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Abstract 

The paper presents an original method for processing medical data from a type 1 diabetes patient, with the 

aim of generating therapeutic recommendations to improve the quality of patient care. The article 

summarizes the results of the first phase of research in this area, which focused on identifying mathematical 

models and selecting algorithmic methods for further verification in clinical settings. The problem under 

study is characterized by high complexity, the need to tailor the method to the available data, and, in the 

completed stage of the research, the inability to perform experiments beyond computer simulations. The 

proposed approach introduces several novel solutions, including the development of a computer model of 

a person with diabetes, an original time-series similarity criterion for blood glucose concentration, and the 

innovative application of a genetic algorithm. The use of the genetic algorithm proved to be effective. The 

method was developed for patients using an insulin pump and a continuous glucose monitoring system. In 

the research section, data from five real patients were analyzed using the developed method, and the results 

indicated that it may be effective in supporting real-world therapy. 

1. INTRODUCTION 

1.1. Therapy of type 1 diabetes as the problem of control 

From an engineering perspective, type 1 diabetes (T1D) therapy can be viewed as a control problem 

involving a human operator and specialized medical equipment (Cobelli et al., 2009; Kovatchev, 2019). The 

type of equipment used affects both the implementation of medical procedures and the format of therapeutic 

recommendations. The research presented in this study focuses on therapy using an insulin pump and a 

continuous glucose monitoring (CGM) system.  

 

Fig. 1. Therapy of Type 1 Diabetes as a problem of control, 1 – the patient / the object of the control, 2 – CGM / the control 

object state meter, 4 – the insulin pump, 3 – the caregiver / operator, S – setup, ID – insulin single doses, 

IB – insulin base (continuous), I – insulin, C – carbohydrates, BG – blood glucose 

Figure 1 illustrates the medical scenario analyzed. The therapy is performed for the patient, who also serves 

as the control object. The condition of this patient/object is their blood glucose concentration (BG), which is 

monitored by a Continuous Glucose Monitoring (CGM) system worn on the patient's body. In this study, blood 

glucose concentration is expressed in mg/dl (milligrams of glucose in one deciliter of blood). The operator 
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may be either the patient's caregiver or the patient. This distinction does not affect the way the therapy is 

delivered. The operator feeds the patient meals containing carbohydrates (C) and administers insulin (I). The 

unit of carbohydrate in this study is grams (g). Insulin is delivered by an insulin pump. The operator gives a 

command (S) to the pump, which then delivers insulin to the patient. In medical practice, insulin is measured 

in units of insulin U (1U of liquid insulin contains 0.0347 mg of crystalline insulin), and this is the unit used 

in this study. Insulin is administered in two ways: as an insulin dose (ID) or as an insulin base (IB). Basal 

insulin is delivered continuously and automatically by the pump according to a programmed schedule stored 

in the device. 

The goal of the control process (therapy) is to maintain the state of the control object (patient) within the 

target range of BGmin = 70 mg/dl to BGmax = 130 mg/dl (Hanas, 2022; Kirkman, 2022). Carbohydrates 

consumed with meals increase blood glucose concentration, while insulin decreases it. In healthy individuals, 

the body naturally produces adequate amounts of insulin. However, in individuals with impaired insulin 

production, external insulin administration is necessary. For these patients, each meal represents a disturbance 

signal C, requiring the initiation of a control signal I. It is also possible for the blood glucose level to fall below 

the acceptable threshold. In such cases, carbohydrate must be administered to raise the concentration. In this 

second scenario, the C signal is not considered a disturbance, but rather a control signal. In addition, the supply 

of glucose to the blood from the patient's liver must be taken into account. This supply is continuous and 

contributes to an increase in blood glucose levels, which is counteracted by the continuous delivery of basal 

insulin. However, glucose output from the liver is difficult to estimate. 

 

Fig. 2. Typical format of therapeutic recommendations for therapy in diabetes with an insulin pump, 

IS -insulin sensitivity, CS – carbohydrate sensitivity, IB -insulin base 

The procedures performed by the operator are based on therapeutic guidelines provided by medical 

personnel, referred to as recommendations in the remainder of this paper. In the case of insulin pump use, these 

recommendations are presented in the form of diurnal-cyclic function step functions, shown schematically in 

Figure 2. The figure also includes typical ranges for these functions. The recommendations cover insulin 

sensitivity (IS), carbohydrate sensitivity (CS), and the basal insulin program (IB). Insulin sensitivity defines 

the decrease in blood glucose concentration following administration of 1U of insulin over the full duration of 

its action and is expressed in units of (mg/dl)/U. Carbohydrate sensitivity defines the increase in blood glucose 

concentration following the ingestion and digestion of 1 g of carbohydrate and is expressed in units of 

(mg/dl)/g. The basal insulin program (commonly referred to as basal insulin) is expressed in units of insulin 

per hour (U/h). Alternative forms of these parameters may be used in medical practice, but they are derived 

from those presented here (e.g., insulin-to-carbohydrate ratio, see Equation 3) and are therefore not used in 

this study. The therapeutic guidelines do not include a meal plan, as the diet of a person with T1D does not 

differ from that of a healthy person in terms of composition or timing of meals. 

After receiving the recommendations (see Figure 1), the caregiver applies them to the treatment process. 

The basal insulin program is entered into the pump once in the form of a predefined schedule. On the other 

hand, the caregiver is responsible for performing periodic tasks such as glucose monitoring and meal delivery. 

