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Evaluating the impact of residual learning and feature fusion
on soil moisture prediction accuracy

Abstract

The architectural design of deep learning models significantly influences their predictive capabilities in
environmental monitoring tasks. This paper investigates the individual and collective effects of residual
learning and feature fusion mechanism to improve the performance of soil moisture estimation on the
designed architecture of the deep learning model. In this study, the data fusion mechanism was used to
integrate Normalized Difference Water Index (NDWI), Synthetic Aperture Radar (SAR), and satellite
imagery datasets containing Red, Green, and Blue (RGB) color channels, which consist of images or data
collected by a radar system that uses microwaves to produce images of the Earth's surface. Three model
variants were developed, each selectively omitting one or more of these architectural elements, and their
performance was evaluated using three standard metrics, Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Coefficient of Determination (R2). The results of the final proposed model
architecture showed that while each component contributes to accuracy improvements, the combination of
residual learning and feature fusion yields the most significant gains. Improved results of RMSE = 0.0117,
R?=0.814 and Mean Absolute Error =0.0148 were obtained. These performance indicators were superior
to the results of most of the baseline models after comparative analysis. Thus, this study provides insights
into model component selection for deep learning soil moisture prediction applications.

1. INTRODUCTION

Spatial measurement of soil moisture distribution is an important task in agriculture, hydrology, land
management and climate. It always provides vital information for irrigation management, prediction of drought
or flood conditions, optimization of crop yields, understanding of environmental impacts, and effective
management of water resources, making it an essential tool for agriculture, environmental monitoring, and
disaster preparedness (Adab et al., 2020).

Surface soil moisture measurement methods vary from those that measure the water content of the surface
soil at a specific point using buried moisture sensors to remote sensing methods that use airborne methods
(Brocca et al., 2010). Measuring moisture using buried sensors in an agricultural area provides moisture
information on specific surface soil portions where it is difficult to infer the accurate average surface moisture
over a large area with different surface soil characteristics (Famiglietti et al., 2008). Several researchers have
demonstrated that when surface soil moisture measurements are made on the same piece of land under the
same environmental conditions using buried sensors, there is a noticeable variability in soil moisture that
generally increases with scale. Hunduma & Kebede (2020) suggested that for a scale of 2.5 m to 50 km, the
moisture variation ranges from 0.036 cm® /cm® to 0.071 cm?® /cm®. Similarly, surface soil moisture values will
always be more similar if the measurement points are close together rather than far apart. Obviously, soils of
similar type and characteristics will produce little variation for closer point-to-point and soil-sampling
measurements. However, there is also a need to investigate the accuracy of measurements for spatial
distribution of soil moisture over large areas with similar soil type and characteristics. It is true that remote
sensing technologies offer the potential for spatially continuous and temporally frequent soil moisture
monitoring over large areas. However, retrieving accurate soil moisture information from satellite data remains
challenging due to several factors such as Complex relationships that the relationship between satellite
observations and soil moisture is non-linear and depends on multiple factors including vegetation cover, soil
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texture, and surface roughness (Mohanty & Skaggs, 2001). Limited penetration depth is also a factor; most
satellite sensors can only detect moisture in the top few centimeters of soil, while many applications require
information about the root zone (Scott et al., 2003). The other factor is mixed pixel effects: The spatial
resolution of satellite data often results in pixels containing multiple land cover types, making it difficult to
extract soil-specific information (Babaeian et al., 2019). In addition, instrumental noise and atmospheric
effects are among the limiting factors in remote sensing soil moisture studies. Satellite measurements are
subject to various sources of noise and require careful calibration and preprocessing (Massari et al., 2017).

On the other hand, various scientists have tried to develop soil measurement methods that accurately predict
average moisture values over large areas of soil. Similarly, the use of airborne methods that use satellites to
map images obtained at higher altitudes to moisture values has previously been proposed (Rodriguez-Alvarez
et al., 2023). However, the airborne methods the effects of mapping images captured and obtained from high
altitudes from the land surface soil, reducing the accuracy of moisture estimation due to fewer image pixels
considered.To overcome this, some scholars have successfully developed deep learning model using either
data fusion but a combination of both data fusion and residual learning (Batchu, 2022).

