
 

Applied Computer Science 2025, vol. 21, no. 4, pp. 13–20 

https://doi.org/10.35784/acs_7549 

 

13 

Submitted: 2025-04-08 | Revised: 2025-05-18 | Accepted: 2025-06-01                                                                                                                                           CC-BY 4.0 

Keywords: text-to-sound generation, diffusion model, cumulative learning, mel-spectrogram tokens 

Haitham ALHAJI 1*, Alaa Yaseen TAQA 2 
1* Computer Science Department, College of Computer Science and Mathematics, University of Mosul, Nineveh, Iraq, 

haithamtalhaji@yahoo.com  
2* Computer Science Department, College of Education for Pure Science, University of Mosul, Nineveh, Iraq, 

alaa.taqa@uomosul.edu.iq 
* Corresponding author: haithamtalhaji@yahoo.com 

SoundCrafter: Bridging text and sound with a diffusion model 

Abstract 

Text-to-sound systems have recently attracted interest for their ability to synthesize common sounds from 

textual descriptions. However, previous research on sound generation has shown limited generation quality 

and increased computational complexity. We present SoundCrafter, a text-to-sound generation framework 

that utilizes diffusion models. Unlike previous methods, SoundCrafter operates within a compressed 

domain of mel spectrograms and is driven by semantic embeddings derived from the CLAP model, which 

stands for contrastive language audio pretraining. SoundCrafter improves generation quality and 

computational efficiency by learning the sound signals without modeling the cross-modal interaction. In 

addition, we employ a curricular learning technique by progressively increasing spectrogram resolution 

to stabilize training and improve output fidelity. SoundCrafter distinguishes itself by integrating CLAP-

conditional semantic embeddings with a diffusion model that operates in the compressed domain of mel-

spectrograms. Using the AudioCaps dataset, it achieves superior text-to-sound synthesis with a Fréchet 

Distance (FD) of 23.45 and an Inception Score (IS) of 7.57 - exceeding the performance of previous models 

while requiring significantly less computational resources and training on a single GPU. 

1. INTRODUCTION 

TTS, which stands for text-to-sound, synthesis, is an ongoing task in generative artificial intelligence that 

aims to synthesize audio waveforms from natural language descriptions, similar to other contemporary AI 

applications in various domains, such as (Talal & Anas, 2025). Although TTS and text-to-music systems have 

advanced due to specialized data sets and organized patterns, sound effects (SFX) synthesis presents a broader 

and more ambiguous challenge. It presents a novel set of problems where techniques and datasets for TTS or 

music often prove inadequate. This challenge involves the synthesis of diverse non-speech, non-music audio, 

including environmental sounds, animal vocalizations, mechanical operations, and human activities, derived 

from open-ended textual prompts (e.g., "a dog barking in the rain," "footsteps in a hallway") (Barahona-Ríos 

& Collins, 2021). 

Unlike speech or music, sound effect audio presents unique challenges: it often exhibits weak temporal 

regularity, may involve multiple overlapping sources, and generally requires the modeling of highly variable 

acoustic properties. The limited availability of large, high-quality paired datasets (text-SFX audio) hampers 

large-scale supervised training (J. Huang et al., 2023). These issues require the creation of robust, generalizable 

models capable of understanding diverse stimuli and producing coherent, lifelike audio. In addition, there are 

several techniques to improve the audio, such as (Issa & Al-Irhaym, 2021). 

Recent advances in generative modeling-specifically, autoregressive transformers, diffusion models, and 

latent representation learning-have led to significant improvements in the fidelity and controllability of audio 

generation. Early methods, such as AudioGen, demonstrated the feasibility of autoregressive token generation 

for text-based audio synthesis. Later, models such as DiffSound implemented discrete and latent diffusion 

mechanisms that significantly improved the quality and efficiency of audio generation. In addition, all of the 

aforementioned methods rely primarily on neural networks (Hasoon & Al-Hashimi, 2022). Recent initiatives, 

such as TANGO and AudioLCM, are exploring methods to reduce data requirements and inference time while 

maintaining superior generation quality, thereby increasing the accessibility and practicality of TTA models.  
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Despite this progress, there is still a lack of targeted evaluation and analysis of models developed explicitly 

for text-to-sound generation, not for speech or musical output, but for intricately layered ambient and 

contextual soundscapes. SoundCrafter addresses the research gap created by the lack of high-quality text-to-

sound generation models that operate effectively without relying on large paired text-audio datasets or discrete 

token representations. This study presents SoundCrafter, an innovative framework for text-to-sound 

generation.  

