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Evaluating the impact of residual learning and feature fusion 

on soil moisture prediction accuracy 

Abstract 

The architectural design of deep learning models significantly influences their predictive capabilities in 

environmental monitoring tasks. This paper investigates the individual and collective effects of residual 

learning and feature fusion mechanism to improve the performance of soil moisture estimation on the 

designed architecture of the deep learning model. In this study, the data fusion mechanism was used to 

integrate Normalized Difference Water Index (NDWI), Synthetic Aperture Radar (SAR), and satellite 

imagery datasets containing Red, Green, and Blue (RGB) color channels, which consist of images or data 

collected by a radar system that uses microwaves to produce images of the Earth's surface. Three model 

variants were developed, each selectively omitting one or more of these architectural elements, and their 

performance was evaluated using three standard metrics, Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and Coefficient of Determination (R2). The results of the final proposed model 

architecture showed that while each component contributes to accuracy improvements, the combination of 

residual learning and feature fusion yields the most significant gains. Improved results of RMSE = 0.0117, 

R²=0.814 and Mean Absolute Error =0.0148 were obtained. These performance indicators were superior 

to the results of most of the baseline models after comparative analysis. Thus, this study provides insights 

into model component selection for deep learning soil moisture prediction applications. 

1. INTRODUCTION 

Spatial measurement of soil moisture distribution is an important task in agriculture, hydrology, land 

management and climate. It always provides vital information for irrigation management, prediction of drought 

or flood conditions, optimization of crop yields, understanding of environmental impacts, and effective 

management of water resources, making it an essential tool for agriculture, environmental monitoring, and 

disaster preparedness (Adab et al., 2020). 

Surface soil moisture measurement methods vary from those that measure the water content of the surface 

soil at a specific point using buried moisture sensors to remote sensing methods that use airborne methods 

(Brocca et al., 2010). Measuring moisture using buried sensors in an agricultural area provides moisture 

information on specific surface soil portions where it is difficult to infer the accurate average surface moisture 

over a large area with different surface soil characteristics (Famiglietti et al., 2008). Several researchers have 

demonstrated that when surface soil moisture measurements are made on the same piece of land under the 

same environmental conditions using buried sensors, there is a noticeable variability in soil moisture that 

generally increases with scale. Hunduma & Kebede (2020) suggested that for a scale of 2.5 m to 50 km, the 

moisture variation ranges from 0.036 cm3 /cm3 to 0.071 cm3 /cm3. Similarly, surface soil moisture values will 

always be more similar if the measurement points are close together rather than far apart. Obviously, soils of 

similar type and characteristics will produce little variation for closer point-to-point and soil-sampling 

measurements. However, there is also a need to investigate the accuracy of measurements for spatial 

distribution of soil moisture over large areas with similar soil type and characteristics. It is true that remote 

sensing technologies offer the potential for spatially continuous and temporally frequent soil moisture 

monitoring over large areas. However, retrieving accurate soil moisture information from satellite data remains 

challenging due to several factors such as Complex relationships that the relationship between satellite 

observations and soil moisture is non-linear and depends on multiple factors including vegetation cover, soil 
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texture, and surface roughness (Mohanty & Skaggs, 2001). Limited penetration depth is also a factor; most 

satellite sensors can only detect moisture in the top few centimeters of soil, while many applications require 

information about the root zone (Scott et al., 2003). The other factor is mixed pixel effects: The spatial 

resolution of satellite data often results in pixels containing multiple land cover types, making it difficult to 

extract soil-specific information (Babaeian et al., 2019). In addition, instrumental noise and atmospheric 

effects are among the limiting factors in remote sensing soil moisture studies. Satellite measurements are 

subject to various sources of noise and require careful calibration and preprocessing (Massari et al., 2017). 

On the other hand, various scientists have tried to develop soil measurement methods that accurately predict 

average moisture values over large areas of soil. Similarly, the use of airborne methods that use satellites to 

map images obtained at higher altitudes to moisture values has previously been proposed (Rodriguez-Alvarez 

et al., 2023). However, the airborne methods the effects of mapping images captured and obtained from high 

altitudes from the land surface soil, reducing the accuracy of moisture estimation due to fewer image pixels 

considered.To overcome this, some scholars have successfully developed deep learning model using either 

data fusion but a combination of both data fusion and residual learning (Batchu, 2022). 

