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SoundCrafter: Bridging text and sound with a diffusion model

Abstract

Text-to-sound systems have recently attracted interest for their ability to synthesize common sounds from
textual descriptions. However, previous research on sound generation has shown limited generation quality
and increased computational complexity. We present SoundCrafter, a text-to-sound generation framework
that utilizes diffusion models. Unlike previous methods, SoundCrafter operates within a compressed
domain of mel spectrograms and is driven by semantic embeddings derived from the CLAP model, which
stands for contrastive language audio pretraining. SoundCrafter improves generation quality and
computational efficiency by learning the sound signals without modeling the cross-modal interaction. In
addition, we employ a curricular learning technique by progressively increasing spectrogram resolution
to stabilize training and improve output fidelity. SoundCrafter distinguishes itself by integrating CLAP-
conditional semantic embeddings with a diffusion model that operates in the compressed domain of mel-
spectrograms. Using the AudioCaps dataset, it achieves superior text-to-sound synthesis with a Fréchet
Distance (FD) of 23.45 and an Inception Score (IS) of 7.57 - exceeding the performance of previous models
while requiring significantly less computational resources and training on a single GPU.

1. INTRODUCTION

TTS, which stands for text-to-sound, synthesis, is an ongoing task in generative artificial intelligence that
aims to synthesize audio waveforms from natural language descriptions, similar to other contemporary Al
applications in various domains, such as (Talal & Anas, 2025). Although TTS and text-to-music systems have
advanced due to specialized data sets and organized patterns, sound effects (SFX) synthesis presents a broader
and more ambiguous challenge. It presents a novel set of problems where techniques and datasets for TTS or
music often prove inadequate. This challenge involves the synthesis of diverse non-speech, non-music audio,
including environmental sounds, animal vocalizations, mechanical operations, and human activities, derived
from open-ended textual prompts (e.g., "a dog barking in the rain," "footsteps in a hallway") (Barahona-Rios
& Collins, 2021).

Unlike speech or music, sound effect audio presents unique challenges: it often exhibits weak temporal
regularity, may involve multiple overlapping sources, and generally requires the modeling of highly variable
acoustic properties. The limited availability of large, high-quality paired datasets (text-SFX audio) hampers
large-scale supervised training (J. Huang et al., 2023). These issues require the creation of robust, generalizable
models capable of understanding diverse stimuli and producing coherent, lifelike audio. In addition, there are
several techniques to improve the audio, such as (Issa & Al-Irhaym, 2021).

Recent advances in generative modeling-specifically, autoregressive transformers, diffusion models, and
latent representation learning-have led to significant improvements in the fidelity and controllability of audio
generation. Early methods, such as AudioGen, demonstrated the feasibility of autoregressive token generation
for text-based audio synthesis. Later, models such as DiffSound implemented discrete and latent diffusion
mechanisms that significantly improved the quality and efficiency of audio generation. In addition, all of the
aforementioned methods rely primarily on neural networks (Hasoon & Al-Hashimi, 2022). Recent initiatives,
such as TANGO and AudioLCM, are exploring methods to reduce data requirements and inference time while
maintaining superior generation quality, thereby increasing the accessibility and practicality of TTA models.
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Despite this progress, there is still a lack of targeted evaluation and analysis of models developed explicitly
for text-to-sound generation, not for speech or musical output, but for intricately layered ambient and
contextual soundscapes. SoundCrafter addresses the research gap created by the lack of high-quality text-to-
sound generation models that operate effectively without relying on large paired text-audio datasets or discrete
token representations. This study presents SoundCrafter, an innovative framework for text-to-sound
generation.

Our key contributions are as follows:

— CLAP-conditioned semantic embeddings: We use contrastive language-audio pretraining (CLAP) to

provide robust and semantically enriched conditioning for sound synthesis.

— SoundCrafter uses compressed mel-spectrogram diffusion for denoising, unlike previous models that

operate on raw audio or high-dimensional spaces, improving both speed and stability.

— Curriculum learning for resolution scaling: We use a curriculum learning approach that incrementally

increases spectrogram resolution, thereby stabilizing training and increasing output quality.

2. RELATED WORK

In recent years, there has been a surge of research in text-to-speech (TTS) generation, driven by
developments in generative modeling and the availability of linked text-audio datasets (Cherep et al., 2024).
Initially, research focused primarily on speech and music synthesis; however, there is a growing interest in the
creation of sound effects (SFX), a more complex and understudied field that encompasses a variety of often
overlapping non-speech sounds, including ambient noise, animal calls, and mechanical activity (Yuan et al.,
2023).