Monitoring is performed before each meal, at least twice during the night, and whenever the patient's condition 

indicates the need. The control procedure involves reading the current blood glucose concentration, referred 

to as BGnow. If this value exceeds the maximum threshold BGmax, a correction insulin dose, IDcorr,now, is 

administered, calculated according to the following formula: 

𝐼𝐷𝑐𝑜𝑟𝑟,𝑛𝑜𝑤 =
𝐵𝐺𝑛𝑜𝑤−𝐵𝐺𝑚𝑎𝑥

𝐼𝑆𝑛𝑜𝑤
             (1) 

where:  𝐼𝑆𝑛𝑜𝑤 – the current value of the insulin sensitivity from the recommendations (e.g. Fig. 2). 
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If the current blood glucose concentration is below the acceptable threshold BGmin, a corrective 

carbohydrate dose, Ccorr,now, is delivered, calculated using the following formula: 

𝐶𝑐𝑜𝑟𝑟,𝑛𝑜𝑤 =
𝐵𝐺𝑚𝑖𝑛−𝐵𝐺𝑛𝑜𝑤

𝐶𝑆𝑛𝑜𝑤
              (2) 

where:  𝐶𝑆𝑛𝑜𝑤 – the current value of carbohydrate sensitivity from the recommendations (e.g. Fig. 2). 

The meal delivery action always includes the execution of a control procedure and the administration of an 

IDmeal insulin dose necessary to compensate for the increase in blood glucose resulting from the absorption of 

the carbohydrates contained in the Cmeal: 

𝐼𝐷𝑚𝑒𝑎𝑙 = 𝐶𝑚𝑒𝑎𝑙
𝐶𝑆𝑛𝑜𝑤

𝐼𝑆𝑛𝑜𝑤
               (3) 

where:  
𝐶𝑆𝑛𝑜𝑤

𝐼𝑆𝑛𝑜𝑤
 can be recognised as an insulin-to-carbohydrate ratio.  

1.2. Specifics of type 1 diabetes therapy 

T1D is a chronic and incurable disease. Diabetes therapy is ongoing throughout the patient's life, mostly on 

an outpatient basis. During this time, it is often necessary to modify the therapeutic recommendations. These 

changes may be due to changes in the patient's lifestyle, environmental conditions, or the emergence of 

comorbidities. The basis for the development of new therapeutic recommendations is the therapy history 

record, which includes the carbohydrates consumed C, the insulin administered I=ID+IB, and the blood 

glucose levels measured BG. An example of such a therapy history record is shown in Figure 3. These data are 

from the study described in the following sections and correspond to day 4 of the analysis of patient #5. The 

detailed results presented later in this study refer specifically to this case. 

 

Fig. 3. Example of T1D therapy history record covering a 24-hour period 

The sample data comes from the memory of the insulin pump and the CGM system. These data are recorded 

automatically, without any effort or intervention from the patient. For this reason, they can be referred to as 

the digital footprint of therapy. In the 24-hour example presented, the patient consumed five meals (Fig. 3a), 

received seven individual doses of insulin (Fig. 3b), and was given basal insulin according to a simple 

predefined program (Fig. 3c). The blood glucose concentrations recorded during this period (Fig. 3d) indicate 

that insulin dosing was inadequate, as glucose levels frequently exceeded the maximum acceptable level, 

reaching up to 310 mg/dl (!). This patient clearly required the development of new therapeutic guidelines. In 

all analyses performed, the CGM results were linearly interpolated to determine values for each minute of the 

day, taking into account the values from the previous and following days. 

Figure 4 illustrates the positioning of the expert system designed to generate therapeutic recommendations 

in the context of ongoing therapy. The time axis emphasizes that the therapy is continuous and cannot be 

interrupted. The expert system itself is not an active participant in the therapy, which is clearly shown in the 

diagram. The point labeled „Now” indicates the moment when therapeutic recommendations are changed. It 

separates the past from the future. The therapy history is known in the context of the recorded digital footprint 

(e.g. Fig. 3) and serves as input data for the system. Previous therapeutic recommendations are not used as 
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input data by the system. Once new recommendations are generated, they can be implemented; however, at 

the moment of implementation, their future effects are not yet known, which is symbolically represented by a 

„?”. The only possible method to verify the generated recommendations before their implementation is 

retrospective validation, i.e. validation based on historical data only. 

 

Fig. 4. Positioning of the therapeutic recommendations expert system in the T1D treatment process, 

1 – known history of the therapy, 2 – activation of the expert system, 3 – the future therapy 

1.3. Modern methods for determining therapeutic recommendations 

Each individual with T1D is managed according to personalized recommendations. These 

recommendations are most often developed by qualified healthcare professionals and communicated to the 

patient or their caregiver. In clinical settings, they are determined by a physician based on professional 

experience and general therapeutic guidelines published by medical organizations, such as the American 

Diabetes Association Professional Practice Committee (2024). Unfortunately, the formulation of such 

guidelines is often difficult to apply in practice. There are also clinical medical procedures designed to 

determine patient-specific characteristics e.g. Zhang et.al. (2020) or Pańkowska et al. (2016), but their 

application in outpatient settings is either burdensome or infeasible. Reliable institutions publish online 

medical guidelines on how to establish these recommendations, e.g. NHS Tayside (n.d.). These typically advise 

to search for appropriate therapeutic settings by modifying the current recommendations and observing the 

results during ongoing therapy. 

However, there is a lack of standardized methods for determining therapeutic recommendations based on 

actual patient treatment outcomes generated by modern medical devices. To the best of the author's knowledge, 

the method proposed in this publication is pioneering in this regard. 