Nevertheless, accurate soil moisture estimation is crucial for agricultural management and hydrological 

modeling, regardless of the method used. Therefore, this paper presents an innovative and accuracy improved 

deep learning algorithm model with the combination of residual learning and feature fusion that yields the 

most significant gains in terms of performance. The study introduces a novel architecture that integrates 

residual connections for improved soil moisture estimation from multi-source satellite data. A comprehensive 

ablation study was also conducted to analyze the impact of different architectural components (residual 

connections and feature fusion) on model performance. The study uses a benchmarking approach against state 

of the art models, whose observation has shown that the final model has superior performance in terms of 

accuracy and computational efficiency. Furthermore, the robustness of the model over different soil conditions 

(sandy soil, clay soil, vegetated areas, and bare soil) was evaluated, providing insight into its operational 

capabilities. The study also provides insights into building a forecasting application model for effective remote 

sensing soil moisture prediction to address the spatial soil moisture distribution using satellite imagery.  

2. METHODS 

2.1. Data collection and preprocessing 

In this study, the dataset included images from both the Sentinel-1 and Sentinel-2 satellites. Synthetic 

Aperture Radar (SAR) images were collected from Sentinel-1 (satellites 1A and 1B) in two polarization modes: 

SAR_VV (vertical transmit and vertical receive) and SAR_VH (vertical transmit and horizontal receive). 

Sentinel-2 (satellites 2A and 2B) optical RGB and Normalized Difference Vegetation Index (NDVI) images 

were acquired. Data were processed using the near-infrared (band 8) and red (band 4) spectral bands. 

Sentinel-1 provides dual-polarization C-band radar imagery at a frequency of 5.5405 GHz, while Sentinel-

2 provides multispectral optical data across 13 spectral bands. The dataset spans the period from January 1, 

2017 to March 1, 2024, and was retrieved using Google Earth Engine based on randomly sampled geographic 

coordinates. The study area covers tropical regions between latitudes 40°S and 40°N, within the WGS84 

coordinate system. 

2.2. Size of the area and data resolution 

In the context of this study, the data image covering a scene of 0.1° × 0.1° (approximately 11 km × 11 km 

at the equator) was retrieved. All images were clipped to 512 × 512 pixels. The dataset consists of 2200 

different geographic locations with corresponding images in each of the four data types described. The 

resolution of the data obtained from Sentinel-1 for SAR images was 10m × 10m resolution (Level-1 Ground 

Range Detected format) and from Sentinel-2 for optical imagery varied by band (10m, 20m, and 60m), but the 

RGB bands used (B2, B3, B4) which had 10m resolution. 

Finally, all images were processed and stored as GeoTIFF files to preserve the geographic information, as 

shown in Fig. 1A and Fig. 1B, respectively. The SAR images were subjected to radiometric calibration and 

terrain correction (orthorectification). Optical images were filtered to ensure minimal cloud interference (less 

than 5% cloud cover). 
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Fig. 1A. SAR and NDVI Low moisture satellite image datasets used for features extraction 

 

Fig. 1B. SAR and NDVI High moisture satellite image datasets used for feature extraction 

The labels (ground truth) were derived from an accompanying Data.xlsx file (Diaz et al., 2024), which 

includes automatically computed metadata such as vegetation percentage, cloud cover, and water presence. 

These values were extracted using remote sensing techniques and serve as quantitative annotations for 

supervised learning without the need for manual labeling. 

2.3. Design of deep learning surface soil moisture prediction model algorithm 

The model was developed by applying multi-sensor data fusion and combining three complementary 

remote sensing data sources: NDVI (vegetation index), SAR VH and SAR VV polarization backscatter 

imagery (Fig. 2). Each data source is pre-processed by min-max normalization to standardize values between 

0-1 (Equation 1).  

𝐼𝑛𝑜𝑟𝑚 =
𝐼−min⁡(𝐼)

max(𝐼)−min⁡(𝐼)
                                                               (1) 

The normalized images are stacked to create a unified 3-channel feature representation that captures 

vegetation characteristics (NDVI) and soil surface characteristics (SAR backscatter). A composite feature set 

was created by stacking the normalized SAR-VH, SAR-VV, and NDVI bands. The resulting input tensor has 

dimensions [3, H, W], where H and W represent the spatial dimensions of the satellite imagery. It was possible 

to stack NDVI and SAR because they are both georeferenced and orthorectified to the same spatial framework 

(WGS84) and have similar ground resolutions (~10 meters). The Sentinel-1 and Sentinel-2 missions are 

designed to support data interoperability, allowing multi-sensor analysis without the need for additional 

geometric corrections (Heckel et al., 2020). In addition, all imagery was accessed through Google Earth 

Engine, which ensures consistent spatial alignment and projection handling. 
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For our target variable, we used a proxy for soil moisture derived from water and vegetation percentage 

measurements using Equation 2. 

