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SSAtt-SolNet: An efficient model for dusty solar panel classification 

with Sparse Shuffle and Attention mechanisms 

Abstract 

This study introduces SSAtt-SolNet, a novel deep learning approach designed to detect dusty solar panels, 

thereby improving the efficiency and reliability of solar photovoltaic systems. The proposed model uses 

MobileNetV3 as its backbone to balance accuracy and computational efficiency. We introduced a novel 

sparse shuffle block that combines depth-separable convolution with a shuffle layer to improve model 

performance. We also incorporated an attention mechanism in the classification layer to selectively focus 

on relevant features while minimizing noise interference. This lightweight approach was evaluated on two 

public and one self-collected dataset containing a total of 10,118 images. The model was benchmarked 

against eight SOTA models in image classification and dusty solar panel detection using four metrics: 

accuracy, model parameters, model size, and floating point operations (FLOPs). The experimental results 

showed that our approach outperformed all baseline models, achieving the smallest standard deviation 

over five folds (99.68 ± 0.3%). Furthermore, the proposed model had the smallest size, the fewest 

parameters, and the minimum GFLOPs (0.1005). The paired t-test confirmed that the accuracy of our 

model is statistically significantly higher than all baseline models at the 95% confidence level. These results 

suggest that our proposed model is feasible for use in environments with limited computing resources. 

1. INTRODUCTION 

In recent years, environmental problems caused by the burning of fossil fuels have led many countries to 

focus on the development and use of renewable energy sources, especially solar energy, for electricity 

generation (Van Nguyen, 2023; Ogbolumani & Nwulu, 2022). This shift has led to a rapid increase in the use 

of solar photovoltaic (PV) systems as a sustainable source of electricity generation. However, the efficiency 

of these systems is significantly impacted by environmental factors, particularly the accumulation of dust on 

the surfaces of PV panels. Dust creates a barrier that reduces light transmission, resulting in significant energy 

loss. Research has shown that dust deposition can reduce the efficiency of PV panels by 20% or more, 

depending on various environmental conditions and the characteristics of the dust (Ahmed et al., 2013; Costa 

et al., 2016; Javed et al, 2017; Qasem et al., 2016; Shairi et al., 2020). This issue is particularly critical in arid 

and semi-arid regions, where frequent dust storms further contribute to the accumulation of particles on solar 

panels (Sarver et al., 2013). The decrease in power output reduces system efficiency and accelerates module 

degradation. In addition, unplanned maintenance to clean dirt from solar panels can result in significant 

financial losses (Alnasser et al., 2020). Therefore, it is critical to continuously monitor the cleanliness of solar 

panels to ensure optimal power generation (Shairi et al., 2020). 

Traditional methods for managing dust buildup on photovoltaic (PV) panels typically involve periodic 

cleaning schedules that rely on manual inspections or physical sensors to estimate dust levels. However, these 

traditional approaches have several challenges, including high labor costs, time, and safety risks associated 

with accessing large installations or rooftop arrays (Dantas et al., 2020). While physical sensors can be helpful, 

they are often susceptible to environmental degradation and may not provide accurate, real-time data, making 

them unreliable for long-term monitoring (Javed et al., 2017). Given these limitations, there is an urgent need 

for an efficient, cost-effective, and non-invasive method to monitor dust accumulation on PV panels. 

Recent advances in deep learning techniques have created new opportunities for automating complex 

detection tasks, particularly in image-based applications (LeCun et al., 2015). Convolutional neural networks 

(CNNs) and other deep learning models have proven effective in various visual inspection tasks, ranging from 
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detecting cracks in infrastructure to classifying soil types. These models have demonstrated the potential to 

accurately identify dust patterns on photovoltaic (PV) panels. A deep learning-based approach can analyze 

image data to detect dust without the need for physical interaction, enabling real-time and autonomous 

monitoring. This solution significantly reduces the reliance on manual inspections and sensor-based 

monitoring, while maintaining high levels of accuracy and scalability. 

This research is motivated by the need to improve the efficiency and operational reliability of solar 

photovoltaic (PV) systems through an innovative deep learning approach to dust detection. Using 

convolutional neural networks (CNNs) and image recognition techniques, this study aims to develop a scalable, 

accurate, and autonomous dust detection solution. This will not only improve solar energy production, but also 

support the broader transition to renewable energy by optimizing PV system performance, reducing 

maintenance costs, and extending the lifetime of solar panels. 

