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Real-time detection of seat belt usage  

in overhead traffic surveillance using YOLOv7 

Abstract 

Driving safety plays a critical role in minimizing traffic accidents, and seat belt usage is one of the most 

effective preventive measures. This study aims to implement the YOLOv7 object detection model to 

automatically detect seat belt usage in four-wheeled vehicles using overhead traffic surveillance images. 

The proposed method consists of three main stages: dataset preparation, model training, and model 

evaluation. Dataset preparation includes acquiring video footage from different locations and time 

conditions, extracting image frames, and annotating four object classes: car, windshield, passenger, and 

seat belt. The model is trained on a dataset consisting of images taken during both day and night conditions. 

During training, data augmentation and anchor box optimization are applied to improve model 

generalization. The trained model is evaluated on an unseen test dataset and achieves a Mean Average 

Precision at 50% Intersection over Union (mAP50) of 97.46% and an F1 score of 95.37% at the optimal 

confidence level. These results indicate high detection accuracy for all object classes, especially for the 

seat belt class with an AP of 93.40%. The proposed system offers a promising solution for real-time traffic 

enforcement, reducing the reliance on manual observation and potentially improving traffic safety 

monitoring. 

1. INTRODUCTION 

Driving safety is paramount and must be maintained by every driver. Consistently practicing safe driving 

behaviors can reduce traffic problems, including congestion and accidents. Driving safety is determined by 

three factors: the condition of the vehicle, the traffic infrastructure, and the condition of the driver (Castellà & 

Pérez, 2004). Ninety percent of accidents are primarily influenced by the negative attitudes of drivers (Lee, 

2005). A common negative behavior among drivers in Indonesia is not wearing seat belts. Currently, efforts 

to ensure driver compliance with seat belt laws involve the deployment of patrol officers at various locations 

and the installation of cameras that are then manually analyzed. This method is highly inefficient and costly. 

The advancement of computer vision technology makes autonomous traffic violation monitoring through 

image identification inevitable. The application of computer vision to seat belt usage detection has been 

extensively researched in the past. Zhou (2017) integrated edge detection, salient gradient mapping, and radial 

basis function (RBF) techniques into a singular network architecture to detect the presence of a seat belt in an 

image, achieving an average accuracy of 84.3%. Guo (2011) used a comparable edge detection technique to 

identify seat belts from traffic surveillance cameras with an accuracy of 81%. Elihos (2018) presented a 

technique to detect seatbelts by first localizing the vehicle's windshield, and then identifying the passenger 

using a single shot detector (SSD). The localization method generates a region of interest (ROI) represented 

as a passenger image. Then, the passenger image is processed by an object recognition model using SSD along 

with various image classification models, specifically CNN-P, VGG16, and Fisher Vector, to determine seat 

belt usage. The experiment showed that the SSD model achieved the highest accuracy and precision, 

specifically 91.9% and 94.5%, respectively, compared to the three image classification methods. According to 

previous research results, the use of object detection is more effective in identifying seat belt usage than the 
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use of image classification techniques. In the deep learning paradigm, feature extraction from images is 

performed automatically during the learning process (Deng & Yu, 2013). 

Object detection or recognition is a challenge in computer vision that seeks to recognize and localize a 

semantic object of a specific class within an image (Dasiopoulou et al., 2005). In contrast to the classification 

process that assigns a single image to a certain class, the object recognition method can identify multiple 

classes of objects inside a single image (Mohialden et al., 2024). Object detection is typically performed with 

machine learning or deep learning techniques. The machine learning approach commences by delineating 

features by diverse strategies, including the utilization of the Histogram of Gradients (HOG) feature (Dalal & 

Triggs, 2005), the Haar feature (Viola & Jones, 2001), or the Scale-invariant feature transform (Lowe, 1999). 

Subsequently, classification is performed utilizing a machine learning model, such as the Support Vector 

Machine (SVM). Simultaneously, the deep learning approach employs artificial neural networks for object 

detection, eliminating the necessity for explicit feature specification (Girshick et al., 2014). 

Deep learning object identification typically consists of two stages: localization and classification. The 

localization algorithm identifies segments of the image that may contain objects (region proposals), and then 

classifies each segment individually (Jiao et al., 2019). Girshick (2015) presented the RCNN detector model, 

which uses a selective search method to generate region recommendations. RCNN achieves an accuracy rate 

of 53.7% on the PASCAL VOC dataset. However, RCNN has a significant drawback: its lengthy recognition 

time. RCNN requires 47 seconds to process a single image, making it impractical for real-time applications 

such as video processing. As a result, the Fast-RCNN algorithm has been proposed, which achieves 

comparable accuracy to RCNN while reducing the detection time to 0.32 seconds per image. The Faster RCNN 

technique uses a streamlined network architecture to generate region proposals, enabling it to process up to 17 

images per second and facilitating its application in real-time processing (Ren et al., 2017). 