𝑇𝑎𝑟𝑔𝑒𝑡 = ⁡
𝑊𝑎𝑡𝑒𝑟⁡𝑃𝑎𝑐𝑒𝑛𝑡𝑎𝑔𝑒⁡𝑀𝑒𝑎𝑛+𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛⁡𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒⁡𝑀𝑒𝑎𝑛

2
                                 (2) 

This approach allows us to use available metadata as a reasonable approximation of soil moisture content. 

The whole fusion approach (Fig. 2) exploits the complementary nature of optical and microwave remote 

sensing data to improve soil moisture estimation. 

 

Fig. 2. Data Fusion architecture for the designed model 

In designing our model, we also incorporated the residual learning technique, in which tthe core building 

block of our architecture is the residual blocks. Residual blocks address the challenges of training deep 

networks by introducing shortcut connections that bypass convolutional layers, which could help in training 

deep neural networks by mitigating the vanishing gradient problem. It introduces shortcut connections that 

bypass one or more layers, allowing the model to learn identity mappings where necessary. The structure of 

the residual function is given by Equation 3 below: 

𝑌 = 𝐹(𝑋) + 𝑋                                                                 (3) 

where 𝐹(𝑋)represents the convolution operations, and (X) is the input. The network optimizes training 

efficiency and improves gradient flow by learning residual functions instead of direct mappings. Our model 

architecture consists of residual blocks that include 

1. A 3×3 convolutional layer followed by batch normalization and ReLU activation 

2. Another 3×3 convolutional layer followed by batch normalization 

3. A shortcut connection (identity mapping or 1×1 convolution when dimensions change) 

4. ReLU activation is applied to the sum of the convolution output and shortcut connection  

Mathematically, the operations in a remaining block can be expressed as equations 4 and 5: 

𝐹(𝑋) = 𝑊2. 𝛿(𝐵𝑁(𝑊1. 𝑋)) +⁡𝑏2                                                       (4) 

𝑌 = 𝛿. (𝐹(𝑋) + 𝑋)                                                                 (5) 

where 𝑊1 and 𝑊2⁡⁡are the weights of the first and second convolutional layers, respectively, b2 is the bias 

term, 𝐵𝑁⁡denotes batch normalization, and ⁡𝛿 is the ReLU activation function. When the dimensions of 𝐹(𝑋) 
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and 𝑋 differ (e.g., when changing the number of channels), a linear projection W is applied to the shortcut 

connection: 

  

Fig. 3. An architecture of deep learning model for surface soil moisture algorithm  

with feature fusion and residual learning blocks 

By dynamically adjusting the feature map activations, automatically fusing the channel-wise spatial 

information and inter-channel dependencies, and incorporating the data fusion mechanism together with the 

feature extraction, the model was expected to improve the accuracy and address the spatial viability to the 

satellite datasets in predicting the moisture of an area. Fig. 3 illustrates the overall architecture of the final 

designed model. 

The complete designed model is generally composed of two stacked remaining blocks. The first block has 

input channels → 32 filters and the second block has input channels → 64 filters: 32 → 64 filters. It has global 

adaptive mean pooling to reduce spatial dimensions to 1×1. The fully connected layers for regression with 

64 → 32 neurons and ReLU activation whose dropout (rate = 0.5). Finally, the 32 → 1 neuron is our final 

output. 

The model takes a multi-channel satellite image as input and outputs a single value representing the 

estimated soil moisture. The adaptive pooling layer ensures that the model can handle input images of different 

spatial dimensions without requiring resizing. 

2.4. Model alternatives and training procedure 

We evaluated three model alternatives with identical training parameters of learning rate: 0.001, batch size: 

20, and epochs: 25. First we analyzed how the designed model will behave with Simplified normal CNN 

architecture without feature fusion mechanisms with NDVI dataset as input, and without residual learning, the 

model is referred as (no_fusion model). The second alternative is the model with set up comprising with data 

fusion but no residual blocks or residual connections, the model is referred as (no_residual_model). Finally, 

the complete architecture with feature fusion and residual connections, the model is referred as (with_residual). 