In this study, we use a MobileNetV3 backbone (Howard et al., 2019) to balance accuracy and computational 

efficiency in our dust detection model. MobileNetV3 is known for its lightweight architecture, making it 

particularly suitable for real-time applications in resource-constrained environments such as remote solar 

farms. We propose a novel sparse shuffle block that combines depth-separable convolution with a shuffle layer 

to further improve the efficiency of the model. This block reduces computational complexity by focusing on 

the most salient features, which improves the speed of the model without compromising accuracy. 

The major contributions of this research are as follows: 

1. We created a dedicated dataset for the detection of dust on solar panels by collecting images from various 

sources on the Internet. Each image was pre-processed and manually annotated to ensure high quality 

annotations. This makes the dataset a valuable resource for future research in this area. 

2. We introduced a novel Sparse Shuffle Block in our model architecture to reduce the number of 

parameters and computational overhead. This block employs grouped operations along with channel 

shuffling to optimize computational efficiency, while depth-separable convolutions ensure that the 

model maintains high performance with fewer parameters. 

3. We proposed a classification module that integrates an attention layer to further improve classification 

accuracy. This layer selectively emphasizes relevant features while suppressing irrelevant ones, thereby 

improving model focus and reliability. 

4. We conducted extensive experiments to compare our approach with some state-of-the-art (SOTA) 

models on the same dataset. We evaluated the performance on several metrics, including accuracy, 

number of parameters, model size, and Giga Floating Point Operations (GFLOPs). Our results indicate 

that the proposed approach achieves a competitive balance between accuracy and efficiency, making it 

highly suitable for real-time, large-scale dust detection applications in solar PV maintenance. 

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3 introduces our 

proposed methodology. Section 4 outlines the experimental setup and training process. Section 5 discusses the 

experimental results. Finally, Section 6 summarizes the main results and concludes the paper and the future 

work. 

2. RELATED WORK 

Dust detection on photovoltaic (PV) solar panels has been an active area of research. Methods have evolved 

from traditional sensor-based and image processing techniques to more advanced AI and deep learning 

approaches. Traditional approaches, such as thermal imaging and IoT-based sensor systems, have provided the 

foundation for automated dust detection, albeit with limitations in real-time capabilities and resource 

efficiency. Recent advances in machine learning (ML) and deep learning (DL) have introduced novel solutions 

that improve accuracy, scalability, and feasibility of deployment in diverse environments. This section reviews 

these methods, starting with traditional approaches and moving to machine learning and deep learning 

techniques that address the unique challenges of real-time, large-scale dust detection on PV systems. 

2.1. Traditional dust detection approaches for solar panels 

Several methods have been used to detect dust on solar panels, including thermal imaging, IoT with sensor-

based techniques, and digital imaging. Thermal imaging uses infrared cameras to capture the heat emitted by 

panels, effectively detecting performance changes and defects. However, it requires high-quality equipment 

and sophisticated software, which can be cost prohibitive (Chaudhary & Chaturvedi, 2017; Cubukcu & 
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Akanalci, 2020). In contrast, IoT with sensor-based approaches facilitates both detection and periodic cleaning, 

providing a cost-effective solution, although it often suffers from sensor degradation over time (Mohammed 

et al., 2018; Zainuddin et al., 2019).  

Recently, digital image processing techniques have been introduced to capture and analyze images of PV 

panels, using linear regression and spectral decomposition methods to detect dust with up to 90% accuracy. 

However, the effectiveness of these approaches can vary depending on the type of dust and environmental 

conditions (Abuqaaud & Ferrah, 2020; Tribak & Zaz, 2019). Each of these methods has unique advantages 

and limitations, highlighting the need for continuous monitoring and cost-effective maintenance strategies to 

ensure optimal energy output from solar panels. 

2.2. Machine learning approaches in dust detection 

Recent advances in Artificial Intelligence (AI)-based approaches have opened new perspectives in dust 

detection and have gained significant traction. Various machine learning (ML) techniques have been applied 

in various domains to improve detection accuracy and reliability. For example, Igathinathane et al. (2009) 

applied machine vision techniques to analyze airborne dust particles, while Maitre et al. (2019) used a random 

forest algorithm for mineral classification, achieving 90% accuracy. These studies highlight the robust 

applications of ML in image analysis and classification, showing how ML techniques improve dust detection 

and enable effective categorization of particle properties. 

In another approach, Proietti et al. (2015) used the k-nearest neighbors (kNN) algorithm to investigate dust 

accumulation rates, analyzing the nearest data points in multidimensional space to accurately characterize dust 

particles. These studies illustrate the versatility of ML in various dust detection contexts. However, they reveal 

limitations when scaling to large PV arrays, as they may lack the real-time capabilities required for continuous 

monitoring and maintenance in high-resolution, large-scale applications. 