Kreuk et al. (2022) is one of the pioneering and influential efforts in this area, using an autoregressive
transformer to generate discrete audio tokens based on textual input. AudioGen demonstrated the feasibility of
modeling general sound effects with a GPT-style architecture, and introduced multi-stream decoding to more
effectively describe overlapping audio events. Despite its remarkable results, the autoregressive nature of the
model resulted in long inference times and the possibility of error accumulation over long sequences.

To alleviate these limitations, DiffSound, Yang et al. (2022) proposed a discrete diffusion model operating
in the tokenized mel-spectrogram domain using a VQ-VAE encoder. DiffSound achieved significant
improvements in generation speed and audio quality by replacing the autoregressive decoder with a non-
autoregressive diffusion process. It emphasized the ability of diffusion models to parallelize sequence
generation for complex auditory environments.

Tab. 1. Comparative examination of text-to-image models in relevant studies

Year | Model Arch. Dataset Metrics Limitations
. VQ-VAE, AR, | AudioCaps, elevated computational expense and minor
2022 | DiffSound non-AR AudioSet MOS, FD degradation in quality with accelerated inference
AudioSet, Prolonged inference duration, diminished quality
AR BBC, in multi-stream modelling, inadequate speech
2023 | AudioGen Transformer AudioCaps, FAD, KL | synthesis, restricted temporal comprehension, and
Clotho, dataset bias stemming from YouTube-derived
FSD50K data.
latent diffusion AudioSet, BBC Demands gradual, resource-intensive diffusion
2023 Makg-An- CLAP, HiFi- Sour}d Effects, FD, KL processes; deteriorates with insufficient data.
Audio GAN Audiostock,
AudioCaps
AudioCaps, Limited compositional control due to small
LDM, T5, . . . -
o AudioSet, FD, KL, |training datasets, leading to similar outputs for
2023 | TANGO VAE, HiFi- - .
GAN Freesound, FAD distinct prompts and requiring larger datasets for
WavCaps better differentiation.
AudioLC | LCM, AudioCaps, Quality loss in one-step sampling, limited gains
2024 WavCaps, FD, KL beyond 10 steps
M Transformer
WavText5K
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Subsequent work investigated instruction-tuned language models as text encoders for TTA. TANGO
Ghosal et al. (2023) used a static Flan-T5 model to encode prompts, allowing for improved comprehension of
complex and subtle instructions. Although trained on slightly smaller datasets, TANGO outperformed several
baselines, demonstrating the benefits of using large-scale NLP models for audio production.

To improve scalability and data diversity, (R. Huang et al., 2023) augmented training by generating pseudo-
captions for unlabeled audio, facilitating the use of over one million audio recordings using Make-An-Audio.
The model used a latent diffusion pipeline with multimodal conditioning, achieving superior performance in
both objective and subjective evaluations, especially in complex SFX situations.

Recent initiatives have focused on optimizing efficiency and facilitating real-time generation. LAFMA
(Guan et al., 2024) presented a latent flow matching method that significantly reduces the number of inference
steps while maintaining quality, and AudioLCM (Liu et al., 2024) has been enhanced by the use of consistency
models to facilitate one- or two-step generation, making real-time applications feasible.

Together, these models represent the pinnacle of text-to-SFX generation technology. While diffusion-based
approaches dominate, innovations in data efficiency, semantic alignment, and rapid inference continue to shape
the evolution of the field. (R. Huang et al., 2023).

3. PROPOSED METHODOLOGY

SoundCrafter is a text-to-sound generation system that uses a diffusion model conditioned on semantic
embeddings derived from a pre-trained CLAP model (Karchkhadze et al., 2024). The technology enables high-
quality sound synthesis from natural language prompts with coupled text-audio data during training. The
system consists of three main parts: a CLAP-based semantic coder, a latent diffusion model, and a VAE-based
spectrogram reconstruction module. The entire generation process takes place in the latent space of mel
spectrograms, allowing for more efficient training and inference compared to raw waveform generation.

We apply a curriculum learning technique by initially training the model on low-resolution spectrograms
and steadily increasing the resolution as training progresses. This method helps stabilize early learning and
improves final audio fidelity. At each stage of the curriculum, the length and resolution of the spectrogram is
incrementally adjusted, ensuring that the model learns from coarse to fine representations.