2. METHODOLOGY 

2.1. Operation of the proposed system 

The goal of this study was to develop an expert system for the automatic generation of personalized therapy 

recommendations in outpatient settings, based solely on the digital footprint of the therapy. The architecture 

of the system is shown in Figure 5. The input data for the system includes information about the carbohydrates 

consumed by the patient C, the insulin administered I - which includes both insulin for individual doses ID 

and basal insulin IB - and the blood glucose levels measured during this period BG. An example of such input 

data has already been presented in Figure 3. The outputs of the system are the therapeutic recommendations 

“Recommendations” and the corresponding evaluation “Evaluation”. In addition, the system generates 

intermediate artifacts: a „digital twin” of the real patient and the medical characteristics of this twin „Twin 

characteristics”. The artifact labeled „device settings” in the diagram corresponds to the therapeutic 

recommendations; its duplication in the diagram illustrates its internal use within the system. In the diagram, 

generated artifacts are shown as rounded rectangles, while major computational steps are shown as sharp-

edged rectangles. Steps that involve machine learning are marked with an asterisk. The goal of the first 

computational step “T1D Simulator Personalization” is to create a digital twin of the real patient. In the system, 

the patient is represented by a computer simulator (described later in the paper). This simulator accepts 

carbohydrates and insulin as input signals and produces blood glucose levels as output signals. The simulator 
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has a number of configurable parameters that define its behavior. Adjusting these parameters so that the 

simulator's response closely matches that of the real patient is called personalization, and the complete set of 

parameter values is called configuration. The digital twin is thus a properly configured patient simulator that 

allows for an unlimited number of in silico experiments. The purpose of these experiments is to determine the 

patient's insulin and carbohydrate sensitivities and basal insulin requirements, collectively referred to as the 

twin characteristics. Obviously, the quality of the system's output depends on how well these characteristics 

of the digital twin reflect those of the real patient. However, the characteristics obtained at this stage cannot be 

used directly in therapy because they are not in the required form of diurnal-cyclic step functions (see Figure 

2). Therefore, an adaptation step is necessary to adapt the results to the capabilities of medical devices. The 

result is therapeutic recommendations in the form of equipment settings that can be practically implemented. 

An additional step involves retrospective verification of the proposed device settings. At this stage, 

retrospective verification is the only method of validation available, since the actual effects of the new 

recommendations are unknown at the time they are generated (as illustrated in Figure 4). This verification 

consists of applying the new recommendations to past therapy scenarios and assessing how much better the 

outcomes would have been if these recommendations had been applied. To do this, another in silico experiment 

is performed using the digital twin. In this experiment, the twin is given the same carbohydrate intake as the 

real patient, but the insulin doses are determined based on the new recommendations. The result of this 

experiment is a hypothetical blood glucose profile that is compared to the historical profile. This comparison 

is used to evaluate the effectiveness of the new therapeutic recommendations. 

 

Fig. 5. Internal design of the proposed system and its input and output 

2.2. Virtual therapy and computer simulator of type 1 diabetes patient 

The basis of the proposed system is virtual T1D therapy. In this work, this term refers to the reconstruction 

of therapy using computer simulators: a patient simulator and an insulin pump simulator (Fig. 6). In the virtual 

scenario, the presence of a human operator is not required because all his decisions are already known (e.g. 

Fig. 3abc). It is also not necessary to know the therapeutic recommendations on which the operator based these 

decisions. The inputs to the virtual therapy are the carbohydrates consumed by the patient (e.g. Fig. 3a) and 

the insulin administered (e.g. Fig. 3bc). In virtual therapy, the real patient is replaced by a freely configurable 

computer-based simulator. The output of the BGTWIN simulation is the blood glucose concentration curve, 

which reflects the simulator's response to the input. The Insulin Pump Simulator works by delivering basal 

insulin according to a programmed schedule, as well as single doses. All components of the simulation are 

controlled and synchronized by a global clock, which is also part of the virtual therapy. The inclusion of a 

CGM simulator is not required, as the values can be reported directly from the patient simulator. The most 

critical component of virtual therapy is the patient simulator (virtual patient). The quality of the final 

therapeutic recommendations generated by the system depends directly on the accuracy and fidelity of this 

simulation component. 

The first advanced physiological mathematical model of a person with type 1 diabetes was presented by 

Sorensen (1985). Since its publication, many computer simulators have been developed based on this model. 

Today, the most well-known examples include the Type 1 Diabetes Metabolic Simulator (T1DMS) (Man et 

al., 2014; Visentin et al., 2018; Cobelli & Kovatchev, 2023; The Elipson Group, n.d.) and the AIDA Simulator 

(Lehmann, 2004; Lehmann et al., 2007; Wikipedia, n.d.). These simulators share a common goal: to accurately 

reproduce the physiological and metabolic processes involved in glucose and insulin circulation and 
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metabolism. This modeling approach is well justified, and the resulting simulators have proven to be valuable 

tools in research and clinical trials. However, a major limitation of these simulators is their lack of adaptability 

to individual patients using outpatient therapy data. They rely on individual physiological parameters that 

cannot be obtained under typical outpatient conditions, such as the insulin elimination rate, parameters of 

insulin pharmacodynamics, reference basal insulin level, constant for enzyme-mediated glucose uptake, rate 

of insulin-independent glucose utilization, reference value for glucose utilization, slope of the peripheral 

glucose utilization vs. insulin curve, rate constant for glucose absorption from the gut, maximum rate of gastric 

emptying, volume of the intestine, etc. insulin curve, rate constant for intestinal glucose absorption, maximum 

gastric emptying rate, glucose distribution volume per kilogram of body weight, body insulin sensitivity 

parameter, and hepatic insulin sensitivity parameter, to name a few. Consequently, there was a need to develop 

a simplified, original mathematical model and computer simulator that could be personalized based on 

available outpatient data. 

 

Fig. 6. T1D virtual therapy, 1 – a computer simulator of the patient, 2 – configuration of the simulator, 

3 – a simulator of an insulin pump, BGTWIN – blood glucose obtained in the simulation 

For the purpose of the proposed expert system, a simplified simulator has been developed and named Type 

1 Diabetes Direct Simulator (T1DDS). The operation of the simulator is defined by an equation that describes 

changes in blood glucose concentration BGTWIN caused by: 1) the appearance of glucose originating from 

ingested carbohydrates G or released from the liver LA, and 2) the presence of insulin delivered by the pumpI: 

𝑑𝐵𝐺𝑇𝑊𝐼𝑁

𝑑𝑡
= 𝐺𝐴(

𝑑

𝑑𝑡
∑ 𝐺𝑖𝑖 + 𝐿𝐴) − 𝐼𝐴

𝑑

𝑑𝑡
∑ 𝐼𝑗𝑗           (4) 

where:  𝐺𝐴 = 𝐺𝐴(𝑡) – the glucose action diurnal-cyclic function, 

𝐿𝐴 = 𝐿𝐴(𝑡) – the liver action diurnal-cyclic function, 

𝐼𝐴 = 𝐼𝐴(𝑡) – the insulin action diurnal-cyclic function, 

𝐺𝑖 = 𝐺𝑖(𝑡) – the glucose released from the i-th carbohydrate intake 𝐶𝑖 consumed at time 𝑡𝐶,𝑖, 
𝐼𝑗 = 𝐼𝑗(𝑡) – the insulin release from the j-th dose 𝐷𝑗 administrated at time 𝑡𝐷,𝑗. 