2.3 Deep learning for dust detection on solar panels 

In recent years, deep learning has made significant progress in fields such as computer vision, and has 

shown great potential for automated dust detection on solar panels. State-of-the-art object detection algorithms 

such as YOLO (You Only Look Once) (Guo et al., 2022) and RetinaNet (Wang et al., 2019) are capable of 

delineating the location and boundaries of solar panels in images with high accuracy. However, these models 

typically require significant computational resources, making them difficult to deploy in real-time, resource-

constrained environments. Image segmentation techniques such as U-Net (Siddique et al., 2021) and Mask R-

CNN (Bharati & Pramanik, 2020) have also been used to accurately identify the location and condition of PV 

panels. While effective, these methods generate numerous parameters and require considerable computational 

power, complicating the maintenance process. 

Research exploring the use of CNN models specifically for dust detection has yielded promising results. 

For example, Maity et al. (2020) applied the LeNet CNN with custom dropout and pooling layers and achieved 

80% accuracy in binary classification of dust presence, while Zyout & Oatawneh (2020) experimented with 

deep CNNs and found that AlexNet achieved 93.3% accuracy on a labeled dataset of solar panel images. Other 

studies have investigated architectures such as ResNet (He et al., 2016), EfficientNet (Koonce, 2021), and 

MobileNet (Howard et al., 2019; Sinha & El-Sharkawy, 2019), each with a focus on computational efficiency 

and accuracy. While these architectures have proven effective, challenges remain due to the high demand for 

hyperparameter tuning and the need for extensive training data, which can hinder training efficiency and model 

deployment in real-time environments (LeCun et al., 2015; Shao et al., 2023). 

2.4. Optimizing deep learning models for real-time deployment 

Given the constraints of deploying deep learning models on resource-constrained devices, there has been a 

notable shift toward optimizing neural network architectures for real-time, energy-efficient applications. 

MobileNet and ShuffleNet are examples of lightweight CNN architectures designed for this purpose, balancing 

accuracy with reduced computational requirements. Advanced architectures, such as MobileNetV3 (Howard 

et al., 2019), integrate attention mechanisms and architectural optimizations to improve performance without 

significantly increasing model size. In addition, transfer learning is increasingly used to apply pre-trained 

models to the dust detection task, leveraging existing model weights to achieve high accuracy with minimal 

retraining. 
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Data augmentation techniques, such as random cropping, flipping, and color jittering, are also critical for 

improving model robustness, allowing deep learning models to better generalize across different 

environmental and dust conditions (Shorten & Khoshgoftaar, 2019). Studies have shown that such 

augmentation strategies are particularly beneficial in applications such as solar panel dust detection, where 

data collection is challenging and variations in lighting and dust accumulation must be accounted for. 

In summary, recent advances in AI and deep learning have led to innovative methods for solar panel dust 

detection. However, challenges remain in balancing accuracy and computational efficiency, especially for real-

time applications in resource-constrained environments. This study addresses these issues by proposing an 

optimized deep learning framework that integrates MobileNetV3 with split-shuffle block and attention 

mechanisms. This combination aims to provide a highly accurate and scalable solution for dust detection. Our 

approach is designed for real-time deployment, making it suitable for large-scale photovoltaic (PV) system 

maintenance and dust monitoring applications. 

3. METHODOLOGY 

This section describes the architecture and design principles of SSAtt-SolNet (Sparse Shuffle Attended 

MobileNet), a binary classification model designed to determine whether images of solar panels are clean or 

dirty. This study proposes a deep learning-based approach to efficiently detect dirty solar panels, addressing a 

critical challenge in photovoltaic system maintenance and performance optimization. Our model architecture 

has three core components to balance computational efficiency and high classification accuracy. First, we 

employ a feature extraction module based on MobileNetV3 that captures essential visual features while 

maintaining lightweight computation. Second, we introduce a novel sparse shuffle channel block that 

optimizes the use of convolutional resources to improve feature discrimination between dusty and clean solar 

panels. Finally, we propose a classifier block augmented with an attention mechanism that further refines the 

feature representation to enable accurate classification. This methodology leverages state-of-the-art design 

principles to provide a robust and scalable solution for dusty solar panel detection. The architectural design of 

the model is described in Figure 1. The algorithm for building the SSAtt-SolNet model described above is 

shown in Algorithm 1 (See Appendix).  