Our key contributions are as follows: 

− CLAP-conditioned semantic embeddings: We use contrastive language-audio pretraining (CLAP) to 

provide robust and semantically enriched conditioning for sound synthesis. 

− SoundCrafter uses compressed mel-spectrogram diffusion for denoising, unlike previous models that 

operate on raw audio or high-dimensional spaces, improving both speed and stability. 

− Curriculum learning for resolution scaling: We use a curriculum learning approach that incrementally 

increases spectrogram resolution, thereby stabilizing training and increasing output quality. 

2. RELATED WORK 

In recent years, there has been a surge of research in text-to-speech (TTS) generation, driven by 

developments in generative modeling and the availability of linked text-audio datasets (Cherep et al., 2024). 

Initially, research focused primarily on speech and music synthesis; however, there is a growing interest in the 

creation of sound effects (SFX), a more complex and understudied field that encompasses a variety of often 

overlapping non-speech sounds, including ambient noise, animal calls, and mechanical activity (Yuan et al., 

2023). 

Kreuk et al. (2022) is one of the pioneering and influential efforts in this area, using an autoregressive 

transformer to generate discrete audio tokens based on textual input. AudioGen demonstrated the feasibility of 

modeling general sound effects with a GPT-style architecture, and introduced multi-stream decoding to more 

effectively describe overlapping audio events. Despite its remarkable results, the autoregressive nature of the 

model resulted in long inference times and the possibility of error accumulation over long sequences.  

To alleviate these limitations, DiffSound, Yang et al. (2022) proposed a discrete diffusion model operating 

in the tokenized mel-spectrogram domain using a VQ-VAE encoder. DiffSound achieved significant 

improvements in generation speed and audio quality by replacing the autoregressive decoder with a non-

autoregressive diffusion process. It emphasized the ability of diffusion models to parallelize sequence 

generation for complex auditory environments. 

Tab. 1. Comparative examination of text-to-image models in relevant studies 

Year Model Arch. Dataset Metrics Limitations 

2022 DiffSound 
VQ-VAE, AR, 

non-AR 

AudioCaps, 

AudioSet 
MOS, FD 

elevated computational expense and minor 

degradation in quality with accelerated inference 

2023 AudioGen 
AR 

Transformer 

AudioSet, 

BBC, 

AudioCaps, 

Clotho, 

FSD50K 

FAD, KL 

Prolonged inference duration, diminished quality 

in multi-stream modelling, inadequate speech 

synthesis, restricted temporal comprehension, and 

dataset bias stemming from YouTube-derived 

data. 

2023 
Make-An-

Audio 

latent diffusion, 

CLAP, HiFi-

GAN 

AudioSet, BBC 

Sound Effects, 

Audiostock, 

AudioCaps 

FD, KL 

Demands gradual, resource-intensive diffusion 

processes; deteriorates with insufficient data. 

2023 TANGO 

LDM, T5, 

VAE, HiFi-

GAN 

AudioCaps, 

AudioSet, 

Freesound, 

WavCaps 

FD, KL, 

FAD 

Limited compositional control due to small 

training datasets, leading to similar outputs for 

distinct prompts and requiring larger datasets for 

better differentiation. 

2024 
AudioLC

M 

LCM, 

Transformer 

AudioCaps, 

WavCaps, 

WavText5K 

FD, KL 

Quality loss in one-step sampling, limited gains 

beyond 10 steps 
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Subsequent work investigated instruction-tuned language models as text encoders for TTA. TANGO 

Ghosal et al. (2023) used a static Flan-T5 model to encode prompts, allowing for improved comprehension of 

complex and subtle instructions. Although trained on slightly smaller datasets, TANGO outperformed several 

baselines, demonstrating the benefits of using large-scale NLP models for audio production.  

To improve scalability and data diversity, (R. Huang et al., 2023) augmented training by generating pseudo-

captions for unlabeled audio, facilitating the use of over one million audio recordings using Make-An-Audio. 

The model used a latent diffusion pipeline with multimodal conditioning, achieving superior performance in 

both objective and subjective evaluations, especially in complex SFX situations.  