Glucose emission from the i-th dose of carbohydrates is described by the formulas form (5) to (7) (Cobelli 

et al., 2009; Hermansson & Sivertsson; 1996; Dalla Man et al., 2007). 

𝑑𝐺𝑖

𝑑𝑡
= 𝐶𝑖

𝑡𝑟𝑝(𝜏𝑖)

𝑇𝐶,𝑖
               (5) 

𝑡𝑟𝑝(𝜏) = {

ℎ

𝑟
𝜏, 0 ≤ 𝜏 < 𝑟

ℎ, 𝑟 ≤ 𝜏 ≤ 1 − 𝑑
ℎ

𝑑
(1 − 𝜏), 1 − 𝑑 < 𝜏 ≤ 1

           (6) 

𝜏𝑖(𝑡) = {

𝑡−𝑡𝐶,𝑖

𝑇𝐶,𝑖
, 𝑡𝐶,𝑖 ≤ 𝑡 ≤ 𝑡𝐶,𝑖 + 𝑇𝐶,𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (7) 

where:  𝑡𝑟𝑝 – the trapezoidal distribution defined on the range <0,1>, 

𝜏𝑖 = 𝜏𝑖(𝑡) – relative normalized time for i-th carbohydrate dose, 

𝑇𝐶,𝑖 – the total time of absorption of the i-th dose of carbohydrates, 

ℎ = 1 (2 − 𝑟 − 𝑑)⁄  – the height of the distribution trapezoid, 
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𝑟 – the section of the left ascending arm of the trapezium 1 < 𝑟 < 1, 

𝑑 – the section of the right descending arm of the trapezium 0 < 𝑑 < 1 ∧ 0 < 𝑟 + 𝑑 < 1. 

Insulin emission from the j-th injection is described by the formulas (Nowicki, 2019): 

𝑑𝐼𝑗

𝑑𝑡
= 𝐷𝑗

𝑘(𝜏𝑗)

𝑇𝐷
                 (8) 

𝑘(𝜏) = ∑ 𝑎𝑠𝜏
𝑠6

𝑠=1                  (9) 

𝜏𝑗(𝑡) = {

𝑡−𝑡𝐷,𝑗

𝑇𝐷
, 𝑡𝐷,𝑖 ≤ 𝑡 ≤ 𝑡𝐷,𝑖 + 𝑇𝐷

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (10) 

where:  𝑘 – the normalized insulin curve described on the interval <1,0>, 

𝜏𝑗 = 𝜏𝑗(𝑡) – relative normalized time for j-th carbohydrate dose, 

𝑇𝐷 – the total time of absorption of the j-th dose of carbohydrates, 

𝑎𝑠 – insulin characteristic values. 

The diurnal-cyclic functions GA, LA, and IA used in equation (4) represent the simulator configuration and 

are not known a priori. The aim of the previously described simulator personalization is to determine these 

functions based on historical therapy data. In the study conducted, it was assumed that these functions take the 

form of diurnal-cyclic polylines defined by a finite set of points. Hypothetical GA, LA, and IA functions are 

shown in Figure 7. The figure also shows typical ranges for these functions. The values of the remaining 

parameters of the T1DDS simulator are given later in this paper. 

 

Fig. 7. Hypothetical configuration of the T1DDS simulator 

2.3. T1DDS simulator personalization 

The personalization of the T1DDS simulator was implemented using machine learning methods. After 

numerous attempts, it was found that the application of a genetic algorithm gave the best results. A standard 

genetic algorithm was used (Michalewicz, 2011; Buontempo, 2019), and its schematic representation is shown 

in Figure 8a. Figure 8b, on the other hand, shows a set of points evenly distributed over the course of a single 

day. These points can serve as interpolation points for any diurnal-cyclic function (e.g., Fig. 2, Fig. 7). The 

number of these points can be arbitrary, and they divide the 24-hour day into uniform, disjoint intervals so that 

each point is assigned to a particular interval. It is also assumed that each point can take any value in the range 

from vmin to vmax. Each point can be positioned anywhere within its associated rectangular region. The position 

of each point within this rectangle can be described by two normalized relative coordinates p and q with values 

between 0 and 1, where the coordinate (0,0) denotes the lower left corner and (1,1) the upper right corner. 

Finally, the placement of a set of n points can be represented as a sequence (11). Knowing the values of this 

sequence and the approximation method uniquely defines any diurnal-cyclic function. 

𝑝1, 𝑞1, 𝑝2, 𝑞2, 𝑝3, 𝑞3, . . . 𝑝𝑛, 𝑞𝑛            (11) 

where:  𝑝𝑖 – the relative position of the i-th point in the time direction 0 ⩽ 𝑝𝑖 < 1, 

𝑞𝑖 – the relative position of the i-th point in the direction of the value direction 0 ⩽ 𝑞𝑖 < 1, 

𝑛 – the number of approximation points. 