 

Fig. 1. SSAtt-SolNet architecture 
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3.1. Feature extraction with MobileNetV3 

In the feature extraction block, we use MobileNetV3, a state-of-the-art lightweight convolutional neural 

network (CNN), which is characterized by its remarkable efficiency and outstanding performance in various 

vision-related tasks. We used the pre-trained MobileNetV3 model on the ImageNet dataset, which provides a 

strong foundation for extracting meaningful features. Using this pre-trained model can significantly reduce 

both the training time and computational cost associated with our specific task. Our model uses only the layers 

that precede the Adaptive Average Pooling class in MobileNetV3, as shown in Figure 2. These layers are 

specifically designed to capture spatial and hierarchical features from input images while minimizing resource 

consumption. By selectively using these layers, our model focuses only on relevant feature extraction, while 

the subsequent blocks in our architecture handle the classification task. 

 

Fig. 2. MobileNetV3 as the model’s backbone for feature extraction 

The model was also fine-tuned on our custom dataset to adapt the feature extractor to the domain of dusty 

and clean solar panels. Fine-tuning allows the pre-trained model to adjust its learned weights to better capture 

features specific to solar panels, such as texture, lighting variations, and dust accumulation patterns. This 

process effectively improves the model's ability to distinguish between clean and dusty panels. This stage of 

the architecture balances computational efficiency with accurate feature representation, providing a strong 

foundation for subsequent processing and classification. 

3.2. Sparse Shuffle Block 

The Sparse Shuffle Block is a novel architectural component designed to improve the efficiency and 

performance of convolutional neural networks (CNNs) for classifying clean and dusty solar panels. This block 

aims to achieve a balance between computational efficiency and robust feature representation by combining 

depth-separable convolution with channel shuffling. This makes it particularly suitable for resource-

constrained scenarios such as edge devices and real-time solar panel monitoring systems. The main 

components of this block are described below. 

3.2.1 Depthwise Separable Convolutions 

The Sparse Shuffle block uses the Depthwise Separable Convolutions architecture to reduce computational 

cost while maintaining spatial filtering capabilities. This approach splits a standard convolution operation into 

two stages: 

1. Depthwise Convolution: Depthwise convolution convolves each feature channel independently, 

focusing on spatial filtering within each channel. This approach significantly reduces the number of 

parameters and computations compared to traditional convolutions, making it an efficient alternative 

for lightweight and resource-constrained deep learning applications. Figure 3 illustrates a deep 
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convolution, where 𝐷𝑖𝑛 × 𝐷𝑖𝑛is the size of the input image, 𝐷𝑂𝑢𝑡 ×𝐷𝑂𝑈𝑇is the size of the output image, 

M is the number of channels, and 𝐷𝑘 × 𝐷𝑘 × 1is the kernel size. 

 

Fig. 3. Depthwise Convolution operation 
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2. Pointwise Convolution (1×1): Pointwise convolution is a lightweight operation that combines and 

integrates information across feature channels. By applying a 1×1 convolution kernel, this step refines 

the feature representations and establishes critical inter-channel correlations. Figure 4 illustrates the 

pointwise convolution, where 𝐷𝑖𝑛 × 𝐷𝑖𝑛is the size of the input image, M is the number of channels in 

the input image, N is the number of channels in the output image, and 1×1×M is the kernel size. This 

design ensures efficient channel-wise interaction without increasing spatial complexity. 

 

Fig. 4. Pointwise Convolution operation 
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The block learns compact and efficient feature representations by decomposing the standard convolution 

into these two operations, while significantly reducing computational complexity. 

3.2.2. Channels shuffling 

Following the Depthwise Separable Convolutions, the Channel Shuffling mechanism was employed to 

ensure effective mixing of feature channels. This mechanism is inspired by the ShuffleNet architecture to 

overcome the limitations of grouped convolutions, where channels within certain groups are processed 

independently. 

Let C be the input channel, and the channel shuffling process can be shown in Figure 5 and described as 

follows: 

− Step 1: Divide C channels of input data into g groups, each group containing n channels. 

− Step 2: Transform the grouped data from [N, H, W, g×n] to [N, H, W, g, n]. 

− Step 3: Transform the data in step 2 from [N, H, W, g, n] to [H, H, W, n, g]. 

− Step 4: Transform the data in step 3 from [N, H, W, n, g] to [N, H, W, n×g]. 

 

Fig. 5. Channel Shuffling mechanism 

By mixing feature channels, this mechanism provides the following benefits: 

1. Reorganization across groups: Channel shuffling reorganizes channels to facilitate data sharing among 

different groups, effectively eliminating the independence commonly associated with grouped 

convolutions. 