There is also an object detector that requires only a single stage of processing, called a one-stage detector. 

This detector localizes and predicts object classes from a single image using a single CNN network, without 

the need for compiling region proposals. The entire computational process of this detector is performed by a 

single network. As a result, the single-stage detector has a simpler architectural model that allows for fast 

detection. An example of this model type is the single-shot detector (SSD), which employs the VGG16 

architecture (Simonyan & Zisserman, 2015) as the backbone network, followed by multiple convolutional 

layers of decreasing size. SSD achieves a mean average precision (mAP) of 74.3% at a speed of 59 frames per 

second (W. Liu et al., 2016).  

You Only Look Once (YOLO) is a single-step object detection technique using a convolutional neural 

network (CNN). YOLO is designed for real-time, end-to-end training while maintaining high accuracy. The 

first iteration of YOLO has a modified GoogleNet as its backbone network (Szegedy et al., 2015). YOLO can 

process at a rate of 45 frames per second with a mean average accuracy of 63.4% (Redmon et al., 2016). The 

YOLO architecture works by partitioning the input image into an S×S grid. The position of the object is 

identified based on the grid cell containing the center of its bounding box. The grid cell encompassing the 

center of the bounding box is tasked with object detection. Each grid cell predicts a bounding box characterized 

by parameters of C+5*B, where C is the number of classes and B is the number of projected bounding boxes. 

The B value is multiplied by 5 because it includes the location and dimensions of the bounding box, along with 

the confidence value (x, y, w, h, c) for each bounding box. Since an image contains S×S grid cells, the overall 

prediction of the model is represented as a tensor with dimensions S×S×(C+B*5). The first iteration of YOLO 

predicts the bounding box coordinates using a Fully Connected Layer (FCN) after processing the feature 

extractor. However, this method was later modified in the second version of YOLO (YOLO9000) by replacing 

the FCN with an anchor box. An anchor box is a preliminary bounding box with specified dimensions (p_w, 

p_h) distributed over the image region. This anchor box serves as a specialized predictor for objects with 

specific characteristics, such as dimensions, aspect ratio, and special placements. The bounding box of an 

object is established by predicting the variance from the size of the anchor box (Redmon & Farhadi, 2017). 

The YOLO architecture consists of three components. The first segment consists of a backbone network, a 

CNN, that analyzes each pixel in the image to generate features with varying levels of detail. This backbone 

network is often trained on a classification dataset. The second component is the neck network, which is a 

feature pyramid network (FPN) that integrates the representations of the CNN layers prior to their processing 

by the prediction network. The final component is the head network, which acts as a prediction network to 

predict bounding boxes and object classes. The predictions generated by this network are driven by YOLO's 

three loss functions: class, box, and objectness. Figure 1 shows the YOLO architecture. 
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Fig. 1. YOLO network architecture (S. Liu et al., 2021) 

YOLO remains the preeminent framework for real-time object recognition and continues to evolve. 

YOLOv7 represents the latest version of the YOLO series at the time of this writing and will be the model 

used in this investigation. YOLOv7 is designed to produce more accurate forecasts at a speed comparable to 

its predecessor. To achieve this goal, several modifications have been made to the YOLOv7 design, including 

the integration of E-ELAN (extended efficient layer aggregation network) into the backbone network, model 

scaling, re-parameterization, and the inclusion of auxiliary heads in the center of the network (Wang et al., 

2023). 

The latest version of YOLO (You Only Look Once), YOLOv12, is a significant advancement over 

YOLOv7. YOLOv7, introduced in mid-2002, is characterized by exceptional speed and high accuracy in real-

time object detection. This version improves inference performance without excessive computational overhead 

by incorporating several advances, including E-ELAN, efficient head models, and re-parameterization 

approaches (Wang et al., 2023). Following YOLOv7, the community and Ultralytics developed YOLOv8 

through YOLOv12, with incremental improvements in precision, attention-driven design, and multitasking 

versatility, including segmentation and posture estimation. In this study, YOLOv7 was used based on an 

assessment of available computational resources and appropriate data attributes. YOLOv7 provides an optimal 

balance between accuracy and efficiency, demonstrating sufficient stability and reliability for this research 

setting without requiring extensive infrastructure (Zhu & Miao, 2024). 

