address data scarcity and improve interpretability
in complex industrial systems in developing countries. The VAE is trained on real operational data and
learns complex system patterns. Its interpretability is a key feature, achieved through visualization and
analysis of latent space, providing deeper insight into system behavior. The VAE model demonstrates strong
and consistent performance in anomaly detection and data reconstruction, as evidenced by low Mean
Squared Error (MSE) and favorable R’ values, and is rigorously validated through cross-validation,
confirming its robustness and generalizability. This underscores its ability to accurately model complex
system dynamics across diverse data subsets. This interpretable VAE model offers a powerful and
promising predictive maintenance solution for improving the reliability of complex industrial systems in
developing countries. By enabling early anomaly detection, synthetic data generation, and improved
decision making, this approach has the potential to significantly contribute to the growth and sustainability
of industries in these regions through reduced downtime and optimized resource utilization.

1. INTRODUCTION
1.1. Background and motivation

Developing countries are experiencing a rapid industrialization process, with significant investments in
manufacturing, mining, and energy sectors. This growth is crucial for economic development and social
progress, offering pathways to improved livelihoods and sustainable growth. However, the sustained growth
and competitiveness of these industries critically hinge on the reliability and efficiency of their industrial
systems. Downtime due to equipment failures can lead to significant financial losses, not only through direct
repair costs and lost production but also by disrupting supply chains, affecting market competitiveness, and
potentially posing safety hazards to personnel. This unreliability can impede national economic targets and
broader development goals.

Traditional maintenance strategies, often based on scheduled inspections and reactive repairs, are proving
increasingly inadequate in addressing the complexities and dynamic nature of modern industrial systems
(Geisbush & Ariaratnam, 2023; Nunes et al., 2023). These reactive approaches often result in unplanned
downtime, inefficient resource allocation, and suboptimal operational performance.

Predictive Maintenance (PdM) offers a promising and advanced solution by leveraging data-driven
techniques to anticipate potential failures and schedule maintenance proactively (Ma et al., 2024; Nunes et al.,
2023). PdM systems utilize sensors to collect real-time data on equipment performance, which is then
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rigorously analyzed using sophisticated machine learning algorithms to identify anomalies and predict
potential failures (Chen et al., 2023; Shahin et al., 2023). This proactive approach enables more efficient
resource allocation, significantly reduces costly unplanned downtime, extends equipment lifespan, and
fundamentally improves overall system reliability and operational efficiency. For developing countries,
embracing such advanced methodologies is essential to maximize the return on industrial investments and
foster sustainable growth.

1.2. Challenges in applying PdM in developing countries contexts

Despite the transformative potential of PdM, its effective implementation in African contexts faces several
distinct and formidable challenges that limit the applicability of traditional machine learning approaches.

Data Scarcity and Quality: Industrial data collection and management systems are often underdeveloped in
Africa, resulting in limited availability of high-quality, comprehensive, and labeled data for training robust
machine learning models (Tapo et al., 2024; Mwanza et al., 2023). This scarcity makes it difficult to effectively
train traditional supervised models, which typically require large, diverse datasets.

Complex industrial systems: Many African industries operate intricate, often aging systems with complex
interdependencies, making it difficult to accurately model and predict their behavior using simpler statistical
or linear models (Samuel, 2024; Schliiter et al., 2023). The underlying patterns are non-linear and high-
dimensional, requiring advanced models capable of capturing these nuances.

Limited expertise and resources: The shortage of professionals skilled in advanced data analytics, machine
learning, and PdM technologies, coupled with financial constraints, can significantly hinder the adoption and
successful implementation of sophisticated PAM solutions (Baroud et al., 2024; Karippur et al., 2024). This
underscores the need for models that are not only effective, but also interpretable and user-friendly for local
teams.

Cybersecurity concerns: The increasing reliance on digital technologies in industrial systems raises
legitimate concerns about cybersecurity vulnerabilities and potential data breaches (Méller, 2023; Rahmanovi¢
et al., 2023). Ensuring the security and integrity of data within PAM systems is paramount to maintaining their
reliability and trustworthiness.

1.3. Objectives and contributions

This research directly addresses the aforementioned challenges of applying advanced PdM in African
contexts by proposing a novel approach based on interpretable variational autoencoders (VAEs). VAEs are
particularly well-suited for these environments due to their ability to learn complex data distributions, generate
synthetic data, and perform anomaly detection even with limited labeled data, while also providing ways to
understand their internal decision making.

The primary objective of this study is to develop a robust, data-efficient, and interpretable VAE-based
predictive maintenance model specifically tailored for African industrial environments, where traditional
approaches often fall short. This includes effectively capturing the complex dynamics of industrial systems
even with limited or unlabeled data, overcoming a significant hurdle in developing regions. In addition, the
study aims to improve the interpretability of the model by analyzing its latent space representation, providing
critical insights into the underlying health of the system and facilitating informed, actionable decision-making
by maintenance engineers, even those without deep Al expertise.

Through these efforts, this research seeks to rigorously evaluate the model's performance on real-world
industrial data from an African context, specifically from a large industrial mill. By demonstrating its practical
potential to significantly improve system reliability and reduce maintenance costs in challenging
environments, this work provides a practical and transferable solution for improving the operational efficiency
of complex industrial systems. Ultimately, this research contributes to the sustainable industrial growth and
economic progress of African nations, with the interpretability feature empowering local teams and fostering
greater adoption and confidence in advanced maintenance technologies.

2. LITERATURE REVIEW

This section provides an overview of existing research on predictive maintenance (PdM) and the application
of machine learning techniques, particularly variational autoencoders (VAEs), to improve the reliability of
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industrial systems. We focus on recent advances in the field, highlighting relevant studies from 2022, 2023,
and 2024.

2.1. Predictive maintenance in industrial systems

Predictive maintenance (PdM) has emerged as a key strategy for optimizing industrial operations and
minimizing downtime (Abouelyazid, 2023; Dayo-Olupona et al., 2023; Chen et al., 2023). Traditional
maintenance approaches, based on scheduled inspections and reactive repairs, are often inefficient and costly
(Dalhatu et al., 2023; Yazdi, 2024). PdM leverages data-driven techniques to predict potential failures and
schedule maintenance proactively, leading to improved resource allocation, reduced downtime, and increased
system reliability (Patil et al., 2023; Ucar et al., 2024; Meddaoui et al., 2023).
Machine learning (ML) algorithms have played a crucial role in the development of sophisticated PdM
systems (Rosati et al., 2023; Ooko & Karume, 2024; Daoudi et al., 2023). These algorithms can analyze sensor
data to identify patterns, detect anomalies, and predict future equipment behavior. Various ML techniques
have been employed for PdM, including;:
— Regression models: Linear regression, support vector regression, and decision trees are commonly used
to predict remaining useful life (RUL) or failure probability (Xu et al., 2020; Drakaki et al., 2022).