Nevertheless, accurate soil moisture estimation is crucial for agricultural management and hydrological
modeling, regardless of the method used. Therefore, this paper presents an innovative and accuracy improved
deep learning algorithm model with the combination of residual learning and feature fusion that yields the
most significant gains in terms of performance. The study introduces a novel architecture that integrates
residual connections for improved soil moisture estimation from multi-source satellite data. A comprehensive
ablation study was also conducted to analyze the impact of different architectural components (residual
connections and feature fusion) on model performance. The study uses a benchmarking approach against state
of the art models, whose observation has shown that the final model has superior performance in terms of
accuracy and computational efficiency. Furthermore, the robustness of the model over different soil conditions
(sandy soil, clay soil, vegetated areas, and bare soil) was evaluated, providing insight into its operational
capabilities. The study also provides insights into building a forecasting application model for effective remote
sensing soil moisture prediction to address the spatial soil moisture distribution using satellite imagery.

2. METHODS
2.1. Data collection and preprocessing

In this study, the dataset included images from both the Sentinel-1 and Sentinel-2 satellites. Synthetic
Aperture Radar (SAR) images were collected from Sentinel-1 (satellites 1A and 1B) in two polarization modes:
SAR VV (vertical transmit and vertical receive) and SAR VH (vertical transmit and horizontal receive).
Sentinel-2 (satellites 2A and 2B) optical RGB and Normalized Difference Vegetation Index (NDVI) images
were acquired. Data were processed using the near-infrared (band 8) and red (band 4) spectral bands.

Sentinel-1 provides dual-polarization C-band radar imagery at a frequency of 5.5405 GHz, while Sentinel-
2 provides multispectral optical data across 13 spectral bands. The dataset spans the period from January 1,
2017 to March 1, 2024, and was retrieved using Google Earth Engine based on randomly sampled geographic
coordinates. The study area covers tropical regions between latitudes 40°S and 40°N, within the WGS84
coordinate system.

2.2. Size of the area and data resolution

In the context of this study, the data image covering a scene of 0.1° % 0.1° (approximately 11 km % 11 km
at the equator) was retrieved. All images were clipped to 512 x 512 pixels. The dataset consists of 2200
different geographic locations with corresponding images in each of the four data types described. The
resolution of the data obtained from Sentinel-1 for SAR images was 10m % 10m resolution (Level-1 Ground
Range Detected format) and from Sentinel-2 for optical imagery varied by band (10m, 20m, and 60m), but the
RGB bands used (B2, B3, B4) which had 10m resolution.

Finally, all images were processed and stored as GeoTIFF files to preserve the geographic information, as
shown in Fig. 1A and Fig. 1B, respectively. The SAR images were subjected to radiometric calibration and
terrain correction (orthorectification). Optical images were filtered to ensure minimal cloud interference (less
than 5% cloud cover).
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SAR-VH - Low Moisture Sample SAR-VV - Low Moisture Sample

Fig. 1A. SAR and NDVI Low moisture satellite image datasets used for features extraction

NDVI - Low Moisture Sample

SAR-VH - High Moisture Sample SAR-VV - High Moisture Sample

Fig. 1B. SAR and NDVI High moisture satellite image datasets used for feature extraction

NDVI - High Moisture Sample

The labels (ground truth) were derived from an accompanying Data.xlsx file (Diaz et al., 2024), which
includes automatically computed metadata such as vegetation percentage, cloud cover, and water presence.
These values were extracted using remote sensing techniques and serve as quantitative annotations for
supervised learning without the need for manual labeling.

2.3. Design of deep learning surface soil moisture prediction model algorithm

The model was developed by applying multi-sensor data fusion and combining three complementary
remote sensing data sources: NDVI (vegetation index), SAR VH and SAR VV polarization backscatter
imagery (Fig. 2). Each data source is pre-processed by min-max normalization to standardize values between
0-1 (Equation 1).

I-min (I)
Inorm = max(I)—min (I) (1

The normalized images are stacked to create a unified 3-channel feature representation that captures
vegetation characteristics (NDVI) and soil surface characteristics (SAR backscatter). A composite feature set
was created by stacking the normalized SAR-VH, SAR-VV, and NDVI bands. The resulting input tensor has
dimensions [3, H, W], where H and W represent the spatial dimensions of the satellite imagery. It was possible
to stack NDVI and SAR because they are both georeferenced and orthorectified to the same spatial framework
(WGS84) and have similar ground resolutions (~10 meters). The Sentinel-1 and Sentinel-2 missions are
designed to support data interoperability, allowing multi-sensor analysis without the need for additional
geometric corrections (Heckel et al., 2020). In addition, all imagery was accessed through Google Earth
Engine, which ensures consistent spatial alignment and projection handling.
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For our target variable, we used a proxy for soil moisture derived from water and vegetation percentage
measurements using Equation 2.