2. Enhanced information sharing: This process enhances communication among feature maps, boosting 

the diversity and robustness of the learned representations. 

By combining Depthwise Separable Convolution, Channel Shuffling operations, Pointwise Convolution, 

and an optional residual link, the SparseShuffle block provides an efficient and effective approach to feature 

processing. Depthwise Separable Convolutions separate spatial filtering from channel shuffling, allowing these 

distinct operations to significantly reduce the number of parameters and computational cost compared to 

traditional convolutions. Channel Shuffling further enhances the effectiveness of the block by promoting 

information exchange between channels, ensuring that features are effectively combined and redistributed 

across channels. Finally, Pointwise Convolution helps to restore connectivity between channels, while the 

residual connection improves training stability and promotes gradient flow. 

Together, these techniques enable the proposed SparseShuffle block to achieve a balance between 

computational efficiency and feature representation power, improving the model's ability to accurately 

distinguish between dusty and clean solar panels. In addition, its lightweight design makes it particularly well-

suited for scalable deployment in resource-constrained environments, such as edge computing systems used 

for real-time solar panel monitoring. 
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3.3. Attention classifier block 

The final component of our proposed model is the classification block. This block acts as the final stage in 

the pipeline, where the features extracted from the previous layers are refined and categorized for accurate 

classification. It consists of two main components: an attention layer and a dense classifier pipeline. The 

attention layer helps the model focus on the most relevant features, improving feature representation and 

classification performance. Meanwhile, the dense classifier pipeline transforms these features into the final 

categories: "dusty" or "clean". Details on this block are described below. 

3.3.1. Attention layer 

The attention layer is the core mechanism that emphasizes the most relevant features within the feature 

map. The attention mechanism enhances critical information while reducing noise by exploiting the 

relationships between different spatial and channel components. Its process includes: 

1. Key, query, and value representation: The feature embeddings are divided into key, query, and value 

vectors. These vectors model the interactions between different parts of the feature space. 

2. Attention score computation: Attention scores are derived from the dot product of the query and key 

vectors, followed by a normalization step (e.g., softmax) that quantifies the relevance of each feature. 

3. Feature refinement: The normalized attention scores are applied to the value vector, improving feature 

maps by focusing on the most informative elements. This step improves the model's ability to capture 

important patterns and contextual information. 

This mechanism ensures optimal exploitation of spatial and interchannel relationships, significantly 

increasing the discriminative power of the feature representation. 

3.3.2. Dense classifier pipeline 

Following the attention layer in the classification module is a systematic pipeline for feature aggregation 

and final prediction. This pipeline combines spatial and channel-wise information processing, feature learning, 

and regularization techniques to improve classification performance. The components of the pipeline are: 

1. Global Average Pooling (GAP): The GAP layer reduces the spatial dimensions of feature maps while 

preserving important channel-wise feature statistics. This is achieved by averaging each feature map 

over its spatial dimensions. This operation condenses global spatial information while preserving the 

integrity of channel-specific features. This layer can then focus on the most significant global patterns. 

2. Dropout regularization: The dropout layer is incorporated to reduce the risk of overfitting by randomly 

setting a portion of the input units to zero during training. This stochastic regularization technique allows 

the development of robust feature representations by preventing dependence on specific neurons. 

3. Dense (Fully Connected) Layers: The fully connected layers are used to transform the refined feature 

embeddings from the previous layers into the desired output space. These layers provide the model with 

powerful learning capabilities, allowing it to capture complex, non-linear feature interactions that are 

essential for accurate classification. 

4. Batch Normalization: Batch normalization is applied after the dense layers to improve the stability of 

the training process and speed up convergence. This technique normalizes feature activations across the 

entire batch to a mean of zero and unit variance. This helps reduce internal covariate shifts during 

training and improves model robustness. 

4. EXPERIMENTAL SETUP AND TRAINING 

In this section, we present the experimental setup and training procedures used to evaluate the performance 

of the proposed model. This includes the description of the experimental dataset, setup, and training 

configuration. We also describe the evaluation metrics used in our analysis. 

4.1. Evaluation dataset 

We used two publicly available datasets and a manually curated dataset to evaluate the proposed model. 

The curated dataset was designed to improve the model's performance in real-world applications by including 
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images taken under different conditions and with different objects and backgrounds. Dataset information is 

described in Table 1. 