The configuration of the T1DDS simulator consists of three diurnal-cyclic functions (Figure 7). Each of 

these functions is represented by a sequence defined by equation (11). The concatenation of these sequences 

forms the chromosome of the genetic algorithm, with a total length of nLA+nIA+nGA, where each symbol denotes 
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the number of interpolation points for the respective functions: LA, IA and GA. Each individual value p or q is 

called a gene of this chromosome. It should be emphasized that each chromosome - i.e. any sequence of values 

between 0 and 1 of the specified length, together with the defined range of each function and the chosen 

approximation method - uniquely determines the configuration of the T1DDS simulator. This configuration 

can then be used to perform the virtual therapy procedure shown in Figure 6. The output of this simulation is 

a glucose concentration profile called BGTWIN. The similarity between the BGTWIN profile and the actual blood 

glucose profile BG (e.g. Fig. 3d) is the measure of the quality of the digital twin. 

 

Fig. 8. a) Diagram of the genetic algorithm, b) Approximation points of the diurnal-cyclic function 

An original method based on the histogram of absolute error was developed to compare glucose 

concentration profiles. This was necessary because other methods, such as correlation analysis or mean squared 

error, did not give satisfactory results. The proposed method suppresses large errors by accepting smaller ones 

and takes into account the physiological range of the values considered. The proposed approach assumes that 

the glucose concentration values are quantized, i.e. known for each minute of the considered period and 

provided with an accuracy of 1 mg/dl. Thus, the task is reduced to comparing two sequences: 

𝑏𝑔1, 𝑏𝑔2, . . . , 𝑏𝑔𝑚              (12) 

𝑡1, 𝑡2, . . . , 𝑡𝑚               (13) 

where:  𝑏𝑔𝑖 – reference (real and interpolated) glucose concentration value in the i-th minute, 

𝑡𝑖 – glucose concentration value in the i-th minute from simulation, 

𝑚 – number of minutes of the analyzed therapy period, both real and virtual. 

For each corresponding pair of values bgi and ti, the absolute error Ei is calculated according to (14). It is 

important to take into account the possibility of glucose values outside the physiological range in the computer 

simulation. 

𝐸𝑖 = {
|𝑡𝑖 − 𝑏𝑔𝑖|, 𝐵𝐺𝑙𝑜𝑤 < 𝑡𝑖 < 𝐵𝐺𝑢𝑝

𝑃𝐸𝑁𝐴𝐿𝑇𝑌, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (14) 

where:  𝐵𝐺𝑙𝑜𝑤 = 30𝑚𝑔 𝑑𝑙⁄  – minimal physiological value 

𝐵𝐺𝑢𝑝 = 500𝑚𝑔 𝑑𝑙⁄  – maximal physiological value, 

𝑃𝐸𝑁𝐴𝐿𝑇𝑌 = 2 ⋅ 𝐵𝐺𝑢𝑝 = 1000𝑚𝑔 𝑑𝑙⁄  – the penalty value. 
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The absolute error Ei is calculated for each minute of simulation i=1, 2, ... m, resulting in a numerical 

sequence E1, E2, ... E m of length m and values from a discrete set: {0mg/dl, 1mg/dl, 2mg/dl, ... PENALTY}. 

The number of occurrences of each error value is then counted: 

𝐶𝑒 = ∑ 𝛿𝑒,𝐸𝑖
𝑚
𝑖               (15) 

where:  𝐶𝑒 – the number of occurrences of an error value e, 

𝑒 = 1𝑚𝑔 𝑑𝑙⁄ , 2𝑚𝑔 𝑑𝑙⁄ , . . . , 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 – all possible absolute error values, 

𝛿 – Kronecker delta function. 

The number of error occurrences divided by the number of all errors forms an absolute error histogram: 

ℎ𝑒 =
𝐶𝑒

𝑚
               (16) 

where:  ℎ𝑒 – relative share of an error with an absolute value of e in the number of all errors, 

𝑒 = 1𝑚𝑔 𝑑𝑙⁄ , 2𝑚𝑔 𝑑𝑙⁄ , . . . , 𝑃𝐸𝑁𝐴𝐿𝑇𝑌 – the histogram bins. 

In other words, the histogram is constructed so that for each possible absolute error value, i.e. 0mg/dl, 

1mg/dl, 2mg/dl, ... PENALTY, the number of occurrences of that error is assigned, divided by the total number 

of errors, i.e., the number simulation minutes because for each minute the error is calculated. The histogram 

allows to determine the relative weighted error err according to (17), which can take values from 0 to 1, where 

0 means full convergence of the compared sequences. 

𝑒𝑟𝑟 =
∑ 𝑒𝑃𝐸𝑁𝐴𝐿𝑇𝑌
𝑒=1𝑚𝑔 𝑑𝑙⁄ ⋅ℎ𝑒

𝑃𝐸𝑁𝐴𝐿𝑇𝑌
             (17) 

In the genetic algorithm, the value of err is not used directly, but is converted into the fitness function fit 

using the bias function according to equation (18). The values of the fitness function also range from 0 to 1. 

However, in this case, a value of 1 indicates a complete match, while 0 indicates a complete mismatch. The 

use of the bias function allows the full range of values to be used when blood glucose values are within the 

acceptable physiological range, which facilitates an intuitive assessment of the result obtained. 

𝑓𝑖𝑡(𝑒𝑟𝑟) = 1 −
𝑒𝑟𝑟

(1 0.95⁄ −2)(1−𝑒𝑟𝑟)+1
           (18) 

where:  𝑓(𝑥) =
𝑥

(1 0.95⁄ −2)(1−𝑥)+1
 – is the bias function used (f:[0,1] →[0,1]). 

After defining the fitness function, personalization of the T1DDS simulator becomes an optimization 

problem, which is solved using a genetic algorithm (Fig. 8a). First, a finite random population is created - a 

set of randomly generated chromosomes. Each chromosome is called an individual. In the study, the population 

size was set to 1000. Next, a simulator configuration is created for each chromosome, followed by a virtual 

therapy simulation that generates a glucose concentration profile. This profile is then evaluated against the real 

glucose profile by calculating the fitness function value. Once this value is calculated for each individual, the 

population is sorted from best to worst. After sorting, a termination condition is checked. In the study, the 

termination condition was reached when one of the following was true: 1) the maximum number of iterations 

was completed (set to 1000), 2) the maximum computation time was exceeded (set to 3 hours), 3) the target 

value of the fitness function was reached by the best individual (set to 1.0), or 4) the maximum number of 

ineffective iterations was exceeded (set to 250). If a termination condition is met, the best individual is 

considered the final solution. If not, a new population (generation) is created based on the existing one. A 

subset of the best individuals (5%) is carried over directly to the next generation. A subset of the worst 

individuals (also 5%) is replaced by newly generated random individuals. Each remaining individual is 

replaced by its offspring. To select the second parent, the tournament selection method is used: a group of 

potential candidates (30% of the population) is randomly selected, and the best individual from this group is 

taken. An offspring chromosome is generated by randomly and uniformly mixing the genes of both parents. 