This research aims to implement a CNN-based object detection system to detect seat belt usage in traffic 

surveillance images. This research uses a methodology similar to that of Elihos (2018), with modifications to 

the detection model employed specifically using the YOLOv7 model (Wang et al., 2023). This study involves 

three main mechanisms. The three stages include image dataset preparation, model training, and model 

evaluation. This research has used recorded video rather than performing recognition in a fully real-time 

environment. Although the system does not operate in true real-time, we expect that the use of video will 

approximate real-time conditions. However, due to limitations in processing resources, our existing 

configuration is not yet able to perform continuous real-time inference during live surveillance. 

2. MATERIALS AND METHODS 

2.1. Dataset 

The dataset preparation procedure involves the acquisition of raw overhead video footage depicting traffic 

conditions, followed by image extraction, image annotation, windshield region of interest (ROI) extraction, 

ROI annotation, and separation of the images into training, validation, and test datasets. The photographs used 

in this research were taken with a digital camera positioned approximately 10 meters above the roadway, which 

has a 20°-30° slope. The camera is positioned directly above the roadway to ensure recording conditions as 

shown in Figure 2. The photos were taken at resolutions of 1920×1080 pixels and 3840×2160 pixels.  
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Fig. 2. Example of direct capture images 

Additional image sources were obtained from the Internet to increase the diversity of the dataset. The first 

source is an aerial view of traffic on the Bolshoy Krasnokholmsky Bridge in Russia (DZ Computer Vision, 

2021). The second source is an aerial view of traffic at an intersection in Thailand (Panasonic Connect Europe, 

2015). The third source is an aerial view of traffic at an intersection in Poland (Majek, 2018). All three media 

were downloaded at a resolution of 3840×2160 pixels. 

The next stage is to extract frames from each media file. Frames are extracted automatically at 10-second 

intervals. The extracted frame images are stored in a single directory. Table 1 provides details on the number 

of frame extraction images for each media source.  

Tab. 1. Number of frame extraction images 

Media Frame Size Amount 

Indonesia 3840×2160 670 

Russia 3840×2160 186 

Thailand 3840×2160 116 

Poland 3840×2160 231 

Total - 1203 

 

Figure 3 shows examples of retrieved photos from each media outlet. 

a) b)

c)
 

Fig. 3. Examples of images sourced from the internet located in (a) Russia, (b) Thailand, and (c) Poland 

The next step is to annotate the image. The annotation procedure tries to provide information through class 

names and the spatial coordinates of objects through bounding boxes for recognition purposes. The frame 

image contains two categories of annotated objects: cars and car windshields, referred to as car and windshield 

classes, respectively. The annotation procedure is performed on each frame image containing both objects 

using the open-source software LabelMe and is stored in the YOLO (You Only Look Once) annotation format. 

The process of annotating a frame image is illustrated in Figure 4. 
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Fig. 4. Frame image annotation process 

The final phase involves extracting the windshield region of interest from each frame image. The extraction 

procedure is performed using the crop operation on each bounding box of the windshield class and then saved 

as a new file. Table 2 shows the details of the number of image files for windshield ROI extraction. 

Tab. 2. Number of windshield ROI extraction images 

Media ROI windshield 

Indonesia 2341 

Russia 139 

Thailand 39 

Poland 441 

Total 2960 

 

Then, annotation was performed on the ROI images for the passenger and seatbelt objects, called passenger 

and seatbelt classes, respectively. Figure 5 illustrates the annotation process for the extracted windshield ROI 

images. 

 

Fig. 5. Annotation process windshield image 

The ROI windshield image is then merged with the frame image into a single directory. The final phase 

involves partitioning the dataset into a training dataset, a validation dataset, and a test dataset, with the specifics 

regarding the number of images in each dataset and the amount of annotations for each class detailed in Table 

3.  

Tab. 3. Number of images in the training, validation, and test datasets and the number of label annotations for each class 

Dataset Amount 
Label 

Car Windshield Passenger Seatbelt 

Training 2137 2981 2764 2434 1212 

Validation 913 425 366 978 369 

Testing 726 1083 904 638 505 
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2.2. Training model 

The training model seeks to train the deep learning model by providing a dataset with annotations as input, 

enabling the model to identify the patterns and attributes of each class that underpin its predictive capabilities. 