Tab. 1. Experimental datasets 

 Dataset 1 Dataset 2 Dataset 3 Total 

Clean 1,300 1,492 2,910 5,332 

Dusty 1,101 1,069 2,616 4,786 

All 2,231 2,561 5,326 10,118 

4.1.1. Datasets 1 and 2: Public dataset 

The first experimental dataset is a public dataset of solar photovoltaic panel images taken in Bangladesh 

with minimal extraneous content (Onim et al., 2022). Most of the images in this dataset clearly focus on solar 

panels without significant background clutter, making it easy to classify their conditions. The dataset contains 

a total of 2,231 images, with 1,300 clean panels and 1,101 dusty panels. 

The second public dataset was used by Alatwi et al. (2024). This dataset also consists of images of clean 

and dusty solar panels taken from different vantage points, at different times of day, and with different types 

of dust. The total number of images in this dataset is 2,561, with the number of clean panels being 1,492 and 

the number of dusty panels being 1,069. 

4.1.2. Dataset 3: Self-developed dataset 

To improve the generalization and performance of the model in real-world scenarios, we developed an 

additional dataset from different online images. This dataset is challenging because it contains, among other 

things, solar panels, different backgrounds, and different environmental conditions. It contains 1,343 images, 

of which 817 are labeled clean and 526 are labeled dirty. The inclusion of different scenes, camera angles, and 

lighting creates a realistic test environment for detecting dust on solar panels. The combination with Dataset 1 

ensures that the model is trained under different conditions, increasing the reliability of our results. 

4.2. Experimental setup 

To improve the robustness and effectiveness of our training process, and in particular to address the problem 

of overfitting, we have implemented an early stopping mechanism. This mechanism continuously monitors the 

validation loss during training. If there is no observable improvement in the validation loss after a given 

number of epochs, the training process is automatically stopped. 

We have extensively investigated different hyperparameter values and their results to optimize the training 

process. Based on our findings, we have established the following detailed training configuration. 

− Optimizer: The Adam optimizer was chosen for its efficient learning properties and its ability to 

accelerate convergence. A learning rate of 0.001 was selected to balance the learning speed with the 

stability of the model. 

− Loss function: Binary cross-entropy was used as the loss function, which is well suited for the binary 

classification task of dust detection. 

− Batch size: A batch size of 32 was chosen to optimize the trade-off between memory usage and training 

stability. 

− Epochs: The model was trained for a maximum of 50 epochs, with early stopping triggered if the 

validation accuracy did not improve over 10 consecutive epochs to prevent overfitting and ensure 

efficient training. 

At the end of the 5-fold cross-validation, we calculated the mean accuracy and the standard deviation across 

all folds. This served as the primary metric for evaluating and comparing the performance of our proposed 

model against the baseline models. This approach ensured a thorough and consistent evaluation of the model's 

effectiveness in detecting dust on solar panels, thereby enhancing its relevance for real-world applications. 

To thoroughly evaluate the performance of our proposed model, we compared it with several well-

established baseline models that are commonly used in image classification tasks. Specifically, our model was 

benchmarked against ResNet50, VGG16, InceptionV3, EfficientNetB0, EfficientNetB4, MobileNetV2, and 

MobileNetV3Small. These architectures are well-known for their strong performance and efficiency in visual 
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recognition tasks. Furthermore, we also included Solnet (Onim et al., 2022), a recent model specifically 

designed for dust detection on solar panels, as a baseline for comparison. 

Each baseline model was initialized with pre-trained weights from the ImageNet dataset to leverage transfer 

learning. To ensure a fair comparison, we standardized the training process using consistent hyperparameters, 

including the same learning rate, batch size, and data loader configuration. This approach allows any 

performance differences to be attributed solely to the architectures, minimizing potential biases from 

experimental conditions. 

4.3 Evaluation metrics 

We evaluated our proposed system using three main metrics: accuracy, number of model parameters, and 

GFLOPs (Giga Floating Point Operations Per Second). Together, these metrics thoroughly assess the model's 

predictive ability, complexity, and computational efficiency, providing insight into the practical applicability 

of the system in real-world scenarios. 

Accuracy is defined by Equation 3 as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
             (3) 

Where: TP (True Positive) – the number of dirty solar panels correctly identified as dirty, 

   TN (True Negative) – the number of clean solar panels correctly identified as clean, 

FP (False Positive) – the number of clean panels mistakenly identified as dirty, 

FN (False Negative) – the number of dirty panels mistakenly identified as clean. 

The number of model parameters reflects the complexity of the model by indicating the total number of 

trainable weights, which affects memory usage and the risk of overfitting. GFLOPS (Giga Floating Point 

Operations per Second) measures computational demand by quantifying how many billion operations the 

model performs per second. This metric is important for evaluating computational cost and scalability, 

especially in resource-constrained environments. 