In addition, random mutations are introduced after the new generation is created. This is done by randomly 

selecting 10% of the offspring and randomly changing 10% of the genes in each of their chromosomes. Once 

the new generation is formed, the individuals must again be evaluated, sorted, and checked against the 

termination conditions. 
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Fig. 9. Glucose concentration for a real patient (“Real”) and his virtual twin (“Twin”) 

The results of the algorithm described above, applied to the data shown in Figure 3, are shown in Figure 9, 

which shows the glucose concentration of the real patient („Real”) and the virtual twin („Twin”). In this case, 

the obtained value of the fitness function was fit = 0.711. The resulting configuration of the T1DDS simulator 

is shown in Figure 10. In addition, the plots in Fig. 11a illustrate the evolution of the fitness function value 

over successive generations, as well as the inefficiency parameter of each generation, defined as the number 

of generations without improvement in the objective function, up to the maximum allowed number of such 

generations (i.e., 250). 

2.4. In silico study of the virtual twin and determination of medical device settings 

The T1DDS simulator, together with the configuration obtained as described in the previous section, 

becomes a virtual twin of the real patient. This enables a series of experiments to be conducted using the virtual 

twin without posing any risk to the health or life of the real patient. The purpose of these experiments is to 

determine insulin and carbohydrate sensitivities and to find an optimal basal insulin delivery schedule. Both 

sensitivities can be assessed using stimulus-response-type experiments. In each case, two copies of the virtual 

twin must be created. To determine carbohydrate sensitivity, one copy is given a unit dose of carbohydrates, 

while the other receives none. A virtual therapy is then performed over a time interval covering the complete 

absorption of carbohydrates TC, as defined by equation (5). The difference in blood glucose levels between the 

two copies represents the carbohydrate sensitivity at the moment the unit dose was served tC. To determine 

carbohydrate sensitivity over the whole day, this test must be repeated for each minute of the 24-hour period. 

Insulin sensitivity is determined in an analogous manner, with the difference being that instead of a 

carbohydrate dose, a unit dose of insulin is administered to one copy of the virtual twin. Examples of the 

resulting sensitivities obtained using this method are presented in Figure 11b and Figure 11c. These are shown 

as curves labelled “Characteristic”, which in general represent continuous, nonlinear functions. 

The basal insulin program for the virtual twin cannot be determined based on stimulus-response tests alone. 

To solve this problem, the previously described genetic algorithm was applied again. In this case, the goal is 

to find a diurnal-cyclic stepwise basal insulin delivery function (Fig. 2), represented by form (11). In the 

calculations, it was assumed arbitrarily that this function would be defined by n = 24 points. The desired 

outcome is a basal insulin program for which the glucose concentration of the virtual twin remains stable, 

unaffected by hepatic glucose production described by the already known LA function (see Fig. 10a). In other 

words, the result of equation (4) should be equal to zero throughout the simulation period, assuming both G 

and ID are zero. An example of the basal insulin program obtained using this method for the data shown in 

Fig. 3 is presented in Fig. 12c. 

The resulting basal insulin program can be directly applied as a therapeutic recommendation. However, the 

two sensitivities must be approximated using stepwise functions. For this purpose, the previously described 

genetic algorithm was also used. As with the basal insulin program, it was arbitrarily assumed that the program 

would be defined by 24 points. In this case, however, a different fitness function was applied: the mean squared 

error between the continuous (nonlinear) function and its stepwise approximation was minimized. The results 

of this computation are represented by the curves labelled “Settings” in Fig. 11b and Fig. 11c. 



69 

3. NUMERICAL EXPERIMENT 

3.1. The experiment program 

The developed method was implemented as a original software application called T1DStudio, written in 

Java. This program was used to generate therapeutic recommendations for real patients. The aim of the study 

was to evaluate the performance of the method when applied to real-world scenarios. 

The research program was based on the therapy records of 5 real patients with T1D. All the patients met 

the following conditions: 1) using an insulin pump and CGM for at least a year (a guarantee of correct use of 

equipment resulting from the experience) 2) strictly following the therapy recommendations during the 

mentioned period of time, 3) agreeing to the use of their data in research in an anonymous form, 4) not suffering 

from other chronic diseases. The characteristics of the study group has been presented in Table 1. 

Tab. 1. Characteristics of the research group 

No. Sex 
Age Height Weight 

Insulin CGM 
[years] [cm] [kg] 

1 M 11 146 38 Novorapid FreeStyle Libre  

2 F 9 136 34 Novorapid FreeStyle Libre  

3 M 9 133 43 Novorapid FreeStyle Libre  

4 F 6 108 20 Humalog FreeStyle Libre  

5 F 6 116 26 Humalog FreeStyle Libre  

 

Tables 2 and 3 show the numerical values of the parameters adopted for the T1DDS simulator. The values 

in Table 2 refer to the absorption of carbohydrates consumed in meals (see equations 5, 6 and 7). These values 

were adopted based on Cobelli et al. (2009), Hermansson and Sivertsson (1996), Dalla Man et al. (2007) and 

refined through a series of successive experiments. The values in Table 3 are taken from Nowicki (2019) and 

describe the kinetics of the insulin types used by the patients. 