Water Pacentage Mean+Vegetation Percentage Mean (2)

Target = 5

This approach allows us to use available metadata as a reasonable approximation of soil moisture content.
The whole fusion approach (Fig. 2) exploits the complementary nature of optical and microwave remote
sensing data to improve soil moisture estimation.

Input Data
SAR-VV Polarization SAR-VH Polarization NDVI Vegetation Index
Sentinel-1, 10m Sentinel-1, 10m Sentinel-2, 10m
Data Fusion

Channel Concatenation: SAR-
VV, SAR-VH, NDVI, RGB

!

Fused Feature Tensor
Shape: 3 x 512 x 512

Fig. 2. Data Fusion architecture for the designed model

In designing our model, we also incorporated the residual learning technique, in which tthe core building
block of our architecture is the residual blocks. Residual blocks address the challenges of training deep
networks by introducing shortcut connections that bypass convolutional layers, which could help in training
deep neural networks by mitigating the vanishing gradient problem. It introduces shortcut connections that
bypass one or more layers, allowing the model to learn identity mappings where necessary. The structure of
the residual function is given by Equation 3 below:

Y =F(X)+X 3)

where F(X)represents the convolution operations, and (X) is the input. The network optimizes training
efficiency and improves gradient flow by learning residual functions instead of direct mappings. Our model
architecture consists of residual blocks that include

1. A 3x3 convolutional layer followed by batch normalization and ReLU activation

2. Another 3x3 convolutional layer followed by batch normalization

3. A shortcut connection (identity mapping or 1x1 convolution when dimensions change)

4. ReLU activation is applied to the sum of the convolution output and shortcut connection

Mathematically, the operations in a remaining block can be expressed as equations 4 and 5:

F(X) = W,.8(BN(W;.X)) + b, 4)
Y=6FX)+X) &)
where W, and W, are the weights of the first and second convolutional layers, respectively, b2 is the bias

term, BN denotes batch normalization, and § is the ReLU activation function. When the dimensions of F (X)
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and X differ (e.g., when changing the number of channels), a linear projection W is applied to the shortcut
connection:

Input | Feature_Extractibn_Layers

fussed Sattellite data »| Residual Block 1

v

Residual Block 2

v

Residual Block 3

Feature_Processing *

Adaptive Avg Pooling Residual Block 4

v

Flattened Layer

W fully_connected_Layers
=P

FC Layer 1

v

Dropout

v

FC Layer 2

Output ¢

Moisture Estimation |« FC Layer 3

Fig. 3. An architecture of deep learning model for surface soil moisture algorithm
with feature fusion and residual learning blocks

By dynamically adjusting the feature map activations, automatically fusing the channel-wise spatial
information and inter-channel dependencies, and incorporating the data fusion mechanism together with the
feature extraction, the model was expected to improve the accuracy and address the spatial viability to the
satellite datasets in predicting the moisture of an area. Fig. 3 illustrates the overall architecture of the final
designed model.

The complete designed model is generally composed of two stacked remaining blocks. The first block has
input channels — 32 filters and the second block has input channels — 64 filters: 32 — 64 filters. It has global
adaptive mean pooling to reduce spatial dimensions to 1x1. The fully connected layers for regression with
64 — 32 neurons and ReLLU activation whose dropout (rate = 0.5). Finally, the 32 — 1 neuron is our final
output.

The model takes a multi-channel satellite image as input and outputs a single value representing the
estimated soil moisture. The adaptive pooling layer ensures that the model can handle input images of different
spatial dimensions without requiring resizing.

2.4. Model alternatives and training procedure

We evaluated three model alternatives with identical training parameters of learning rate: 0.001, batch size:
20, and epochs: 25. First we analyzed how the designed model will behave with Simplified normal CNN
architecture without feature fusion mechanisms with NDVI dataset as input, and without residual learning, the
model is referred as (no_fusion model). The second alternative is the model with set up comprising with data
fusion but no residual blocks or residual connections, the model is referred as (no_residual _model). Finally,
the complete architecture with feature fusion and residual connections, the model is referred as (with_residual).