— Classification models: Logistic regression, support vector machines, and random forests are used to
classify device states as healthy or faulty (Yurek et al., 2022; Niyonambaza et al., 2020).

— Clustering algorithms: K-means and hierarchical clustering can identify groups of similar equipment
behavior, facilitating anomaly detection and condition monitoring (Carratu et al., 2023).

2.2. Deep learning for predictive maintenance

Deep learning (DL) techniques, particularly deep neural networks (DNNs), have shown promising results
in PdM applications due to their ability to handle complex data patterns and learn hierarchical representations
(Wang et al., 2022; Khalil et al., 2021; Pandey et al., 2023). Several DL architectures have been explored for
PdM, including:

— Convolutional Neural Networks (CNNs): CNNs are effective in extracting spatial features from sensor
data, making them suitable for applications involving image or time-series data (Moskolai et al., 2021;
Wang et al., 2021; Wang et al., 2023).

— Recurrent Neural Networks (RNNs): RNNs are designed to handle sequential data, making them well-
suited for analyzing time-series data from industrial systems (Weerakody et al., 2021; Fatima & Rahimi,
2024; Mienye et al., 2024).

— Long Short-Term Memory (LSTM) Networks: LSTMs are a type of RNN that can effectively capture
long-term dependencies in time-series data, improving the accuracy of RUL predictions (Ma & Mao,
2020).

2.3. Variational autoencoders for predictive maintenance

Variational Autoencoders (VAEs) are a powerful generative model that can learn a compressed
representation of the input data, enabling efficient data reconstruction and anomaly detection (Oluwasanmi et
al., 2021; Neloy & Turgeon, 2024; Ehrhardt & Wilms, 2022). VAEs have recently gained attention in the field
of PdM due to their ability to:

— Dealing with data scarcity: VAEs can effectively learn from limited data by capturing the underlying
data distribution and generating synthetic data for training other models (Akkem et al., 2024; Goyal &
Mahmoud, 2024; Figueira & Vaz, 2022).

— Improve anomaly detection: VAEs can detect anomalies by reconstructing the input data and measuring
the reconstruction error. Large reconstruction errors indicate potential deviations from normal behavior
(Niu et al., 2020; Angiulli et al., 2020).

— Improve interpretability: The latent space representation learned by VAEs can provide insight into
system behavior and facilitate interpretation of anomaly detection results (Neloy & Turgeon, 2024;
Costa & Sanchez, 2022).
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3. MATERIALS AND METHODS

This section outlines the core concepts and develops the mathematical background for the reliability of
complex industrial systems. To facilitate a clear understanding of the generative models central to this research,
Fig.1 presents the basic architecture of a Variational Autoencoder (VAE), which forms the foundation of our
proposed predictive maintenance model.

Input Data Reconstructed Data
Encoder Decoder
Latent Space
x Z —— x
T Reconstruction Loss

Fig. 1. Basic architecture of a VAE
3.1. Theoretical background
3.1.1. Variational autoencoders

Variational Autoencoders (VAEs) are a powerful class of generative models that combine the principles of
deep learning with probabilistic inference. Unlike traditional autoencoders, which focus primarily on learning
compact representations, VAEs introduce a probabilistic framework that enables them to generate new data
samples and perform various tasks related to representation learning.

3.1.2. Core concepts

The central concept behind VAE:s is the use of latent variables, which are low-dimensional representations
that capture the essential characteristics of the input data. These latent variables are assumed to be drawn from
a prior distribution. The VAE architecture employs two neural networks:

1. Encoder: The encoder maps the input data to a distribution over the latent space. This distribution is

parameterized by its mean and variance, which are the outputs of the encoder network.

2. Decoder: The decoder network takes a sample from the latent space and attempts to reconstruct the

original input data. The decoder is trained to maximize the likelihood of the input data given the latent
sample.

3.1.3. The variational objective

The training of a VAE revolves around the optimization of a variational objective function consisting of
two terms:
1. Reconstruction Loss: This term measures the discrepancy between the reconstructed data and the
original input. It encourages the VAE to learn meaningful representations that can be used to accurately
reconstruct the input.
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2. KL Divergence: This term quantifies the difference between the learned posterior distribution over the
latent space and the prior distribution. It acts as a regularizer, encouraging the learned posterior to be
close to the prior.

3.1.4. Notation

— D: The full data set.

— X: Represents the observed data or model input.

— X~D indicates that the observed data X is sampled from D.

— Z: Represents a latent representation or an abstract version of the input data Xcapturing its most
important features.

— Pg(Z|X): The conditional probability of Z given X also called the posterior distribution. It encodes input
data X into the latent spaceZ ; (inference).

— Py(X|Z): The conditional probability of X given Z also called the likelihood.

— Pg(X): The marginal probability. It decodes or generate new data X from the latent representation Z
(generation).

3.1.5. Problem formulation

The core idea is to find a common distribution:

Py(z,x) = Py(2).Po(x|2) (1)

Where Py (z, 6) is a multivariate unit Gaussian. The goal is to obtain the optimal parameters 6 for the model
such thatPg (x) = Pg(x, 8). This is achieved by maximizing the marginal likelihoodPg (x, 8).

It can be extended by showing that the marginal probability can be expressed as an integral over the latent
spacez

Pg(X) = fZ Pg(Z,X)dZ = fZPg(Z).Pg(.?d Z)dZ 2)

Equation (2) reflects the core idea of modeling the data x as generated from some underlying latent
representationz. The joint distribution Py (z, x) is factorized into the product of a prior distribution over the
latent space Py (2) and the likelihood Pg(x|z), which describes how the observed data is generated from the
latent variables.

However, directly computing this integral is often intractable due to the complexity of the latent space and
the potentially high-dimensional nature of the data. To address this intractability, we resort to the Bayesian
framework.