This research uses the YOLOv7 architectural model (Wang et al., 2023). During the training process, the 

training image dataset is preprocessed by scaling the images to 640×640 pixels and using data augmentation 

through mosaics to mitigate overfitting. The anchor box is then optimized for the dataset using a genetic 

algorithm. The training uses the P5 model hyperparameter, yielding prediction outputs for P3 (step 8, small 

objects), P4 (step 16, medium objects), and P5 (step 32, large objects) within the Feature Pyramid Network 

(FPN). The model is trained for 100 epochs using a batch size of 16. During each epoch, the model is trained 

to minimize the loss function and is evaluated by computing the mean average precision (mAP) at an 

intersection over union (IOU) threshold of 50%, as well as the mean mAP over the IOU threshold range of 

50% to 95%. Fitness is computed as a model evaluation metric represented by the average weighted value of 

the two mAP values, as shown in equation (1). The model from the era with the optimal fitness value is used 

in the next step. The entire training procedure is performed using the training program provided in the YOLOv7 

repository (WongKinYiu, 2023) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 0.1 × 𝑚𝐴𝑃50 + 0.9 × 𝑚𝐴𝑃           (1) 

Where:  𝑚𝐴𝑃 – mean average precision. 

2.3. Testing model 

Object recognition model testing is used to assess the ability of the trained model to identify objects. The 

testing procedure uses a test dataset, which is a collection of photographs that the model has never seen before. 

The test dataset used in this study is divided into two time segments: daytime and nighttime. The result of this 

model evaluation phase is represented by the Mean Average Precision (mAP) value and the accuracy level of 

the model. 

Testing begins by feeding the test dataset into the model to obtain detection results, which include object 

classes, bounding boxes, and confidence levels for each object identified. In addition, each detection bounding 

box is compared to the ground truth bounding box, which serves as a label or annotation within the test dataset. 

The procedure calculates the Intersection over Union (IOU) with a threshold of 50%. A detection bounding 

box with an IOU value above the threshold is classified as a true positive (TP), while a detection bounding box 

with an IOU below the threshold is classified as a false positive (FP). An undetected ground truth bounding 

box is classified as a false negative (FN). 

In the next phase, the recall and precision metrics are computed for each class at different confidence level 

thresholds τ(k). The average precision (AP) is calculated as the area under the precision-recall (PR) curve for 

each class. The calculation of mAP was then performed. The F1 score metric, which represents the harmonic 

mean of precision and recall, is used to evaluate model accuracy and is calculated using equation (2). 

𝐹1(𝜏) =
2𝑇𝑃(𝜏)

𝑛𝑏𝑜𝑥𝑑𝑒𝑡(𝜏)+𝑛𝑏𝑜𝑥𝑔𝑡
             (2) 

Where:  𝑇𝑃 – true positive, 

τ – threshold. 

This metric is chosen because the size of the true negative is insignificant in the object detection domain. 

The negative signal in the dataset image is indicated by any pixel that is not bounded by a bounding box, 

resulting in numerous potential negative bounding box permutations within a single image (Lin et al., 2020). 

Furthermore, there is a disparity in the annotation of the used dataset, namely within the seatbelt class, which 

has a significantly lower amount of annotations compared to other classes, as shown in Table 3. Similar to 

other metrics, the F1 score is computed at different confidence levels τ(k), where TP(τ) represents the number 

of true positives, nboxdet(τ) denotes the number of detection bounding boxes, and nboxgt indicates the number 

of ground truth bounding boxes. The results of the calculation are presented as an F1-score curve plotted 

against the confidence level threshold, along with the maximum F1-score value. 
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3. RESULTS AND DISCUSSION 

3.1. Results of the training model 

Model training was performed using the YOLOv7 model. The training and model testing process was 

performed using the Google Colaboratory service (https://colab.research.google.com) in the form of a virtual 

machine with specifications of an Intel(R) Xeon(R) CPU @ 2.20GHz processor, 12GB RAM, 16GB NVIDIA 

Tesla T4 graphics card, and Ubuntu 22.04.2 LTS 64bit as the operating system.  

The model was trained on a 640×640 pixel image dataset for 100 epochs. Each epoch was evaluated using 

the mean average precision (mAP) measure at an intersection over union (IOU) threshold of 50% (mAP50) 

and the mean mAP over an IOU threshold range of 50% to 95% (mAP). The fitness value, represented by the 

average weight of the two metrics, is used to identify the epoch with optimal results. The training method 

yields an optimal model with mAP50 and mAP values of 94.59% and 67.17%, respectively, and a fitness value 

of 69.91%. The training outcome metrics for the optimal model are shown in Table 4.  