Recent initiatives have focused on optimizing efficiency and facilitating real-time generation. LAFMA 

(Guan et al., 2024) presented a latent flow matching method that significantly reduces the number of inference 

steps while maintaining quality, and AudioLCM (Liu et al., 2024) has been enhanced by the use of consistency 

models to facilitate one- or two-step generation, making real-time applications feasible. 

Together, these models represent the pinnacle of text-to-SFX generation technology. While diffusion-based 

approaches dominate, innovations in data efficiency, semantic alignment, and rapid inference continue to shape 

the evolution of the field. (R. Huang et al., 2023). 

3. PROPOSED METHODOLOGY 

SoundCrafter is a text-to-sound generation system that uses a diffusion model conditioned on semantic 

embeddings derived from a pre-trained CLAP model (Karchkhadze et al., 2024). The technology enables high-

quality sound synthesis from natural language prompts with coupled text-audio data during training. The 

system consists of three main parts: a CLAP-based semantic coder, a latent diffusion model, and a VAE-based 

spectrogram reconstruction module. The entire generation process takes place in the latent space of mel 

spectrograms, allowing for more efficient training and inference compared to raw waveform generation. 

We apply a curriculum learning technique by initially training the model on low-resolution spectrograms 

and steadily increasing the resolution as training progresses. This method helps stabilize early learning and 

improves final audio fidelity. At each stage of the curriculum, the length and resolution of the spectrogram is 

incrementally adjusted, ensuring that the model learns from coarse to fine representations. 

The SoundCrafter system is capable of generating an audio sample based on a textual description. In 

probabilistic generative modeling, a diffusion model is used to approximate the true conditional distribution 

of the data, as shown in equation (1). 

𝑑𝑎𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑞(𝑧0|𝐸𝑡𝑒𝑥𝑡)                                                      (1) 

Text embedding 𝐸𝑇𝑒𝑥𝑡  is derived from the pre-trained text coder in CLAP, while 𝑧0 represents the previous 

position of an audio sample within the space created by the compressed representation of the mel spectrogram. 

Diffusion Models (Zhang et al., 2023) include two procedures: a forward procedure and a regressive 

procedure. The former was used to transform the data distribution into a standard Gaussian distribution with a 

specified noise schedule, while the latter was used to incrementally generate data samples from the noise 

according to an inference noise schedule. The transition probability in the forward process is expressed as in 

Eq. (2). 

𝑞( 𝑧𝑛 ∣∣ 𝑧𝑛−1 ) = 𝒩(𝑧𝑛; √1 − β𝑛  𝑧𝑛−1, β𝑛𝐼)                                             (2) 

While the reverse process commences with a Gaussian noise distribution and the text embedding 𝐸𝑡𝑒𝑥𝑡. A 

denoising process, conditioned on 𝐸𝑡𝑒𝑥𝑡, progressively builds the audio prior 𝑧0 by the Eq. (3): 

𝑝θ( 𝑧0:𝑁 ∣∣ 𝐸𝑡𝑒𝑥𝑡 ) = 𝑝(𝑧𝑁) ∏ 𝑝θ( 𝑧𝑡−1 ∣∣ 𝑧𝑡 , 𝐸𝑡𝑒𝑥𝑡 )𝑁
𝑡=𝑛                                       (3) 

We use the Unet shown in Fig. 1The UNet model, which is the basis for stable diffusion, is the underlying 

structure for the diffusion model in SoundCrafter. The UNet model depends on both the time step and the 

CLAP embedding. We convey the time step in a one-dimensional embedding and then concatenate it with the 

embedding as conditioning data. Since our conditioning vector is unidimensional, we do not use the cross-

attention technique in StableDiffusion for conditioning. We use the feature-wise linear modulation layer (Perez 
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et al., 2017) to merge the conditioning information with the feature map of the UNet convolution block. The 

UNet architecture used consists of four encoder blocks, one center block, and four decoder blocks. 