Bayes' theorem allows us to express the posterior distribution Py (z]x), which represents the probability of
the latent representation given the observed data:

P (zlx) = 220D 3)
However, both the marginal likelihood Pg () and the posterior distribution Pg(Z|X) remain intractable.
To circumvent this challenge, we employ variational inference. This approach involves approximating the true
posterior distribution Py (z|x) with a more manageable distribution Qg (z|x) parameterized by¢. The goal is
to find the optimal parameters ¢ such that the approximation @ is as close as possible to the true posteriorP.
Implying we should instead approximate the posterior through variational inference which is a process to
approximate some target distributionPwith an approximation () parameterized by ¢ such that by optimizing

¢ the two distributions (PandQ) can be as close as possible.
This is mathematically expressed as:

Q¢ (z]x) = P (z|x) “4)
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To measure the closeness between the two distributions, we utilize the Kullback-Leibler (KL) divergence,
which serves as the objective function for optimization.

The KL divergence serves as a measure of dissimilarity between two probability distributions and is
inherently non-negative.
Assuming that: Qg = Q4 (z|x) and Py = Py(z|x)

The KL divergence can be written as:

Di1(Qg|Po) = [, Qp-log (FD)dz ®)
Q9
= EQ¢ [Log (P_e)]
= Eq,[L0gQy]| — Eq,[LogPs]
Pg(z,x)
= Eq,[LogQg] — Eq, [Log% ©

= EQ¢ [LogQ¢] — EQ¢[L0ng (z,0)] + EQ¢[L0gP9(x)]
= LogPy(x) — EQ¢ [Long (z,x) — LogQ¢]
LogPg(x) = Dy, (Qg|Pa) + Eq,[log(z x) — log Qp]
Given that Dy is non-negative,
LogPgy(x) = EQ¢[log(z, x) —log Q¢] (7)

The expression from equation (6):

Eq, [lo g(z,x) —log Q¢] is referred to as the Evidence Lower Bound (ELBO).

Our objective is to maximize the ELBO. By doing so, we indirectly maximize the log-likelihood of the
data, logPg(x) , and minimize the KL divergenceDKL(Q¢||P9). Maximizing the ELBO allows us to
simultaneously optimize both the generative model and the inference model without needing to explicitly
calculatePyg (x).

To achieve this maximization, we employ stochastic gradient descent. We define the loss function L(x) as
the negative of the ELBO:

PQ(Z,.X)

L(x) = —Eq, [Log Qg (2lx) o
_ Py(z,x)
Vo,pL(x) = —Vpe (E% [L"g QZ(ZIX) ) ®

Taking the gradient of the loss function with respect to 6 :
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Vo (Eq, (z10)[LogPs(z %) — LogQy(z1)]) = Vo( fz (Qo (zIx)[LogPy(z,x) — LogQy (zIx)]) dz

= f (04 @1x)Vo[LogPy (2, x) — LogQy (zlx)]) dz (10)
Z

= Ey, (z|x)Vg[LogPy(z, x) — LogQ¢(Z|x)]

This derivation shows that when optimizing ELBO with respect to 0, we can exchange the gradient and
expectation operators, simplifying the computation and allowing the use of Monte Carlo estimation for
efficient gradient updates.

1 «1
Ep(Z| XV | LogP,(z,x)~ LogQ,(Z | x) | ~ Zziﬂvg [LogP,(z,x)] (11)

Taking the gradient of the loss function with respect to ¢ :

Ve (EQ¢ (zlx)[Long (z,x) — LogQ¢(Z|x)]) = V¢,(fZ(Q¢,(Z|x)[L0gP9(Z, xX) — LogQ¢(z|x)]dz) (12)

= [, V[Q¢(z|x).ELBO] dz = [, Q¢ (z|x). V4 ELBOdz + [, ELBO.V4Qq(z|x)dz

(13)
= Eq,, (zI0)[ELBO] + LELBO.V¢Q¢(z|x)dz

The challenge in computing the gradient of the loss function with respect to the variational parameters ¢
lies in the second term of equation (12), which involves an integral that is difficult to compute directly. The
reparameterization trick addresses this by expressing the latent variable z as a deterministic function g of the
inputx, the variational parameters¢, and an auxiliary noise variable€. The noise variable € is sampled from a
simple distributionP (&), typically a standard Gaussian. The function g is designed such that both ¢ and the

input data x influence the output z deterministically, while the distribution of g itself remains constant
throughout training. This separation allows us to propagate gradients through the deterministic part of the
reparameterization, enabling efficient optimization of the variational parameters ¢.

z=g(¢,x,¢) (14)
L(x) = —Ep(y[LogPo(z,x) — LogQe (z|x)] (15)
VopL(x) ~ 7 Tk, V4 [LogPe(z,x) — LogQy (z]x)] (16)

The reparameterization trick allows us to express the loss function and the ELBO as expectations over the
noise variable €. The ELBO is then further decomposed into the expected log-likelihood of the data given the
latent representation and the KL divergence between the approximate posterior and the prior distribution. The
gradient of the loss function with respect to the model parameters 8 and ¢ can be efficiently estimated using
Monte Carlo sampling.

The specific form of the variational distribution Qg (z|x, 8) is assumed to be a Gaussian distribution with
mean g(x, ¢, e) and variancea?. The KL divergence between this Gaussian distribution and the prior
distribution Py (z), which is also a standard Gaussian, is then computed. The final expression for the KL
divergence involves the logarithm of the variance o2, the trace of the covariance matrix X, and the squared
Euclidean norm of the mean p.

82



ELBO = Ep(s)[LogPe(z,x) — LogQy(z]x)]

= Epe)[Log [PsC)-Po(@)] — LogQy (z1x)]

X (17)
= Epe) |LogPy () + LogPy(2) — LogQy(zl) |
Qy(21)
= Ep(g)[LogPy(x|2)] + Ep(e) [LOQ( fse(Z) >]

The ELBO is approximated using Monte Carlo sampling, and the loss function over the entire dataset is
defined as the average of the loss function computed on mini-batches. The number of data points in the dataset
and the mini-batch are denoted by N and M, respectively.

~ L3k, Vg [LogPy(z,x)] — Dy (Qg(21) 1Py (2)) (18)

In the next steps, we derive the KL divergence between two Gaussian distributions. We introduce the
Gaussian probability distribution function and then apply the KL divergence formula.