The SoundCrafter system is capable of generating an audio sample based on a textual description. In
probabilistic generative modeling, a diffusion model is used to approximate the true conditional distribution
of the data, as shown in equation (1).

data distribution = q(zy|Et¥*") (1)

Text embedding ET¢* is derived from the pre-trained text coder in CLAP, while z, represents the previous
position of an audio sample within the space created by the compressed representation of the mel spectrogram.
Diffusion Models (Zhang et al., 2023) include two procedures: a forward procedure and a regressive
procedure. The former was used to transform the data distribution into a standard Gaussian distribution with a
specified noise schedule, while the latter was used to incrementally generate data samples from the noise
according to an inference noise schedule. The transition probability in the forward process is expressed as in

Eq. ().

q(Zn | Zn—l) = N(Zn;\/ 1—-Bnzp_1, Bnl) (2)

While the reverse process commences with a Gaussian noise distribution and the text embedding Ef€¥t, A
denoising process, conditioned on E®*t  progressively builds the audio prior z, by the Eq. (3):

po(Zo.y | EteXt) = p(zy) H?’:n Po(Ze—q | Zt'EteXt) 3)

We use the Unet shown in Fig. 1The UNet model, which is the basis for stable diffusion, is the underlying
structure for the diffusion model in SoundCrafter. The UNet model depends on both the time step and the
CLAP embedding. We convey the time step in a one-dimensional embedding and then concatenate it with the
embedding as conditioning data. Since our conditioning vector is unidimensional, we do not use the cross-
attention technique in StableDiffusion for conditioning. We use the feature-wise linear modulation layer (Perez
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et al., 2017) to merge the conditioning information with the feature map of the UNet convolution block. The
UNet architecture used consists of four encoder blocks, one center block, and four decoder blocks.
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Fig. 1. UNet architecture (Ronneberger et al., 2015)

Text-to-image generation models have demonstrated exceptional sample quality using CLIP (Radford et
al., 2021) to produce the image beforehand. Inspired by this, we use CLAP (Wu et al., 2022) to improve sound
generation. A text encoder and an audio encoder are used to embed text. ET®*and an audio embedding
EA%di0within the dimensions of the CLAP embedding. We have developed an audio encoder based on (Chen
et al., 2022) and a CLIP-derived text coder (Radford et al. 2021). Furthermore, we choose a symmetric cross-
entropy loss as the training objective.

We use a Variational Autoencoder (VAE) (Berahmand et al., 2024) to compress the mel-spectrogram into
a compact latent space. Our Variational Autoencoder (VAE) consists of two elements: an encoder and a
decoder, using stacked convolutional modules. Thus, the VAE encoder can preserve the spatial correlation
between the mel spectrogram and the latent space. Each module is composed of ResNet blocks (Koonce, 2021)
which include convolutional layers and residual connections. We use a reconstruction loss, an adversarial loss,
and a Gaussian constraint loss in the training objective. During the sampling procedure, the decoder
reconstructs the mel-spectrogram from the sound output produced by the LDMs.

The vocoder aims to transform the produced mel-spectrogram into a waveform. This type of vocoder is a
major focus of research. The Griffin-Lim algorithm is a conventional signal processing method that is
remarkably fast and easy to implement. However, Griffin-Lim produces low fidelity results when applied to
mel spectrograms. WaveNet produces high quality results, but has a somewhat slow generation speed. In this
work, MelGAN, a non-autoregressive technique, was used for waveform reconstruction because of its
efficiency and high quality output. MelGAN has been widely used in the field of speech synthesis. However,
many pre-trained MelGAN models have been constructed using speech or music datasets, making them
inappropriate for ambient sound generation. Fig. 2illustrates the architectural framework of the SoundCrafter
sound generation system.
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Fig. 2. Architectural overview of the SoundCrafter system for sound generation

4. TRAINING AND INFERENCE

This work uses the AudioCaps dataset (Kim et al., 2019). AudioCaps is the largest existing audio captioning
dataset, containing approximately 90,000 audio clips sourced from AudioSet. AudioCaps has three subsets:
training, validation, and test sets. The training, validation, and test sets contain 91,256, 494, and 957 audio
clips, respectively. The AudioCaps collection contains 136.87 hours of audio samples, including various
natural sounds, audio effects, music, and human activities. Each audio clip in the training set contains a single
human-annotated caption, while each clip in the validation and test sets provides five captions. We use the
AudioCaps training set to train our algorithms. We evaluate our approaches using the AudioCaps validation
set. The majority of the data in AudioCaps consists of in-the-wild audio obtained from YouTube, so the audio
quality is not guaranteed. The training was conducted using a rented online cloud computing instance equipped
with state-of-the-art technologies, as described by (Al-kateeb & Abdullah, 2024a).

We evaluate the model using AudioCap. Each audio clip in AudioCap consists of five textual captions. We
generate the evaluation set by randomly selecting one of these as the textual condition. The creators of
AudioCap intentionally omit audio categorized as music in order to evaluate the model's effectiveness over a
wider range of sounds; therefore, we randomly select 10% of the audio samples from AudioCap. The main
metrics used for objective evaluation are the Fréchet distance, which quantifies the similarity between
generated and target samples, and the Inception Score (IS), which assesses both the quality and diversity of
the samples.