 

Fig. 1. UNet architecture (Ronneberger et al., 2015) 

Text-to-image generation models have demonstrated exceptional sample quality using CLIP (Radford et 

al., 2021) to produce the image beforehand. Inspired by this, we use CLAP (Wu et al., 2022) to improve sound 

generation. A text encoder and an audio encoder are used to embed text. 𝐸𝑇𝑒𝑥𝑡and an audio embedding 

𝐸𝐴𝑢𝑑𝑖𝑜within the dimensions of the CLAP embedding. We have developed an audio encoder based on (Chen 

et al., 2022) and a CLIP-derived text coder (Radford et al. 2021). Furthermore, we choose a symmetric cross-

entropy loss as the training objective. 

We use a Variational Autoencoder (VAE) (Berahmand et al., 2024) to compress the mel-spectrogram into 

a compact latent space. Our Variational Autoencoder (VAE) consists of two elements: an encoder and a 

decoder, using stacked convolutional modules. Thus, the VAE encoder can preserve the spatial correlation 

between the mel spectrogram and the latent space. Each module is composed of ResNet blocks (Koonce, 2021) 

which include convolutional layers and residual connections. We use a reconstruction loss, an adversarial loss, 

and a Gaussian constraint loss in the training objective. During the sampling procedure, the decoder 

reconstructs the mel-spectrogram from the sound output produced by the LDMs. 

The vocoder aims to transform the produced mel-spectrogram into a waveform. This type of vocoder is a 

major focus of research. The Griffin-Lim algorithm is a conventional signal processing method that is 

remarkably fast and easy to implement. However, Griffin-Lim produces low fidelity results when applied to 

mel spectrograms. WaveNet produces high quality results, but has a somewhat slow generation speed. In this 

work, MelGAN, a non-autoregressive technique, was used for waveform reconstruction because of its 

efficiency and high quality output. MelGAN has been widely used in the field of speech synthesis. However, 

many pre-trained MelGAN models have been constructed using speech or music datasets, making them 

inappropriate for ambient sound generation. Fig. 2illustrates the architectural framework of the SoundCrafter 

sound generation system. 
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Fig. 2. Architectural overview of the SoundCrafter system for sound generation 

4. TRAINING AND INFERENCE 

This work uses the AudioCaps dataset (Kim et al., 2019). AudioCaps is the largest existing audio captioning 

dataset, containing approximately 90,000 audio clips sourced from AudioSet. AudioCaps has three subsets: 

training, validation, and test sets. The training, validation, and test sets contain 91,256, 494, and 957 audio 

clips, respectively. The AudioCaps collection contains 136.87 hours of audio samples, including various 

natural sounds, audio effects, music, and human activities. Each audio clip in the training set contains a single 

human-annotated caption, while each clip in the validation and test sets provides five captions. We use the 

AudioCaps training set to train our algorithms. We evaluate our approaches using the AudioCaps validation 

set. The majority of the data in AudioCaps consists of in-the-wild audio obtained from YouTube, so the audio 

quality is not guaranteed. The training was conducted using a rented online cloud computing instance equipped 

with state-of-the-art technologies, as described by (Al-kateeb & Abdullah, 2024a). 

We evaluate the model using AudioCap. Each audio clip in AudioCap consists of five textual captions. We 

generate the evaluation set by randomly selecting one of these as the textual condition. The creators of 

AudioCap intentionally omit audio categorized as music in order to evaluate the model's effectiveness over a 

wider range of sounds; therefore, we randomly select 10% of the audio samples from AudioCap. The main 

metrics used for objective evaluation are the Fréchet distance, which quantifies the similarity between 

generated and target samples, and the Inception Score (IS), which assesses both the quality and diversity of 

the samples. 

The model uses a latent diffusion technique to remove noise from compression mel-spectrograms trained 

on the AudioCaps dataset. A pre-trained CLAP audio encoder provides static semantic embeddings for 

conditioning, which are incorporated into the UNet architecture. Training uses 1000 diffusion steps with a 

linear beta schedule, culminating in 400,000 steps, and targets a spectrogram length of 1024 frames. 

SoundCrafter is designed for computational efficiency, enabling real-time or near real-time audio production. 

The model can produce a 10-second audio clip in approximately 1.2 seconds using a single NVIDIA RTX 

3090 GPU. Optimization is performed using AdamW with a learning rate of 1e-4 and cosine annealing. Mixed 

precision and gradient checkpointing are used to save memory and computation. Błąd! Nie można odnaleźć 
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źródła odwołania. the correlation between sample quality and training progress. Błąd! Nieprawidłowy 

odsyłacz do zakładki: wskazuje na nią samą. the main training hyperparameters used. 