Q(],’)(le) = g(d)' X, 8) = N(.u' O') (19)
N(z,u,0) = a\/lﬁ e%(%)z (20)

zZ—

Dt (04 (10)[|Po (@) = J, @y (21 Log (%22) dz = [,(@p(zln).Logex(T) — 24z (1)

1 1
= —EL(Q¢(Z|x). [Loga2 -z + = (z - ,u)z] dz
(22)
= %[Logaz fz Qyp(z|x)dz — fZZZqu(le)dZ + %fz(z — u)2Q¢(z|x)dz]
By taking into account the following identities:
J,Qe(zlx) =1, 0> + 0% = [, 2> N(z,u,0)dz, 0% = [ (z —W)* N (2,1, 0)dz
Equation (22) becomes:
= —1[Logo® —u? — 6 + 1] (23)
And the ELBO becomes:
ELBO =~ [%ZiLzlLong(x, Z)] +%[Loga2 —pu?—o?+1] (24)
Then we can compute the estimation of the Log Py (x, z)
L(x) = —Ep(e) LogPy(x,2) ~ [ Zhy LogPs(x, 7)] (25)

Consequently the loss function over the entire data set is given by:
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L(D) ~ = L(X™) — - ¥k log Py () (26)

L(X™) being the loss function computed on a mini-batch X™ of size dataset D.

3.2. Proposed VAE-based predictive maintenance model

Fig. 2 provides a schematic representation of this proposed VAE-based predictive maintenance model,
illustrating the overall process and the interaction between its components.

rfgbﬁ)ata Collection Data Preprocessing VAE Training App]ic@ﬂ\

— - "

¢ |

Digvintime fypes

Digni ratime € auses Cleaning Feature telec tion Enc oder Failure predi tion
Downtime dratisns Encoding Feature extraction L atene Distribution Data visnalizatisn

Produc tion data Nermaiation Dimensionalty Reduction Dec oder New datn generatisn

Maintenance [ogs {-SNE, LMA4P} Reconsirue tion Anamaiy detection

Fig. 2. Schematic representation of the proposed VAE-based predictive maintenance model

3.3. Framework overview

The proposed framework, shown in Figure 2, includes a series of interrelated steps designed to extract
actionable insights from downtime data in industrial production systems.

Data Collection: Collects comprehensive downtime information, including type, cause, duration, and
associated contextual factors, from disparate sources such as downtime logs, production data,
maintenance records, and sensor readings.

Data Preprocessing: Cleans and prepares raw data by handling missing values, encoding categorical
variables, normalizing numeric features, and removing outliers to ensure data quality and consistency.
Feature Engineering: Uses domain expertise and statistical methods to select, extract, and transform
relevant features from the preprocessed data. Dimensionality reduction techniques can be applied to
capture essential information while reducing noise and complexity.

VAE Training: Uses a Variational Autoencoder (VAE) to learn a compressed representation of the
engineering features, capturing the underlying structure and relationships within the data.

Applications: Uses the trained VAE for anomaly detection, failure prediction, data visualization, and
generation of synthetic failure scenarios to facilitate proactive maintenance and improved system
understanding.

Feedback Loops: Incorporates bi-directional feedback mechanisms between the Applications phase and
the Data Collection & Feature Engineering phases. Lessons learned from VAE applications inform and
refine data collection strategies and feature engineering techniques, fostering continuous improvement.

This framework provides a systematic approach to harnessing the power of VAE for downtime data
analysis, enabling proactive maintenance, anomaly detection, and improved understanding of system behavior
in industrial production environments.

The VAE architecture is designed to address the challenges of data scarcity and complexity in African
industrial environments. By learning a compressed representation of the data, the model can effectively capture
the intricate relationships within the operation of the system, even with limited data availability.

3.4. Training process

The VAE model is trained using a variational inference approach that minimizes a loss function that
balances two objectives:

Reconstruction Loss: This measures the difference between the reconstructed data and the original input
data. The model aims to minimize this loss to ensure accurate data reconstruction.
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KL Divergence Loss: This measures the difference between the distribution of the latent representation and
a standard normal distribution. Minimizing this loss encourages the latent space to have a well-defined and
interpretable structure.

The training process involves iteratively feeding the model with sensor data and adjusting the model
parameters to minimize the overall loss function. This iterative process allows the model to learn the complex
dynamics of the industrial system and identify potential anomalies.

3.5. Model functionalities

The proposed VAE-based model provides several key features to improve predictive maintenance:

Anomaly detection: The model can detect anomalies by comparing the reconstruction error of the input
data to a predefined threshold. Large reconstruction errors indicate potential deviations from normal behavior,
suggesting potential equipment failures.

Data Generation: The VAE can generate synthetic data that resembles the distribution of real-world sensor
data. This capability is particularly useful in scenarios where data is scarce, allowing for the augmentation of
training data sets and improving model performance.

Interpretability: The latent space representation learned by the VAE provides insight into system behavior.
By analyzing the latent variables, engineers and maintenance personnel can gain a deeper understanding of the
system dynamics and identify potential failure modes.

3.6. VAE model architecture and training details

The Variational Autoencoder (VAE) implemented in this study is specifically designed for time series
analysis, explicitly modeling sequential dependencies. Its architecture utilizes 1D convolutional layers for both
the encoder and decoder to process sequential windows of data. The model takes a window of 10 observations
as input, where each time step contains 5 features. The latent space, a key hyperparameter, is generally set to
a latent_dim of 16 for the robust evaluation, but was 8 for the initial evaluation.

The Encoder takes the input sequence and processes it through a series of 1D convolutional layers combined
with pooling operations. These layers progressively extract features and reduce the sequence length. The
processed output is then flattened and projected to the mean and log-variance parameters of the latent
distribution through dedicated dense layers, utilizing linear activation.

The Reparameterization Trick is employed to enable backpropagation through the sampling process. A
latent vector is sampled from these parameters. This involves a random component from a standard normal
distribution, which is scaled by the standard deviation derived from the log-variance, and then shifted by the
mean. This sampled vector (with dimensions varying based on the specific evaluation phase) is subsequently
passed to the decoder.

The Decoder takes the latent sample, expands it through an initial dense layer, and then reshapes it into a
suitable sequence format. It utilizes 1D deconvolutional (ConvlDTranspose) layers to progressively
reconstruct and upsample the data back to the original input sequence length. The final output layer is a
Conv1D layer, reconstructing the original 5 features for each time step in the sequence with a linear activation
function.

For training, the model employs the Adam optimizer (gradient descent-based optimization algorithm) with
a fixed learning rate of 0.001 for the initial evaluation, 2e-05 for the robust evaluation, and a batch size of 64
for both evaluations. The VAE's total loss, based on the Evidence Lower Bound (ELBO), combines a
Reconstruction Loss (Mean Squared Error) and a KL Divergence Loss (which regularizes the latent
distribution against a standard normal prior), with a KL Divergence Weight of 1.0 for initial evaluation and
0.005 for the robust evaluation. The model is trained for 1000 epochs for initial evaluation and 2000 epochs
for the robust evaluation. Additionally, Dropout with a rate of 0.2 is applied within the network to prevent
overfitting.