5. EXPERIMENTAL RESULTS 

Table 2 shows the detailed comparison of our model, SSAtt-SolNet, with the baseline models, focusing on 

accuracy over five cross-validation folds, the number of parameters, the model size, and the computational 

complexity (GFLOPs). 

The experimental results show that our proposed method, SSAtt-SolNet, outperforms the state-of-the-art 

baseline models across various performance metrics, including accuracy, computational efficiency, and model 

complexity. The evaluation is based on five-fold cross-validation to ensure robustness and generalizability. 

The accuracy results indicate that SSAtt-SolNet achieves good performance, achieving an average accuracy 

of 99.68% ± 0.3% across all five folds. The standard deviation of 0.3% demonstrates the model’s consistency 

and stability, as it maintains uniform accuracy without significant fluctuations. In contrast, the baseline models, 

such as InceptionV3 (96.63% ± 1.28%), EfficientNetB4 (95.6% ± 1.03%), and ResNet50 (95.24% ± 1.23%), 

show lower average accuracies and a greater degree of variability across folds. Paired t-tests confirm that the 

differences in accuracy between SSAtt-SolNet and these models are statistically significant at a confidence of 

95%, further validating the reliability of SSAtt-SolNet performance. 

In particular, the comparison with VGG16 (93.76 ± 11.94)% shows an interesting result. Although VGG16 

produces a lower overall accuracy than SSAtt-SolNet, the paired t-test shows that the difference is not 

statistically significant (p = 0.229). This can be attributed to the relative stability of VGG16's performance in 

several folds (e.g., folds 2, 3, and 4), where its accuracy is comparable to SSAtt-SolNet. However, VGG16 

experienced a sharp drop in accuracy in Fold 1 (84.42%), which significantly lowers its average accuracy and 

increases its standard deviation (±11.94). This large variation across folds indicates that VGG16's performance 

is less consistent and more sensitive to variation than SSAtt-SolNet in the datasets used. 

In contrast, models such as ResNet50 and EfficientNetB0 have consistently lower accuracy across multiple 

folds than the SSAtt-SolNet results. For example, ResNet50 records lower results in fold 3 (94.39%) and fold 

5 (93.49%), while EfficientNetB0 achieves similar performance in folds 1 and 5, but fails to achieve the same 
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level of stability as SSAtt-SolNet overall. These patterns explain the statistically significant differences 

compared to SSAtt-SolNet. 

Tab. 2. Experimental results 

Model 
Accuracy (%) No of 

parameters 

Model size 

(MB) 
GFLOPs 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Resnet50 95.96 96.18 94.39 96.18 93.49 95.24 ± 1.23 24,702,593 94.23 7,732 

VGG16 84.42 98.65 99.15 97.55 98.61 95.68 ± 6.32 15,043,137 57.39 30,714 

InceptionV3 94.84 97.75 96.41 96.18 97.98 96.63 ± 1.28 22,917,665 87.42 5,687 

EfficientNetB0 91.92 95.29 96.18 96.18 94.61 94.84 ± 1.76 4,771,236 18.2 0.7886 

EfficientNetB4 96.18 96.41 96.41 94.84 94.18 95.6 ± 1.03 18,657,632 71.17 3,052 

MobileNetV2 91.7 94.17 96.41 94.61 93.27 94.03 ± 1.73 2,979,469 11.37 0.601 

MobileNet 

V3-Small 
90.58 93.04 90.35 90.35 92.6 91.38 ± 1.32 1,300,337 4.96 0.1138 

Solnet 89.01 86.99 86.77 89.46 87.66 87.98 ± 1.2 46,756,609 178.36 2,013 

Our Method 

(SSAtt-SolNet) 
100.00 100.00 99.32 99.55 100.00 99.68 ± 0.3 672.674 2.57 0.1005 

 

The variability observed among the baseline models, particularly VGG16, highlighted the importance of 

stability across different folds as a measure of robustness. SSAtt-SolNet not only achieved the highest overall 

accuracy, but also demonstrated low variability. This level of stability strengthens the reliability of SSAtt-

SolNet for practical applications, as the model can effectively generalize to different subsets of the data without 

experiencing the fold-specific fluctuations seen in baseline methods. 