In each analysis, the approximation functions of the T1DDS simulator(LA,IA,GA) were modeled as diurnal-

cyclic polyline functions approximated by six vertices. Therapeutic recommendations, on the other hand, were 

represented as stepwise functions with 24 values. 

The time interval of the historical data was one full day. Five consecutive days were randomly selected for 

each patient. During these periods, only patient #5 had acceptable blood glucose profiles. The remaining 

patients required adjustments to their therapeutic recommendations as their therapeutic results were 

unsatisfactory. The proposed in silico experiment involved determining therapeutic recommendations for each 

patient by analyzing each day separately. In other words, this is a hypothetical scenario in which therapeutic 

recommendations are generated at 00:00 based on data from the previous day. All generated recommendations 

were reviewed retrospectively. However, they were not implemented in real-world treatment because the 

available data were historical rather than current. 

Tab. 2. T1DDS simulator parameter values for carbohydrate action 

Meal r d TC 

Planned 15min/TC=0.063 60min/TC=0.025 240 min 

Correction 10min/TC=0.167 15min/TC=0.025 60 min 

Tab. 3. T1DDS simulator parameter values for insulin action 

Insulin a1 a2 a3 a4 a5 a6 TD 

Novorapid 34.04 −185.9 439.8 −536.6 327.1 −78.44 360 min 

Humalog 31.60 −144.7 259.5 −211.3 64.93 0 330 min 

3.2. The experiment results 

As part of the experiment, the complete computational procedure described in this paper was run 25 times. 

Figures 10 through 12 show the detailed results obtained for the analysis of day 5 for patient #4. This particular 

case was selected for detailed presentation because the results were the most representative, i.e., closest to the 

average outcome of the entire experiment. The historical data used as the basis for this analysis was previously 
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presented in Figure 3. The configuration of the digital twin created from these data is shown in Figure 10. 

Therapeutic recommendations resulting from the in silico experiments include insulin sensitivity (Fig. 11b), 

carbohydrate sensitivity (Fig. 11c), and the basal insulin program (Fig. 12c). 

 

Fig. 10. The configuration functions of digital twin for patient 4 day 5 : a) liver action b) insulin action, c) glucose action 

The generated therapeutic recommendations were validated retrospectively. In this case, the virtual twin 

consumes exactly the same meals as the real patient (Fig. 3a, Fig. 12a), while the basal insulin (Fig. 12c) and 

bolus insulin doses (Fig. 12b) are administered according to the developed therapeutic recommendations. The 

therapy simulation results in a blood glucose concentration profile shown as the „Pred” plot in Figure 12d. 

This is compared with the real historical „Hist” curve, derived from the real patient and previously shown in 

Figure 3d. To quantitatively assess the improvement in therapy quality, a criterion was proposed based on the 

calculation of the area between the glucose concentration curve and the acceptable range limits (70 mg/dl to 

130 mg/dl). For the historical concentration, the total area was A1+ A2+ A3+A4+A5+ A6 = 39138 min-mg/dl, 

whereas for the predicted scenario, the total area was B1+ B2 = 9116 min-mg/dl, representing a 77% 

improvement. This improvement is clearly visible in the figure. 

 

Fig. 11. a) The convergence of the genetic algorithm, b) the insulin sensitivity, c) the carbohydrate sensitivity 

 

Fig. 12. Retrospective verification a) historical carbohydrate input b) hypothetical single doses of insulin,  

c) hypothetical insulin base, d) hypothetical “Pred” and historical real “Hist” profile of blood glucose 
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The results of the remaining analyses are summarized in Tables 4 through 8. Each table corresponds to a 

different patient in the study group. In these tables, for each application of the method (analysis), the virtual 

twin calibration report („Virtual Twin Calibration”) and the quality of the resulting virtual twin („Virtual Twin 

Quality”) as defined by the fitness function defined earlier in the paper are provided. The report includes the 

total calibration time („Time”), the number of genetic algorithm steps („Steps”) performed during this time, 

and the number of ineffective steps counted at the time of calibration completion („Ineff.”). Next, the total 

areas of glucose concentration outside the acceptable range are reported for both the historical results 

(„Therapy quality. Historical”) and the predicted results assuming the new recommendations had been 

implemented („Therapy quality. Prediction”). The improvement in glycemic control was calculated as the 

difference between the historical and predicted values divided by the historical value and is reported in the last 

column („Therapy quality. Improvement”). The last row of each table („Avg”) contains the average result 

across all calculated cases. 

Tab. 4. Experiment results for Patient 1 

Day 

Virtual twin calibration Virtual twin 

quality 

Therapy quality 

Time Steps Ineff. Historical Prediction Improvement 

[min] [count] [ count ] [ 0-1 ] [ min·mg/dl ] [ min·mg/dl ] [ %] 

1 180 566 17 0.757 35 668 15 834 56 

2 180 583 0 0.828 34 286 7 726 77 

3 180 591 14 0.759 19 914 11 673 41 

4 180 587 4 0.749 34 737 6 532 81 

5 180 541 1 0.786 33 687 7 183 79 

Avg 180 574 - 0.776 31 659 9 790 66 

Tab. 5. Experiment results for Patient 2 

Day 

Virtual twin calibration Virtual twin 

quality 

Therapy quality 

Time Steps Ineff. Historical Prediction Improvement 

[min] [count] [ count ] [ 0-1 ] [ min·mg/dl ] [ min·mg/dl ] [ %] 

1 180 551 70 0.768 106 857 19 196 82 

2 180 648 13 0.540 63 549 18 432 71 

3 180 620 20 0.744 51 151 0 100 

4 180 620 113 0.796 80 586 25 196 69 

5 180 627 13 0.685 89 007 8 412 91 

Avg 180 613 - 0.707 78 230 14 247 83 

Tab. 6. Experiment results for Patient 3 

Day 

Virtual twin calibration Virtual twin 

quality 

Therapy quality 

Time Steps Ineff. Historical Prediction Improvement 

[min] [count] [ count ] [ 0-1 ] [ min·mg/dl ] [ min·mg/dl ] [ %] 