3.7. System description

To understand the operational challenges and improvement opportunities within a typical industrial plant,
consider the visual data shown in Figure 3. It provides a concise overview of the actual plant, its control panel,
the frequency of major equipment failures, and the leading causes of production downtime.
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Frequency counts for Equipment:

Equipment

mill 438
screw conveyor M766 27
energy 25
flour screw conveyor M766 23
Compressor 1°
cylinder 17
power failure A7
cylinder machine BSf 13
Microdoser 13
silo

screw flour

cylinder machine B1-B2
plansifter

safety plansifter

[ I R LR o)

Frequency counts for Cause_of Shutdoun:
Cause_of_Shutdown

power failure 136
flour augers AI766 67
flour augers 46
voltage drop 23
lifts at B3 sluice 21
sound circuit clogging 19
compressor malfunction 15
max. level of flour balance probe 14
scheduled stop 13
maintenance 13
empty bushel 13
maintenance stop 12
overstock 9
full sound silo 9
empty bushel B1 8

Fig. 3. The real industrial plant with key components failures frequencies

3.7.1. Dataset

The model was evaluated using a real data set collected from an industrial plant LA PASTA located in
Central Africa, specifically in Douala Cameroun. The industrial system under study consists of 76 different
pieces of equipment and components. The original data set shows frequent occurrences across 750 recorded

instances, spanning five critical dimensions: the

equipment involved, the nature of the shutdown, the

underlying cause, and the resulting downtime. The original data is shown in Figure 4.

Date Equipment Cause_of Shutd Type_of Nature_of Shutdown Downtime
0 2020-01-01 manufactory chutdown for plant closure SO (o] 1440
1 2020-01-02 mill maintenance sD (o] 1440
2 2020-01-03 mill power failure usp E 210
3 2020-01-03 cylinder machine B5f M708 BSF malfunction usb E 36
4 2020-01-04 mill empty bushel usD D 40
5 2020-01-05 mill sound circuit clogging usD [} 35
6 2020-01-05 screw conveyor M766 flour augers AI766 usp D 5
7 2020-01-06 screw conveyor M766 flour augers A1766 uUsD 5} 65

Fig. 4. Original dataset

Before training the model, the dataset was preprocessed to handle missing values, normalize the data, and
prepare it for the VAE architecture. The data frame represents frequencies associated with various aspects of
plant operations and shutdowns, spanning the period from January 1, 2020 to October 31, 2020 (Figure 5). It
consists of 750 rows (data points) and 5 columns, each representing a specific frequency metric.
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freq_equipment freq cause_shutdown freq _Type_of_Shu freq_D- i freq_Nature_of_Shutdown
Date
2020-01-01

0.001333 o.08

2020-01-02 0.017

2020-01-03 o.181

2020-01-03

2020-01-04
2020-10-29 0.181333

o
2020-10-30 0.001333 0.9

2020-10-30

2020-10-31 0.012000 0.9

0.624000

o
o
0.181333 0.92
o
o

0.201333

2020-10-31 0.033333 0.030667 0.92

750 rows = 5 columns

Fig. 5. Encoded dataset

— freq_equipment: The range of values indicates the relative frequency of equipment related events.
Higher values indicate more frequent occurrences, which can help prioritize maintenance or root cause
investigations.

— freq cause shutdown: This shows the percentage of equipment events that result in shutdowns. Lower
values compared to freq_equipment are still positive and show system resilience, but areas with higher
ratios may need attention to improve fault tolerance.

— freq Type of Shutdown: The dominance of one type of shutdown (0.92) is critical. This type probably
represents the most common reason for shutdowns, making it a prime target for process optimization or
preventive measures.

— freq Downtime: These values now indicate the percentage of time the mill is down. Although they're
relatively low, the economic impact of downtime in an industrial plant can be significant and warrants
further analysis to identify opportunities for improvement.

— freq Nature of Shutdown: The most frequent value (0.624000) represents the predominant type or
category of shutdown. Understanding the causes of this category could lead to targeted interventions to
minimize its occurrence.

3.7.2. Evaluation metrics

The following metrics were used to evaluate the performance of the model:

Reconstruction error: This metric measures the difference between the reconstructed data and the original
input data. Lower reconstruction error indicates better model performance in capturing the underlying data
distribution. The specific reconstruction error metric used is Mean Squared Error (MSE), R-squared (R2) was
also evaluated.

3.7.3. Experimental procedure

The following steps were taken to evaluate the performance of the model:

The data set was divided into training, validation, and test sets. The training set was used to train the VAE
model, the validation set was used to tune the hyperparameters of the model, and the testing set was used to
evaluate the final performance of the model. The data set was divided into 70% training, 10% validation, and
20% test sets. Early stopping techniques, which monitor the model's performance on a withheld portion of the
training data during training, were used.

The VAE model was trained on the training set using the variational inference approach described in
Section 3.1. The training process was continued until the model converged and achieved a satisfactory level
of performance on the validation set. However, early stopping techniques were used to monitor the model's
performance on a withheld portion of the training data during training.

The trained model was evaluated on the test set using the metrics described in Section 3.2. The performance
of the model was compared to other benchmark models in the literature, such as traditional machine learning
algorithms and other deep learning architectures.
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4. RESULTS, INTERPRETATIONS AND VALIDATION

This section presents the results of the proposed interpretable VAE-based predictive maintenance model,
focusing on its performance in terms of reconstruction error, anomaly detection, and data generation. We also
discuss the interpretability of the model by analyzing the latent space representation.

4.1. Initial performance evaluation (Regression aspect of the autoencoder)

While VAEs are primarily known for generative tasks, their ability to learn a compressed representation
and reconstruct data makes them suitable for applications with a regression component. This justifies the use
of regression metrics like Mean Squared Error (MSE) and R-squared (R?) in evaluating VAE performance.
Specifically, MSE is valuable for assessing the accuracy of data reconstruction, which is crucial in applications
like dimensionality reduction and denoising. Furthermore, when VAEs are applied to time series prediction
like in this study, MSE measures the accuracy of forecasting future values. Even in anomaly detection, where
the primary goal isn't regression, MSE can quantify the reconstruction error, with higher values indicating
potential anomalies. Therefore, considering the inherent reconstruction capabilities of VAEs and their
applicability to tasks with regression elements, employing MSE and R? provides a comprehensive evaluation
of VAE performance.