Tab. 4. Best model training result metrics 

No Metrics Value (%) 

1 AP car class 96.93 

2 AP windshield class 96.92 

3 AP passenger class 96.35 

4 AP seatbelt class 88.16 

5 Precision 90.15 

6 Recall 90.89 

7 mAP50 94.59 

8 mAP 67.17 

9 Fitness 69.91 

 

The analysis of Figures 6(a) and 6(b) shows that the model shows no signs of overfitting and has effectively 

converged to a minimum loss value. The first graph illustrates the loss throughout the training process and 

shows a steady reduction in the three loss components-train_box_loss, train_cls_loss, and train_obj_loss-as 

the number of epochs progresses. This reduction indicates that the model is successfully and consistently 

learning patterns from the training data. The second graph, showing the loss on the validation data, shows that 

the loss of the third component shows a very consistent trend without a significant increase, indicating that the 

model maintains effective generalization on untrained data. The model shows no signs of overfitting, which is 

typically characterized by an increase in the validation loss while the training loss continues to decrease. 

Moreover, in both the training and validation data sets, all loss components converge to relatively minimal 

values, indicating that the model has reached a stable state in the optimization process. This indicates that the 

model not only learns effectively from the training data, but also exhibits consistent performance on the 

validation data, a critical feature of a robust, non-overfitting model. 

  

(a) (b) 

Fig. 6. Training Loss (a) and Validation Loss (b) Graph 

Figure 7 shows the precision-recall curve of the optimal daytime (a) and nighttime (b) model. 
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(a) (b) 

Fig. 7. Precision-recall curve of the best model daytime (a) and nighttime (b) 

The results of the training model, as shown in Figure 7(a) and (b), demonstrate that the model effectively 

detects all four object types in the validation dataset. The object classes identified by the model, ranked by the 

highest Average Precision (AP) values, are as follows: car class with an AP of 96.93%, windshield class with 

an AP of 96.92%, passenger class with an AP of 96.35%, and seat belt class with an AP of 88.16%. 

3.2. Results of testing model 

The trained model was evaluated on a test dataset containing images missing from the training and 

validation datasets. The evaluation was performed to test the model's ability to generalize object recognition. 

The model was evaluated on a test dataset of 726 images and 3130 label annotations, which served as ground 

truth for all classes. The model predicted 5,768 bounding boxes, including all four object classes, using the 

test dataset. The model processes a single image in 8.2 milliseconds, or 122 frames per second. The results of 

the precision, recall, and mAP50 calculations for daytime and nighttime conditions are shown in Table 5.  

Tab. 5. Results of mAP50 calculations for daytime and nighttime conditions 

Class 
Number of 

True Labels 

Number of 

Predictions 
Pre (%) Rec (%) 

mAP50 

(%) 

Daytime 

All 3130 5768 97.37 93.58 97.46 

car 1083 2172 98.50 91.51 97.81 

windshield 904 1778 98.89 98.90 99.67 

passenger 638 973 94.99 97.18 98.97 

seatbelt 505 845 97.10 86.73 93.40 

Nighttime 

All 1160 4819 92.43 86.15 91.64 

car 384 1960 91.83 97.66 98.57 

windshield 367 1615 94.46 99.18 99.30 

passenger 285 663 92.68 84.45 93.22 

seatbelt 124 581 90.75 63.31 75.48 

 

Calculation of the evaluation metrics yields AP50 values for each class and mAP50 models with elevated 

values that exceed the validation threshold. The resulting mAP50 value is 97.46%. The windshield class has 

the highest AP50 at 99.67%, followed by the passenger class at 98.97%, the car class at 97.81%, and finally 

the seatbelt class at 93.40%. The AP50 and mAP50 measures took into account precision and recall at different 

confidence levels during the calculation process. Consequently, the results of this calculation indicate that the 

model has robust and consistent performance in object detection across different confidence levels.  

Overall, the nighttime test resulted in a mAP50 value of 91.64%, which was lower than the validation 

mAP50 value and the mAP50 value of the daytime test results. The class with the highest AP50 was the 
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windshield class at 99.30%, slightly lower than the daytime test results, followed by the car class at 98.97%, 

slightly higher than the daytime test results, then the passenger class at 93.22%, lower than the daytime test 

results, and finally the seat belt class at 75.48%, much lower than the daytime test results. Based on these 

results, it can be concluded that the model can still detect relevant objects at various confidence levels quite 

consistently in low-light conditions, although it experiences a decrease in performance in detecting the seatbelt 

class. The PR curve for day and night is shown in Figure 8(a) and 8(b).  