With each alternative, the model is trained, we evaluated the model using key three metrics which included
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Coefficient of Determination (R?). Table
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1 below compares our model performance under described metrics. The model was trained using the Root
Mean Squared Error (RMSE) loss function as shown in Equation 6:

L (6)
RMSE =\/%Z?:1(yi—yi)2

Where y; represents the true soil moisture value and ; is the model's prediction. Optimization is performed
using the Adam optimizer with a learning rate of 0.001. Dropout regularization was employed to prevent
overfitting with a rate of 0.5 before the final output layer. We also implement early stopping based on validation
loss to avoid overfitting. The dataset is split into training (70%), validation (15%), and test (15%) sets. During
training, multiple evaluation metrics, including RMSE, MAE and R? were monitored to comprehensively
assess model performance as mentioned earlier.

3. RESULTS AND DISCUSSION

Tab. 1. Performance comparison of model varieties under different metrics

Variant setup RMSE(m?*/m?) MAE(m?*/m?) R?
no_fusion model 0.0296 (2.96%) 0.0318 (3.18%) 0.6839
no_residual model 0.0205 (2.05%) 0.0293 (2.93%) 0.7139
with_residual model 0.0117 (1.17%) 0.0148 (1.48%) 0.814

The results showed that the model with feature fusion and residual learning performed better than other
model variants (comparison between no_fusion model, no residual model and with residual model). With
similar resources such as the same type of dataset from similar sources such as Sentinel-1/2, the model
achieved better metric values, for example, we obtained a lower RMSE of 0.0215 as shown in Table 1. The
lower RMSE indicates good agreement between the estimated data and the observed data (Batchu, 2022).
Similarly, the model that integrated feature fusion with the intentional omission of residual learning also
performed better and surpassed the results of the model without feature fusion or residual learning, suggesting
that feature fusion and residual learning are important for improving model performance. RMSE measures the
variation between the predicted values of a model and the measured values. An observation has also revealed
that: our model with feature fusion and residual learning has also yielded a better coefficient of determination
(R2 =0.8139). Normally, the larger the value of R2, it means that the fitted regression equation accounts for
all the variability of the values of the dependent variable in the sample data. However, in some circumstances,
one can obtain a higher probability of R2 by simply fitting a regression equation that contains as many
(statistically estimable) terms as there are observations (i.e., data points) (Rasheed et al., 2022). There were
also better and positive results for the Mean Absolute Error (MAE), indicating that the designed model had
improved performance, as shown visually in Figures 4, 5, and 6 and in Table 1.

RMSE over Training Epochs

0.09 7 —— with_residual
no_residual
—— no_fusion

0.08 \
0.07 A (\
0.06

0.05

RMSE (m?*/m?)

0.04

0.03

0.02

Epoch

Fig. 4. RMSE performance of variants (models) over training epoch
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Fig. 5. Coefficient of determination (R?) performance of variants (models) over training epoch

—— with_residual
0.09 4 —— no_residual
— no_fusion
0.08 1
0.07 A
£
£ 0.06
w
E
0.05 A
0.04
0.03 A

T T T T T T
0 20 40 60 80 100
Epoch

Fig. 6. Mean Absolute Error (MAE) performance of variants (models) over training epoch

4. MODAL VALIDATION

We conducted a comparison with baseline models, we compared our proposed model against single-
modality approaches and traditional regression techniques such as the one used Random Forest (Rodriguez-
Alvarez et al., 2023). A comparison was also made between the models using techniques such as UNet-3D and
many others, as shown in Table 2. In this case, we also used the key metrics including Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R?) to compare the baseline
model and our designed model. The designed model significantly outperformed the majority of baseline
models, highlighting the advantage of integrating data (data fusion) and applying techniques such as feature
fusion and residual learning. With our designed model using similar satellite datasets, we achieved RMSE of
0.0215 , which is typically smaller than many models outlined in our baseline comparison, its implication
means with our proposed model one is assured with better performance in moisture determination.

165



Tab. 2. Comparison between our proposed Model and Baseline Frameworks under same Metrics same type of datasets