Tab. 2. Training hyperparameters of SoundCrafter 

Hyperparameters Value 

Dataset AudioCaps 

Diffusion Steps 1000 

Noise Schedule Linear beta schedule 

Attention Heads 8 

Dropout 0.1 

Batch Size 16 

Optimizer AdamW 

Learning Rate 1e-4 

Training Steps 400,000 V 

Spectrogram Length 1024 frames 

5. RESULTS 

We evaluate the effectiveness of the proposed SoundCrafter system using quantitative indicators as well as 

an analysis of training time. The SoundCrafter is evaluated on the AudioCaps benchmark using the Fréchet 

Distance (FD) and Inception Score (IS) metrics. The FD metric is derived from the Fréchet distance used in 

generative modeling and quantifies the similarity between the distributions of actual and produced audio 

features computed within the embedding space of a pre-trained audio classification model.  

A reduced FD indicates that the produced audio samples are more similar in distribution to the real samples. 

The Inception Score (IS) extends this by evaluating the significance and diversity of the generated output, as 

determined by the entropy of the class predictions over the generated clips. Both metrics provide quantitative 

standards for model comparison and are widely used in the current text-to-sound generation literature. They 

are standard metrics for assessing the quality and variety of generated audio.  

Our best-performing model achieves an FD of 23.47 and an IS of 7.57. It also uses 181 million parameters, 

as shown in Błąd! Nieprawidłowy odsyłacz do zakładki: wskazuje na nią samą.. These results are 

comparable to or better than previous methods such as AudioGen and DiffSound, but use fewer resources. 

Although the majority of AI models are now trained in the cloud, recent research highlights the need for 

energy-efficient methods (Al-Kateeb & Abdullah, 2024b). 

Tab. 3. The comparison between SoundCrafter and other existing models 

Method FD ↓ IS ↑ #Params (M) 

AudioGen 38 4.7 285 

DiffSound 47 4.01 400 

TANGO 24.52 7.27 866 

Our 23.45 7.57 181 

 

To analyze the training dynamics of the model, we plot the FD and IS scores over training steps. Błąd! Nie 

można odnaleźć źródła odwołania.shows a consistent decrease in the FD during the initial training phase, 

indicating an improved match between the produced and actual audio distributions. 

These results demonstrate that SoundCrafter produces high-quality, semantically coherent audio samples 

while maintaining efficiency in terms of model size and data requirements, as shown in Fig. 4 

Although SoundCrafter generally produces high-quality and semantically coherent audio, specific 

limitations and error patterns have been identified during the production process. A common error is 

overlapping or unclear auditory descriptions, as shown in Fig. 5. For example, cues such as "wind and waves 

together" may provide either a dominant sound or an unnatural blend, suggesting challenges in isolating and 

integrating multiple sources within a single latent diffusion pathway. 

An additional concern arises in textual prompts with abrupt auditory events, such as "a door slams and a 

dog barks. In such cases, the temporal coherence of the produced audio can deteriorate, resulting in misaligned 

timing or missing events. 
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(a) Inception score (b) Fréchet distance 

Fig. 3. Evaluation of (a) IS and (b) FD during training of SourdCrafter 

  

(a) A dog barks loudly. (b) A hammer is hitting a wooden surface. 

  

(c) Strong wind blowing through trees (d) Waves crashing on a rocky shore 

Fig. 4. Samples generated via our proposed model 

  

(a) Wind and ocean waves at the same time (b) Birds chirping while rain falls heavily 

Fig. 5. Failure Cases of Our Proposed Model 

6. CONCLUSIONS 

SoundCrafter provides an effective and adaptable framework for text-to-sound production by combining a 

diffusion model with CLAP-based semantic conditioning. The text-audio pairs are used by SoundCrafter for 

training purposes, using the diffusion model with audio embeddings obtained from a pre-trained CLAP 

encoder. This design significantly reduces data requirements and improves the applicability of the model to 

large unlabeled audio samples. The architecture utilizes a UNet-based latent diffusion model that operates in 

the VAE-compressed mel-spectrogram domain, improving memory and computational efficiency. The model 

achieved a Fréchet distance (FD) of 23.47 and an inception score (IS) of 7.57, using a total of 181 million 

parameters. 
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