  

(a) (b) 

Fig. 8. Precision-recall curve of testing in daytime (a) and nighttime (b) conditions 

The F1 score is then derived from the precision and recall data to measure the accuracy of the model. The 

calculation yielded the optimal value at the confidence level threshold τ_best = 0.1532, equivalent to 95.37%, 

and τ_best = 0.1441, equivalent to 88.60%, as shown in Table 7, with the F1 score vs. confidence curve shown 

in Figure 9. 

Tab. 6. Results of mAP50 calculations for daytime and nighttime conditions 

Class 
Number of 

True Labels 

Number of 

Prediction 

(τ > τ_best) 

TP FP FN 
F1-score 

(%) 

Daytime 

All 3130 3013 2943 70 187 95.37 

Car 1083 1006 991 15 92 94.88 

Windshield 904 904 894 10 10 98.90 

Passenger 638 652 620 32 18 96.07 

Seatbelt 505 451 438 13 67 91.62 

Nighttime 

All 1160 1138 1057 81 103 88.60 

Car 384 408 375 33 9 94.65 

Windshield 367 385 364 21 3 96.76 

Passenger 285 259 240 19 45 88.38 

Seatbelt 124 86 78 8 46 74.59 
Note : TP = True positive, FP = False Positive, FN = False Negative 

 

The F1 score value for each class at the τ_best threshold in order from the largest to the smallest is the 

windshield class at 98.90%, the passenger class at 96.07%, the car class at 94.88%, and the seat belt class at 

91.62%. In Table 6, it is mentioned that TP is a prediction that matches the class, FP is a non-class that is 

projected as a class, and FN is a class that is predicted as a non-class. Details of the accuracy calculation results 

are shown in Table 7, and the F1 score vs. confidence curve can be seen in Figure 9.  
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(a) (b) 

Fig. 9. F1-score curve daytime (a) and nighttime (b) against confidence level 

Using the resulting τ_best value, filtering is performed on the detection result bounding box with a 

confidence level less than τ_best. Then, the number of TP, FP and FN hits for each class with a confidence 

level threshold of τ_best is calculated and given in the form of a confusion matrix in Table 7. From these tables, 

the mAP is 97.46% in daytime and 91.64% in nighttime. 

Tab. 7. Confusion matrix testing with τ_best=0.1532 (daytime) and τ_best=0.1441 (nighttime) 

 True Label 

car windshield passenger seatbelt background 

(FP) 

τ_best=0.1532 Daytime 

Prediction 

car 991 0 0 0 15 

windshield 0 894 0 0 10 

passenger 0 0 620 0 32 

seatbelt 0 0 0 438 13 

background (FN) 92 10 18 67 n/a 

τ_best=0.1441 Nighttime 

Prediction 

car 375 0 0 0 33 

windshield 0 364 0 0 21 

passenger 0 0 240 0 19 

seatbelt 0 0 0 78 8 

background (FN) 9 3 45 46 n/a 

4. CONCLUSION 

The research results indicate that the YOLOv7 model effectively detects seat belt use (seat belt class) in 

conjunction with other objects, including four-wheeled vehicles (car class), vehicle windshields (windshield 

class), and drivers and passengers (passenger class). It achieved a mAP5000 value of 97.46% during the day 

and 91.64% at night. The AP value for the belt category is 93.40%, dropping to 75.48% at night. The optimal 

accuracy, evaluated by the F1 score metric, is achieved at a confidence level threshold of τ_best = 0.1532, 

equivalent to 95.37%, and τ_best = 0.1441, equivalent to 88.60%. 

Based on the completed research, the following recommendations can be implemented and further refined. 

Expand the dataset by integrating a larger number of images with different attributes, such as location, camera 

position and angle, lighting conditions, dimensions, and image resolution. Diversity in the dataset improves 

the model's ability to generalize object detection, reduces dataset bias, and avoids overfitting. Use near-infrared 

(NIR) cameras to capture images of the dataset in low-light conditions and to run detection systems. Light is 

an essential physical component in all computer vision systems, as RGB digital cameras are unable to collect 

the necessary information in low-light conditions, such as at night. The model can be augmented or combined 

with complementary detection systems, including road marking violation detection, mobile phone use while 
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driving, helmet compliance for two-wheelers, and vehicle identification systems such as automatic license 

plate recognition. 
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