. . MAE RMSE ”
Rank | Model Algorithm Dataset (Soils) (mm*) | (m¥Ym?) R Reference (DOI)
In-situ 5 cm SM +
CatBoost (boosted trees) Sentinel-1/2
1 (Li & Yan, 2024) (ShanDian Basin, 0.021 0.027 0.843 | 10.3390/1and13081331
China)
In-situ 5 cm SM +
Random Forest (Li & Sentinel-1/2
2 Yan, 2024) (ShanDian Basin, 0.021 0.027 0.839 | 10.3390/1and13081331
China)
3 | Our Final designed Model | g i1/ 0.0215 | 0.0241 | 0.8139 N/A
(with_residual)
Convolutional Neural ISne-r?:Irl:ei({;rzl SM+
4 Network (1D-CNN) (Li . . 0.022 0.031 0.783 | 10.3390/1and13081331
(ShanDian Basin,
& Yan, 2024) .
China)
In-situ 5 cm SM +
Gated Recurrent Unit Sentinel-1/2
5 (GRU) (ShanDian Basin, 0.022 0.03 0.799 | 10.3390/1and13081331
China)
In-situ 5 cm SM +
Deep Neural Network Sentinel-1/2
6 (DNN) (Li & Yan, 2024) | (ShanDian Basin, 0.023 0.032 0.765 | 10.3390/1and13081331
China)
Random Forest - Soybean Simulated NISAR
7 field (Dinesh et al., 2024) L-band (crop-field 0.04 0.05 0.89 10.3390/rs16183539
dataset)
Random Forest - UAV UAYV hyperspectral
8 hyperspectral (Shokati et | data (agricultural 1.93 2.6 0.87 10.3390/rs16111962
al., 2024) site)
.. Simulated NISAR
o | Decision Tree - Comfield | /5y crop-field 242 3.1 0.3 10.3390/rs16183539
(Dinesh et al., 2024)
dataset)
Landsat-8/9
1o | Random Forest- Landsat- | oo gaga 2.42 461 | 0.66 | 103390/s16111962
8/9 (Shokati et al., 2024) . .
(agricultural site)
. . Wideband radar
Linear Regression soil-moisture
11 (Uthayakumar et al., . 3.54 3.94 0.93 10.3390/s22155810
dataset (Singapore,
2022)
16 samples)
Random Forest - Sentinel-2 satellite
12 Sentinel-2 (Shokati et al., | data (agricultural 3.43 5.95 0.49 10.3390/rs16111962
2024) site)
Decision Tree Soybean Simulated NISAR
13 field (Dinesh et al., 2024) L-band (crop-field 6.05 8.16 0.84 10.3390/rs16183539
dataset)
K-Nearest Neighbors Wllfd_ frllaainctl rradar
14 | (KNN) (Uthayakumar et | Sob oS HTe 9.27 1151 | 041 | 10.3390/s22155810
dataset (Singapore,
al., 2022)
16 samples)
Support Vector Machine Wllfd_ frllaainctl rradar
15 | (SVM) (Uthayakumaret | S0 hoper s 12.74 152 | -0.02 | 10.3390/522155810
dataset (Singapore,
al., 2022)
16 samples)

A comparative analysis was performed using several benchmark models to evaluate the performance of the
proposed model (with residual) over different soil types. The results, presented in Table 3, show that the
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proposed model consistently outperforms the benchmarks with lower Root Mean Square Error (RMSE) values,

indicating improved prediction accuracy.

Tab. 3. Comparison between our proposed model and baseline frameworks between variety of soil

Sandy Soil Clay Soil Vegetated Bare Soil

Study / Model Type RMSE RMSE RMSE RMSE

(m*/m?) (m3/m?3) (m*/m?) (m*/m?3)
Our Model (with residual) 0.0194 0.0247 0.0183 0.0258
Cai et al. (2022) ML (LightGBM) 0.024 0.037 — —
Shi et al. (2024) Deep Learning (LSTM) 0.027 0.036 — -
Stefan et al. (2021) SMAP + Exp. Filter - - 0.04 0.045
Dirmeyer et al. (2016) LSMs (NOAH-MP, CLM, etc.) 0.025 0.04 — -
Babaceian et al. (2019) SMAP Filtered (coarse soils) 0.038 - — -

5. CONCLUSIONS

This study presents a novel multimodal remote sensing model with an algorithm for accurate soil moisture
prediction by integrating Normalized Difference Water Index (NDWI), Synthetic Aperture Radar (SAR), and
RGB satellite data sets. Through extensive validation by comparison with baseline models, the proposed
approach demonstrated significantly improved performance in terms of accuracy, spatial consistency and
temporal responsiveness. The model has achieved better performance metrics in terms of Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R?).

In general, the comparative analysis conducted with the baseline model has proven the potential of
multimodal, data fusional, with residual learning remote sensing as a powerful tool for large-scale, real-time
soil moisture monitoring. This approach has significant implications for agriculture, hydrology, and climate
modeling applications, providing a scalable solution for regions with sparse soil measurements. We suggest
that future areas of focus for similar work could focus more on developing models that include more
components, work closer to real-time applications, and incorporate additional data sources such as weather
forecasts and land surface temperature.
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