With each alternative, the model is trained, we evaluated the model using key three metrics which included 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Coefficient of Determination (R²). Table 
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1 below compares our model performance under described metrics. The model was trained using the Root 

Mean Squared Error (RMSE) loss function as shown in Equation 6: 

𝐿
𝑅𝑀𝑆𝐸⁡=√

1

𝑛
∑ (𝑦𝑖⁡−𝑦̇𝑖)

2𝑛
𝑖=1

                                                             (6) 

Where 𝑦1 represents the true soil moisture value and 𝑦̃1 is the model's prediction. Optimization is performed 

using the Adam optimizer with a learning rate of 0.001. Dropout regularization was employed to prevent 

overfitting with a rate of 0.5 before the final output layer. We also implement early stopping based on validation 

loss to avoid overfitting. The dataset is split into training (70%), validation (15%), and test (15%) sets. During 

training, multiple evaluation metrics, including RMSE, MAE and R² were monitored to comprehensively 

assess model performance as mentioned earlier. 

3. RESULTS AND DISCUSSION 

Tab. 1. Performance comparison of model varieties under different metrics 

Variant setup  RMSE(m³/m³)  MAE(m³/m³)  R2  

no_fusion model 0.0296 (2.96%) 0.0318 (3.18%) 0.6839 

no_residual_model 0.0205 (2.05%) 0.0293 (2.93%) 0.7139 

with_residual model 0.0117 (1.17%) 0.0148 (1.48%) 0.814 

 

The results showed that the model with feature fusion and residual learning performed better than other 

model variants (comparison between no_fusion model, no_residual_model and with_residual model). With 

similar resources such as the same type of dataset from similar sources such as Sentinel-1/2, the model 

achieved better metric values, for example, we obtained a lower RMSE of 0.0215 as shown in Table 1. The 

lower RMSE indicates good agreement between the estimated data and the observed data (Batchu, 2022). 

Similarly, the model that integrated feature fusion with the intentional omission of residual learning also 

performed better and surpassed the results of the model without feature fusion or residual learning, suggesting 

that feature fusion and residual learning are important for improving model performance. RMSE measures the 

variation between the predicted values of a model and the measured values. An observation has also revealed 

that: our model with feature fusion and residual learning has also yielded a better coefficient of determination 

(R2 =0.8139). Normally, the larger the value of R2, it means that the fitted regression equation accounts for 

all the variability of the values of the dependent variable in the sample data. However, in some circumstances, 

one can obtain a higher probability of R2 by simply fitting a regression equation that contains as many 

(statistically estimable) terms as there are observations (i.e., data points) (Rasheed et al., 2022). There were 

also better and positive results for the Mean Absolute Error (MAE), indicating that the designed model had 

improved performance, as shown visually in Figures 4, 5, and 6 and in Table 1. 

 

Fig. 4. RMSE performance of variants (models) over training epoch 
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Fig. 5. Coefficient of determination (R2) performance of variants (models) over training epoch 

 

Fig. 6. Mean Absolute Error (MAE) performance of variants (models) over training epoch 

4. MODAL VALIDATION 

We conducted a comparison with baseline models, we compared our proposed model against single-

modality approaches and traditional regression techniques such as the one used Random Forest (Rodriguez-

Alvarez et al., 2023). A comparison was also made between the models using techniques such as UNet-3D and 

many others, as shown in Table 2. In this case, we also used the key metrics including Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²) to compare the baseline 

model and our designed model. The designed model significantly outperformed the majority of baseline 

models, highlighting the advantage of integrating data (data fusion) and applying techniques such as feature 

fusion and residual learning. With our designed model using similar satellite datasets, we achieved RMSE of 

0.0215 , which is typically smaller than many models outlined in our baseline comparison, its implication 

means with our proposed model one is assured with better performance in moisture determination.  
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Tab. 2. Comparison between our proposed Model and Baseline Frameworks under same Metrics same type of datasets 

Rank Model Algorithm Dataset (Soils) 
MAE 

(m³/m³) 

RMSE 

(m³/m³) 
R2 Reference (DOI) 

1 
CatBoost (boosted trees) 

(Li & Yan, 2024) 

In-situ 5 cm SM + 

Sentinel-1/2 

(ShanDian Basin, 

China) 

0.021 0.027 0.843 10.3390/land13081331 

2 
Random Forest (Li & 

Yan, 2024) 

In-situ 5 cm SM + 

Sentinel-1/2 

(ShanDian Basin, 

China) 

0.021 0.027 0.839 10.3390/land13081331 

3 
Our Final designed Model 

(with_residual) 
Sentiinel 1/2 0.0215 0.0241 0.8139 N/A 

4 

Convolutional Neural 

Network (1D-CNN) (Li 

& Yan, 2024) 

In-situ 5 cm SM + 

Sentinel-1/2 

(ShanDian Basin, 

China) 