For this initial evaluation, the VAE model was trained for 1000 epochs. The model employs the Adam
optimizer (gradient descent-based optimization algorithm) with a fixed learning rate of 0.001, and a batch size
of 64. The VAE's total loss, based on the Evidence Lower Bound (ELBO), combines a Reconstruction Loss
(Mean Squared Error) and a KL Divergence Loss (which regularizes the latent distribution against a standard
normal prior), with a KL Divergence Weight of 1.0. Additionally, Dropout with a rate of 0.2 was applied
within the network to prevent overfitting.

VAE Training and Validation Loss

= Training Loss

5 — Validation Loss
4
@3 MSE: 0.0152
S R2?: 0.9807
2
1
0 200 400 600 800 1000
Epochs

Fig. 6. VAE training loss vs validation loss

The plot demonstrates the model's learning process, showing a rapid initial decrease in both training and
validation losses, followed by a gradual convergence. This suggests the model's potential for both timely
anomaly detection and long-term, reliable deployment.
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Tab. 1. Comparison of model performance with literature

Model Dataset MSE R?

Proposed VAE industrial mill LA PASTA 0.0152 0.9807

XGBRegressor mechapical properties of 0.33 0.976
rubberized concrete

Tensile Strength of Friction Stir Welded AA7075-T651

CNN-LSTM Aluminum Alloy5 (Vibration sensor data from bearings under 0.002 0.976

different operating conditions.)

Table 1 compares the performance of the proposed VAE model with other relevant models from the
literature. It presents different machine learning approaches, including ensemble methods such as
XGBRegressor and deep learning models such as CNN-LSTM.

It is important to note that the performance metrics presented for these baseline models are derived from
various studies in the existing literature. For example:

The results for the XGBRegressor are from SenthilVadivel et al. (2024), which focuses on predicting static
mechanical properties of rubberized concrete using experimental data. This represents a different problem
domain and data set characteristic of continuous time series data.

The CNN-LSTM performance is cited from Song et al. (2023), which addresses a problem related to
vibration sensor data from bearings under different operating conditions for predicting tensile strength.
Although these are time-series data, the specific data set, problem formulation (e.g., direct strength prediction
vs. anomaly detection/RUL), and characteristics may still differ from our primary industrial system data.

As a result, these external studies used data sets with different characteristics, which often included
differences in raw data dimensionality, specific feature engineering, and time horizons. Therefore, this table
serves as an illustrative summary of the general landscape of methods and their typical performance ranges in
different application contexts across the field, rather than a direct, controlled benchmark comparison on a
single, unified dataset. This approach is consistent with a qualitative benchmarking perspective and provides
a contextual understanding of the VAE's standing in the broader field. Furthermore, it is critical to emphasize
that the VAE is a generative model, a fundamental distinction from the discriminative nature of many of these
baseline models, which enables unique capabilities relevant to industrial system monitoring, such as learning
the underlying data distribution for robust future anomaly detection.

4.2. Robustness evaluation through cross-validation

This section focuses on the rigorous evaluation of the Variational Autoencoder (VAE) model, with
particular emphasis on demonstrating its robustness and consistent performance across different data subsets.
By employing a comprehensive cross-validation strategy, we aim to establish the reliability of the model and
its ability to effectively generalize to unseen operational data.

4.2.1. Cross-validation methodology

To ensure a robust and generalized assessment of the performance of the Variational Autoencoder (VAE)
model, a K-fold cross-validation strategy was implemented. This approach is particularly important for
moderate-sized datasets, such as the 750 instances used in this study, as it provides a comprehensive
assessment of model stability and mitigates the risk of reporting results influenced by a single, arbitrary data
split.

The VAE architecture employed a sequential design, processing data through windows of 10 timesteps,
each containing 5 features. The model projects these inputs into a latent space of 16 dimensions, balancing
reconstruction quality with a KL divergence weight of 0. 005.Training was performed with an Adam optimizer
at a learning rate of 2e-05, using abatch size of 64 and applying a dropout rate to prevent overfitting.

The dataset was split into 5 folds, with the data randomly shuffled prior to splitting to ensure representative
subsets. In each iteration, the VAE model was independently initialized and trained on the data from four folds,
while the remaining fold served as the test set. This process was repeated five times to ensure that each data
instance contributed to both the training and evaluation phases. Each model instance was trained for 2000
epochs to facilitate convergence and thorough learning of the underlying data patterns. The training set for
each fold consisted of approximately 592-593 instances, providing sufficient data for model training.
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4.2.2 Reconstruction performance analysis

The primary metric used to evaluate the performance of the VAE was the Mean Squared Error (MSE ) of
the reconstruction. This metric quantifies the average squared difference between the input sequential data and
its reconstruction by the VAE. A lower MSE indicates a higher fidelity of reconstruction, indicating the model's
effectiveness in capturing and representing the "normal" patterns within the time series data. This capability is
fundamental to subsequent anomaly detection tasks, where significant deviations from this learned normal
reconstruction error indicate anomalous behavior.

The cross-validation produced the following aggregated reconstruction MSE results

— Mean Reconstruction MSE: 0.0074

— Standard Deviation of Reconstruction MSE: 0.0002

— 95% Confidence Interval for Mean Reconstruction MSE: (0.0072, 0.0076)

The individual reconstruction MSE for each of the five folds was observed to be: Fold 1: 0.0076, Fold 2:
0.0074, Fold 3: 0.0074, Fold 4: 0.0071, and Fold 5: 0.0074. These results, including the number of training
instances per fold, are visually presented in Figure 7.

The results demonstrate the remarkable stability and consistent performance of the VAE model across
different subsets of the data. The exceptionally low standard deviation of 0.0002 highlights the minimal
variance in reconstruction performance across different data partitions, confirming the robustness and
generalizability of the model. Furthermore, the very narrow 95% confidence interval of (0.0072, 0.0076 )
provides a precise statistical estimate of the expected mean reconstruction MSE, reinforcing confidence in the
model's predictive performance on unseen, similar industrial systems.

Reconstruction Mean Squared Error per Cross-validation Fold
0.008
0.0077 ==+ Mean MSE: 0.0072

0.007
0.006
0.005
0.002
0.001
0.000

o
1=
B

Reconstruction MSE

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
(592 instances) (593 instances) (593 instances) (593 instances) (593 instances)

Cross-validation Fold

Fig. 7. Reconstruction mean Squared error per cross-validation fold

4.3. Anomaly detection and data generation
The VAE's ability to reconstruct the input data with low error allows for effective anomaly detection. Large

reconstruction errors indicate potential deviations from normal behavior, signaling potential equipment
failures.
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4.3.1. Unveiling system dynamics: A temporal and predictive analysis of downtime frequency

Downtime Frequency Comparison

0.10 e Original Data
s Generated Data
0.08

0.06

0.04

Downtime Frequency

0.02

0.00

0 200 400 600 800
Index

Fig. 8. Downtime frequency comparison

The Downtime Frequency Comparison graph (Figure 8) is a powerful tool for understanding both historical
and potential future downtime patterns in an industrial system. By charting the evolution of downtime
frequency and comparing actual data with the output of a predictive model, it provides actionable insights for
improving system reliability and performance.