In addition to accuracy, SSAtt-SolNet also achieves remarkable efficiency in terms of model size, number 

of parameters, and computational cost. With only 672,674 parameters, it occupies only 2.57 MB of memory, 

making it significantly lighter than other models such as ResNet50, which has 24.7 million parameters and 

requires 94.23 MB, and EfficientNetB4 with 18.6 million parameters and 71.17 MB. This simplification in 

model structure is achieved without compromising performance, underscoring the effective optimization in 

the design of SSAtt-SolNet for this application. In addition, the computational cost, measured in GFLOPs, 

further highlights its efficiency. SSAtt-SolNet requires only 0.1005 GFLOPs, a fraction of the computational 

requirements of models such as VGG16 (30.714 GFLOPs) and ResNet50 (7.732 GFLOPs). These results 

indicate that SSAtt-SolNet is more accurate and practical in resource-constrained environments such as mobile 

and embedded systems. 

The baseline models illustrate different trade-offs between accuracy, computational cost, and model size. 

For example, InceptionV3 achieves a competitive accuracy of 96.63 ± 1.28, but requires significantly more 

computational resources (5,687 GFLOPs) and a larger model size (87.42 MB). Similarly, EfficientNetB4 

offers strong accuracy (95.6 ± 1.03) with reduced computational cost compared to InceptionV3, but still falls 

short of SSAtt-SolNet's performance. On the other hand, lightweight models such as MobileNetV3-Small 

(91.38 ± 1.32) and MobileNetV2 (94.03 ± 1.73) are computationally efficient but exhibit significantly lower 

accuracy, reflecting the trade-off between performance and efficiency in these models. 

Overall, the experimental results clearly show that SSAtt-SolNet significantly outperforms the baseline 

models in terms of both accuracy and consistency. The paired t-test analysis provides strong statistical evidence 

for this conclusion, as four of the five baseline models had statistically significantly lower performance than 

SSAtt-SolNet. 

6. CONCLUSIONS AND FUTURE WORK 

In this work, we proposed a dusty solar panel detection model based on sparse shuffle and attention 

mechanisms. Inspired by the idea of ShuffleNet, we combined depth-separable convolution with channel 

shuffling to form the sparse shuffle mechanism. This combination maximizes model performance while 

maintaining low computational requirements. Depthwise Separable Convolution decomposes a standard 
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convolution operation into two distinct stages, allowing the model to learn more compact and efficient feature 

representations. Then, the sparse channel shuffling mechanism was used to improve the interaction between 

feature channels. This mechanism ensures that channels that are initially processed independently in groups 

are mixed together to promote better information exchange. 

In addition, we implemented an attention mechanism in the classification layer to improve the model's 

ability to focus on the most relevant features. This improved the relationships between channels and the use of 

spatial context, resulting in better feature extraction and classification accuracy. 

The proposed model was evaluated and compared with several baseline models for image classification and 

dusty solar panel detection on three datasets. The evaluation results show that our proposed model, SSAtt-

SolNet, achieves a remarkable balance between accuracy, efficiency, and robustness. It consistently 

outperforms almost all baseline models in terms of accuracy while maintaining a lightweight architecture and 

low computational cost. Statistical analysis confirmed that the accuracy improvements are significant 

compared to most competitive models. These results suggest that our model is not only an optimal solution for 

achieving state-of-the-art accuracy, but also highly practical for use in computationally constrained 

environments and real-time applications. 

The Sparse Shuffle Block introduced in this work has potential for a wide range of applications that require 

efficient and lightweight convolutional neural networks, beyond the detection of dusty solar panels. Its design 

effectively balances computational efficiency with strong feature representation, making it suitable for real-

time image processing tasks on resource-constrained edge devices such as mobile phones, drones, and 

embedded vision systems. In addition, this block can be applied in various fields, including industrial quality 

control, autonomous vehicles, portable medical imaging devices, and augmented reality (AR) or virtual reality 

(VR) systems, where both accuracy and efficiency are critical. This versatility highlights the value of the 

Sparse Shuffle Block as a fundamental architectural building block for deep learning models intended for real-

time, low-power deployment scenarios. 

In our future work, we plan to investigate more sparse shuffling techniques to improve efficiency and 

adaptability to varying levels of dust accumulation. In addition, we will explore more attention mechanisms, 

including multi-scale or self-supervised, to better capture spatial and contextual features. We will also explore 

alternative lightweight architectures for feature extraction, such as EfficientNet, ShuffleNet, and architectures 

based on Neural Architecture Search (NAS), to evaluate their feature extraction performance. Finally, we will 

consider additional research directions, such as the use of random data augmentation techniques, the 

application of quantization methods, etc. 
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APPENDIX 

SSAtt-Solnet model training algorithm. 
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