0.022 0.031 0.783 10.3390/land13081331 

5 
Gated Recurrent Unit 

(GRU) 

In-situ 5 cm SM + 

Sentinel-1/2 

(ShanDian Basin, 

China) 

0.022 0.03 0.799 10.3390/land13081331 

6 
Deep Neural Network 

(DNN) (Li & Yan, 2024) 

In-situ 5 cm SM + 

Sentinel-1/2 

(ShanDian Basin, 

China) 

0.023 0.032 0.765 10.3390/land13081331 

7 
Random Forest - Soybean 

field (Dinesh et al., 2024) 

Simulated NISAR 

L-band (crop-field 

dataset) 

0.04 0.05 0.89 10.3390/rs16183539 

8 

Random Forest - UAV 

hyperspectral (Shokati et 

al., 2024) 

UAV hyperspectral 

data (agricultural 

site) 

1.93 2.6 0.87 10.3390/rs16111962 

9 
Decision Tree - Corn field 

(Dinesh et al., 2024) 

Simulated NISAR 

L-band (crop-field 

dataset) 

2.42 3.1 0.3 10.3390/rs16183539 

10 
Random Forest - Landsat-

8/9 (Shokati et al., 2024) 

Landsat-8/9 

satellite data 

(agricultural site) 

2.42 4.61 0.66 10.3390/rs16111962 

11 

Linear Regression 

(Uthayakumar et al., 

2022) 

Wideband radar 

soil-moisture 

dataset (Singapore, 

16 samples) 

3.54 3.94 0.93 10.3390/s22155810 

12 

Random Forest - 

Sentinel-2 (Shokati et al., 

2024) 

Sentinel-2 satellite 

data (agricultural 

site) 

3.43 5.95 0.49 10.3390/rs16111962 

13 
Decision Tree Soybean 

field (Dinesh et al., 2024) 

Simulated NISAR 

L-band (crop-field 

dataset) 

6.05 8.16 0.84 10.3390/rs16183539 

14 

K-Nearest Neighbors 

(KNN) (Uthayakumar et 

al., 2022) 

Wideband radar 

soil-moisture 

dataset (Singapore, 

16 samples) 

9.27 11.51 0.41 10.3390/s22155810 

15 

Support Vector Machine 

(SVM) (Uthayakumar et 

al., 2022) 

Wideband radar 

soil-moisture 

dataset (Singapore, 

16 samples)  

12.74 15.2 -0.02 10.3390/s22155810 

 

A comparative analysis was performed using several benchmark models to evaluate the performance of the 

proposed model (with_residual) over different soil types. The results, presented in Table 3, show that the 
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proposed model consistently outperforms the benchmarks with lower Root Mean Square Error (RMSE) values, 

indicating improved prediction accuracy. 

Tab. 3. Comparison between our proposed model and baseline frameworks between variety of soil 

Study / Model Type 

Sandy Soil 

RMSE 

(m³/m³) 

Clay Soil 

RMSE 

(m³/m³) 

Vegetated 

RMSE 

(m³/m³) 

Bare Soil 

RMSE 

(m³/m³) 

Our Model (with_residual) 0.0194 0.0247 0.0183 0.0258 

Cai et al. (2022) ML (LightGBM) 0.024 0.037 – – 

Shi et al. (2024) Deep Learning (LSTM) 0.027 0.036 – – 

Stefan et al. (2021) SMAP + Exp. Filter – – 0.04 0.045 

Dirmeyer et al. (2016) LSMs (NOAH-MP, CLM, etc.) 0.025 0.04 – – 

Babaeian et al. (2019) SMAP Filtered (coarse soils) 0.038 – – – 

5. CONCLUSIONS 

This study presents a novel multimodal remote sensing model with an algorithm for accurate soil moisture 

prediction by integrating Normalized Difference Water Index (NDWI), Synthetic Aperture Radar (SAR), and 

RGB satellite data sets. Through extensive validation by comparison with baseline models, the proposed 

approach demonstrated significantly improved performance in terms of accuracy, spatial consistency and 

temporal responsiveness. The model has achieved better performance metrics in terms of Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). 

In general, the comparative analysis conducted with the baseline model has proven the potential of 

multimodal, data fusional, with residual learning remote sensing as a powerful tool for large-scale, real-time 

soil moisture monitoring. This approach has significant implications for agriculture, hydrology, and climate 

modeling applications, providing a scalable solution for regions with sparse soil measurements. We suggest 

that future areas of focus for similar work could focus more on developing models that include more 

components, work closer to real-time applications, and incorporate additional data sources such as weather 

forecasts and land surface temperature. 
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