The temporal analysis reveals the inherent variability of the system, with both data sets showing significant
fluctuations in downtime occurrences. This dynamic behavior underscores the system's sensitivity to a
spectrum of influencing factors, from external conditions to component wear. While the generated data is
generally consistent with the original, there are discrepancies that highlight the need for continued model
refinement to improve predictive accuracy. Peaks observed in both datasets pinpoint periods of heightened
vulnerability, prompting focused investigation into their causes and enabling proactive preventative measures.

From a predictive standpoint, the model's ability to mimic the original data trends, despite its imperfections,
underscores its potential to predict future downtime patterns. This predictive capability is critical for
implementing proactive maintenance strategies, allowing organizations to anticipate and address periods of
elevated downtime risk before costly disruptions occur. In addition, insights gained from the model's analysis
of downtime drivers can inform operational optimization efforts, helping to reduce downtime and improve
system availability.

Looking deeper, the seemingly random nature of the variation in downtime frequency points to the
stochastic nature of the industrial system, where unpredictable events and factors can have a significant impact
on its operation. This underscores the inherent complexity of such systems, where myriad components and
processes interact, often with cascading effects that defy precise prediction.

The occasional spikes in both data sets potentially represent critical downtime points or thresholds,
indicating increased system vulnerability. Identifying these critical points enables maintenance teams to
proactively implement preventive measures, such as predictive maintenance or operating parameter
adjustments, to minimize downtime and associated costs.

The model's ability to closely replicate the statistical characteristics of the original data speaks to its
effectiveness in capturing the essential dynamics of the system. This opens the door to various applications,
including simulation, scenario testing, and data augmentation, all of which can contribute to a deeper
understanding of the system's behavior.

However, even subtle differences between the original and generated data contain valuable information.
These differences may indicate anomalies or unexpected behavior not fully captured by the model. Examining
these nuances can lead to new insights, potentially revealing hidden system vulnerabilities or opportunities for
optimization.

In summary, this graph transcends its visual simplicity to provide a profound window into the complexity
and dynamics of an industrial system. By carefully analyzing its patterns and variations, we can gain invaluable
insight into system behavior, identify critical points of failure, and optimize both maintenance and operational
strategies. The resulting improvements in system reliability, efficiency, and overall performance ultimately
translate into significant cost savings and improved productivity.
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4.3.2. Analysis of shutdown cause frequency data: Implications for a complex industrial system

Shutdown Cause Frequency: Original vs. Generated
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Fig. 9. Shutdown cause frequency comparison

The line graph (Fig. 9.) compares the frequency of shutdown causes between the original and generated
data of the industrial mill, providing insight into the operational dynamics and potential failure modes of a
complex industrial system. The original data shows a relatively stable pattern, suggesting well-established
operating procedures and maintenance practices. Occasional spikes, however, indicate underlying weaknesses
or recurring problems that warrant further investigation.

In contrast, the data generated to predict future failures exhibits a wider range of frequencies, indicating the
potential for increased instability or unanticipated events. This variability may be intentional to represent a
broader range of scenarios for risk assessment and proactive maintenance.

While the generated data is broadly consistent with the full range of observed frequencies, the increased
volatility underscores the potential for rare but high-impact events. This discrepancy highlights opportunities
for model refinement and underscores the importance of considering both frequent and infrequent shutdown
causes in risk management strategies.

In the context of a complex industrial system, understanding and predicting the frequency of shutdown
causes is critical to optimizing operations, minimizing downtime, and ensuring system reliability. The analysis
presented suggests that the generative model, despite its limitations, is a promising tool for proactive
maintenance and risk mitigation. By further refining the model and integrating it into decision support systems,
the industrial system can increase its resilience and achieve greater operational efficiency.

4.3.3. Analysis of equipment-related event frequencies in a complex industrial system

Equipment Event Frequency: Original vs. Generated
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Fig. 10. Equipment event frequency: Original vs. generated

This section analyzes the graph comparing the frequency of equipment-related events in a complex
industrial system shown in Figure 10, using both original and generated data. The original data shows relative
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stability, mostly fluctuating around 0.05, indicating a well-controlled system. However, occasional spikes
indicate periods of disturbance or problems that require further investigation. Most frequencies fall below 0.2,
indicating that equipment events are relatively rare during normal operation.

In contrast, the generated data has a much wider range of frequencies (0 to 0.8), indicating that the model
explores different scenarios, including low probability, high impact events. The generated frequencies are more
evenly distributed, indicating consideration of multiple factors and their complex interactions. This wider
range could help identify potential failure scenarios or situations with increased equipment-related events.

The difference between the original and generated data highlights the complexity of the system. The
generative model captures a wider range of potential behaviors, which is critical for anticipating unusual
situations or failures. This data can be used for predictive maintenance by identifying critical frequency
thresholds, enabling alerts and preventive actions. It also enables risk assessment by exploring high-frequency
scenarios to evaluate system resilience and identify vulnerabilities. Finally, the model can simulate the impact
of different operational strategies or system modifications on event frequency, optimizing overall performance
and reliability.

4.4. Interpretability and explainability: Unveiling the VAE's inner workings and system dynamics

The ability of t-SNE and UMAP to preserve nonlinear relationships in the projections provides a window
into how the Variational Autoencoder (VAE) has learned to model the complex interactions inherent in the
industrial system. This visualization provides valuable insight into both the behavior of the model and its
understanding of the underlying data. The distribution of variables within the projections reveals those that
have the most significant impact on clustering and data segregation. For example, the central position of
freq equipment in several clusters suggests its central role in the VAE's understanding of system behavior.
The quality of the clusters in the projections, particularly the clear separation observed in t-SNE, indicates that
the VAE has learned robust representations capable of handling unseen scenarios, suggesting good
generalization ability. Furthermore, the consistent and accurate representation of different data groups in both
projections suggests that the VAE has learned a fair and unbiased representation, minimizing the risk of
discriminatory or misleading predictions in industrial applications. The following detailed analysis in Section
4.5, accompanied by Figure 11, further elaborates on how these abstract projections are interpreted to provide
deep insights into the VAE's learned representations.

t-SNE projection of the latent space UMAP projection of the latent space
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Fig. 11. Latent space visualization with t-SNE and UMAP
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4.5. Deeper insights into the VAE model's behavior: Beyond descriptive analysis of the industrial system

Figure 11 shows two visualizations of latent space using t-SNE and UMAP. These techniques are powerful
nonlinear dimensionality reduction algorithms that allow high-dimensional data (in this case, the VAE's
learned latent representations) to be projected into a lower, more interpretable two-dimensional space. This
visualization facilitates the interpretation of complex relationships between variables as understood by the
VAE.