The model uses a latent diffusion technique to remove noise from compression mel-spectrograms trained
on the AudioCaps dataset. A pre-trained CLAP audio encoder provides static semantic embeddings for
conditioning, which are incorporated into the UNet architecture. Training uses 1000 diffusion steps with a
linear beta schedule, culminating in 400,000 steps, and targets a spectrogram length of 1024 frames.
SoundCrafter is designed for computational efficiency, enabling real-time or near real-time audio production.
The model can produce a 10-second audio clip in approximately 1.2 seconds using a single NVIDIA RTX
3090 GPU. Optimization is performed using AdamW with a learning rate of 1e-4 and cosine annealing. Mixed
precision and gradient checkpointing are used to save memory and computation. Blad! Nie mozna odnalez¢
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zrodla odwolania. the correlation between sample quality and training progress. Blad! Nieprawidlowy
odsylacz do zakladki: wskazuje na nig samg. the main training hyperparameters used.

Tab. 2. Training hyperparameters of SoundCrafter

Hyperparameters Value
Dataset AudioCaps
Diffusion Steps 1000
Noise Schedule Linear beta schedule
Attention Heads 8
Dropout 0.1
Batch Size 16
Optimizer AdamW
Learning Rate le-4
Training Steps 400,000 V
Spectrogram Length 1024 frames

5. RESULTS

We evaluate the effectiveness of the proposed SoundCrafter system using quantitative indicators as well as
an analysis of training time. The SoundCrafter is evaluated on the AudioCaps benchmark using the Fréchet
Distance (FD) and Inception Score (IS) metrics. The FD metric is derived from the Fréchet distance used in
generative modeling and quantifies the similarity between the distributions of actual and produced audio
features computed within the embedding space of a pre-trained audio classification model.

A reduced FD indicates that the produced audio samples are more similar in distribution to the real samples.
The Inception Score (IS) extends this by evaluating the significance and diversity of the generated output, as
determined by the entropy of the class predictions over the generated clips. Both metrics provide quantitative
standards for model comparison and are widely used in the current text-to-sound generation literature. They
are standard metrics for assessing the quality and variety of generated audio.

Our best-performing model achieves an FD of 23.47 and an IS of 7.57. It also uses 181 million parameters,
as shown in Blad! Nieprawidlowy odsylacz do zakladki: wskazuje na nig sama.. These results are
comparable to or better than previous methods such as AudioGen and DiffSound, but use fewer resources.
Although the majority of Al models are now trained in the cloud, recent research highlights the need for
energy-efficient methods (Al-Kateeb & Abdullah, 2024b).

Tab. 3. The comparison between SoundCrafter and other existing models

Method FD | IS 1 #Params (M)
AudioGen 38 4.7 285
DiffSound 47 4.01 400
TANGO 24.52 7.27 866
Our 23.45 7.57 181

To analyze the training dynamics of the model, we plot the FD and IS scores over training steps. Blad! Nie
mozna odnalez¢ Zrédla odwolania.shows a consistent decrease in the FD during the initial training phase,
indicating an improved match between the produced and actual audio distributions.

These results demonstrate that SoundCrafter produces high-quality, semantically coherent audio samples
while maintaining efficiency in terms of model size and data requirements, as shown in Fig. 4

Although SoundCrafter generally produces high-quality and semantically coherent audio, specific
limitations and error patterns have been identified during the production process. A common error is
overlapping or unclear auditory descriptions, as shown in Fig. 5. For example, cues such as "wind and waves
together" may provide either a dominant sound or an unnatural blend, suggesting challenges in isolating and
integrating multiple sources within a single latent diffusion pathway.

An additional concern arises in textual prompts with abrupt auditory events, such as "a door slams and a
dog barks. In such cases, the temporal coherence of the produced audio can deteriorate, resulting in misaligned
timing or missing events.
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Fig. 3. Evaluation of (a) IS and (b) FD during training of SourdCrafter

(a) A dog barks loudly. (b) A hammer is hitting a wooden surface.

(¢) Strong wind blowing through trees (d) Waves crashing on a rocky shore

Fig. 4. Samples generated via our proposed model

(a) Wind and ocean waves at the same time (b) Birds chirping while rain falls heavily

Fig. 5. Failure Cases of Our Proposed Model

6. CONCLUSIONS

SoundCrafter provides an effective and adaptable framework for text-to-sound production by combining a
diffusion model with CLAP-based semantic conditioning. The text-audio pairs are used by SoundCrafter for
training purposes, using the diffusion model with audio embeddings obtained from a pre-trained CLAP
encoder. This design significantly reduces data requirements and improves the applicability of the model to
large unlabeled audio samples. The architecture utilizes a UNet-based latent diffusion model that operates in
the VAE-compressed mel-spectrogram domain, improving memory and computational efficiency. The model
achieved a Fréchet distance (FD) of 23.47 and an inception score (IS) of 7.57, using a total of 181 million
parameters.
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