It is important to clarify the interpretation of these plots, particularly with respect to the axes. The numerical
scales on the axes of the t-SNE and UMAP visualizations are abstract and do not represent specific physical
units or directly correspond to the original input features. In addition, the specific ranges and numerical values
on the t-SNE axes will inherently differ from those on the UMAP axes. This difference arises because each
algorithm uses a different mathematical approach to construct its low-dimensional embedding:

t-SNE focuses on preserving local neighborhoods by using a probability distribution to map distances, and
its scale is influenced by a "perplexity" parameter that can stretch or compress the final output. This often
results in plots where distinct clusters are well separated, but the absolute distances between clusters may be
less meaningful.

UMAP aims to preserve both local and global structure by constructing a fuzzy simplicial complex. Its
optimization process also yields an arbitrary scale. While UMAP tends to preserve global structure better than
t-SNE, its axes, like t-SNE's, are scaled in a way that is unique to its embedding process and not directly
comparable to other projections or real-world units.

Therefore, the exact numerical values on the axes for either plot, or the difference in those values between
the two plots, have no direct interpretability.

The interpretability of these visualizations comes primarily from the relative positions of the data points
and the formation of clusters within this two-dimensional projection, not from the absolute values on the axes.
Points that are close together in this projected space are considered very similar by the VAE in its high-
dimensional understanding of the industrial system. Conversely, points that are far apart represent different or
dissimilar characteristics. The color-coding of points by specific frequency-coded variables (e.g.,
freq_equipment, freq cause shutdown) is critical to this interpretation, allowing immediate visual
identification of which variables contribute to particular clusters or occupy specific regions of latent space.

By analyzing these clusters and patterns within the latent space, engineers and maintenance personnel can
gain a deeper understanding of system dynamics and identify potential failure modes. Technically, T-SNE and
UMAP projections reveal how VAEs understand complex industrial data, especially when it is frequency
coded. Distinct clustering patterns (such as the tight coupling of freq_equipment and freq_cause shutdown in
t-SNE) highlight the VAE's ability to prioritize key features for distinguishing system states. Furthermore, the
contrasting distributions in t-SNE (characterized by clear, often discrete clusters) and UMAP (with smoother
transitions) suggest a balance within the VAE's learned representation between discrete categorization and the
capture of subtle variations. Well-defined clusters, particularly evident in t-SNE, indicate robust
representations and suggest good generalization to unseen data. The consistent and accurate representation of
different data groups in both projections further suggests that the VAE has learned a fair and unbiased
representation, minimizing the risk of discriminatory or misleading predictions in industrial applications.
These insights enable targeted maintenance (e.g., prioritizing freq type of shutdown based on potential
impact), anomaly detection, and root cause analysis.

4.6. Discussion

The results demonstrate the effectiveness of the proposed interpretable VAE-based predictive maintenance
model in capturing the complex dynamics of industrial systems with limited data. The model's ability to
reconstruct the input data with low error, generate synthetic data, and provide insights into the latent space
representation highlights its potential for improving the reliability of complex industrial systems in the context
of developing countries.

The interpretability of the model is a key advantage, enabling engineers and maintenance personnel to
understand system behavior and make informed decisions. This approach contributes significantly to the
growth and sustainability of industries in developing countries by reducing downtime, optimizing resource
utilization, and promoting a culture of proactive maintenance.
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However, it is important to note that the performance of the model depends on the quality and quantity of
data available. Further research is needed to investigate the generalizability of the model to other types of
industrial systems and data sets.

The proposed VAE-based model offers a promising solution for improving the reliability of complex
industrial systems in developing countries. The interpretability of the model, coupled with its ability to handle
data scarcity and complexity, makes it a valuable tool for predictive maintenance and optimization of industrial
operations.

5. CONCLUSION AND FUTURE PERSPECTIVES

This research proposes a novel predictive maintenance approach using a Variational Autoencoder (VAE)
specifically designed to improve the reliability of complex industrial systems, particularly addressing the
challenges posed by data scarcity in developing countries. The developed VAE model, with its carefully tuned
architecture and optimized parameters, demonstrates a robust ability to learn complex normal operating
patterns from real-world time-series data.

The comprehensive K-fold cross-validation study clearly validated the model's high stability and
generalization performance. This rigorous evaluation provides robust confirmation of the VAE's effectiveness,
reinforcing the promising capabilities observed in initial assessments and definitively establishing its reliability
across diverse data subsets. The consistently low mean reconstruction MSE and exceptionally low standard
deviation across all folds indicate that the model's performance is remarkably consistent. This strong evidence
of robustness directly addresses concerns about overfitting and variability, and establishes the VAE as a
reliable tool for accurately characterizing normal system behavior and, by extension, identifying deviations
indicative of potential perturbations. The low and stable reconstruction error underlying this approach positions
it as a highly effective method for anomaly detection in continuous industrial monitoring.

Building on the robust foundation established in this work, several promising avenues for future research
emerge:

1. Enhanced interpretability of latent space: Further efforts will be directed at deepening the interpretability
of the latent space of the VAE. This could include developing novel visualization techniques to represent
complex feature relationships, or using advanced machine learning interpretability methods (e.g.,
SHAP, LIME) to better understand which specific features or combinations of features contribute most
to normal and anomalous patterns. This provides richer, more actionable insights for maintenance
engineers.

2. Real-world deployment and edge computing: Investigate the deployment of the VAE model in real-time
industrial environments, potentially on edge computing devices. This will include optimizing the model
for computational efficiency and exploring its integration with existing IoT infrastructures to enable
rapid anomaly detection in the field without constant cloud connectivity.

3. Multi-source data fusion: Extending the model to integrate and leverage data from multiple
heterogeneous sensors or data sources (e.g., vibration, temperature, pressure, electrical signals) to build
a more holistic understanding of system health and detect more complex, multimodal anomalies.
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