1 180 572 8 0.748 87 766 11 239 87 

2 180 573 186 0.720 62 596 5 177 92 

3 180 599 4 0.694 71 286 10 107 86 

4 180 557 1 0.796 86 512 5 391 94 

5 180 557 6 0.727 84 858 10 801 87 

Avg 180 572 - 0.737 78 604 8 543 89 

Tab. 7. Experiment results for Patient 4 

Day 

Virtual twin calibration Virtual twin 

quality 

Therapy quality 

Time Steps Ineff. Historical Prediction Improvement 

[min] [count] [ count ] [ 0-1 ] [ min·mg/dl ] [ min·mg/dl ] [ %] 

1 180 635 20 0.733 12 491 4 651 63 

2 180 667 219 0.712 12 152 9 010 26 

3 180 656 0 0.770 29 413 1 537 95 

4 180 659 29 0.680 25 546 2 957 88 

5 180 845 7 0.711 39 138 9 116 77 

Avg 180 692 - 0.721 23 748 5 454 70 
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Tab. 8. Experiment results for Patient 5 

Day 

Virtual twin calibration Virtual twin 

quality 

Therapy quality 

Time Steps Ineff. Historical Prediction Improvement 

[min] [count] [ count ] [ 0-1 ] [ min·mg/dl ] [ min·mg/dl ] [ %] 

1 155 699 250 0.817 25 987 12 601 52 

2 180 742 17 0.771 29 964 11 001 63 

3 180 799 98 0.788 7 132 12 773 -79 

4 180 650 10 0.828 7 851 -12 057 

5 180 658 132 0.770 17 175 21 473 -25 

Avg 175 710 - 0.795 16 053 11 740 27 

 

The study showed that the developed method can significantly contribute to the improvement of T1D 

therapy. Therapeutic recommendations generated by the developed expert system proved to be effective in 22 

out of 25 cases analyzed, with an average improvement of 75%. Only in 3 cases the implementation of the 

proposed recommendations led to a deterioration of the quality of therapy. These cases need to be discussed 

in more detail. They all concern the same patient, who differs from the others in that the results of his actual 

therapy were the best of the whole group (see „Historical” column). In case 4, it can be concluded that the 

patient's historical glucose concentration was within the acceptable range throughout the day. However, the 

application of the new recommendations resulted in a small deviation compared to the other values in the same 

column. In this case, the relative deterioration of 12057% does not indicate a life-threatening situation. Cases 

3 and 4 should be interpreted in a similar way. Note that in these three cases, the quality of the virtual twins 

does not differ from the quality of the virtual twins in the other analyses. Thus, the algorithm correctly 

calibrated the patient model to the historical data. Moreover, comparing the values in the „Prediction” columns, 

it can be observed that the therapeutic recommendations generated for these three virtual twins are of similar 

quality to the recommendations in the other analyses. On this basis, it can be concluded that the values obtained 

in the „Improvement” column result from the limitations of the method used to compare the quality of therapy, 

which was based on the calculation of the area of the blood glucose curve outside the permissible ranges. With 

this method, the absolute value derived from the curve carries more information than the ratio of these values. 

These absolute values clearly indicate that the blood glucose profile either improved or (in three cases) did not 

significantly worsen. However, the ratio of these areas expressed as a percentage should be considered as 

additional information. 

The adopted criterion for the assessment of therapy quality improvement was introduced specifically for 

the purpose of retrospective verification. This was due to the fact that typical medical indicators such as TIR 

(time in range), TBR (time below range) and TAR (time above range) should not be used in this case, since 

the analyzed period of 24 hours is too short for these measures to be medically meaningful. Furthermore, the 

effects induced by the introduction of new therapeutic recommendations stabilize only over the insulin action 

horizon (i.e. 330 or 360 minutes, see Table 3); therefore, approximately 25% of the daily period can be 

compared in terms of the rate of reaching the target glucose level, which is better reflected by the area-based 

criterion. The comparison criterion introduced is not perfect, but it serves its purpose and does not pose a risk 

of medical overinterpretation. 

The number of ineffective genetic algorithm steps counted at the end of the virtual twin calibration (column 

„Ineff.”) also requires comment. Low values in this column may suggest that extending the calibration time 

could improve the result. This is most likely a correct conclusion; however, in each analysis, the convergence 

process of the genetic algorithm followed the pattern shown in Figure 11 a). Very quickly, i.e. after about 200 

iterations, the quality of the digital twin reached a level close to the target. Subsequently, improvements in the 

fitness parameter were observed, but these changes were insignificant. 

4. DISCUSSION 

The developed system for generating therapeutic recommendations is entirely based on medical data 

automatically collected by modern medical devices used in the treatment of T1D, namely, a CGM system and 

an insulin pump. These data can be considered an individual digital footprint of the patient’s daily therapy in 

outpatient conditions. However, such data do not allow for personalization of the commonly accepted 

simulators of patients with type 1 diabetes. Therefore, an alternative simplified simulator was proposed. 
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Personalization of this simulator proved feasible using a genetic algorithm, which was adapted to the problem 

at hand. The results obtained with this algorithm were satisfactory. The personalized simulator, referred to as 

a digital twin, was used to conduct a series of in silico experiments. These experiments produced therapeutic 

recommendations in a form that can be implemented in real-life therapy. During the generation of these 

recommendations, the developed version of the genetic algorithm was used again. Thus, both the digital twin 

itself and the therapeutic recommendations generated using it can be regarded as products of machine learning. 

Considering the available therapeutic data, achieving the intended goal would not have been possible using 

other methods. 

This paper emphasizes the algorithmic aspects of the conducted research and omits several elements not 

directly related to this aspect. These include, among others: technical details of the medical equipment 

(operation, data format, integration), justification of the modelling assumptions (exclusion of fat and protein 

effects in the analysis, lack of direct modelling of all liver functions, absence of a kidney function model), 

implementation details of the simulator, and the process of its use (e.g., the need for pre-simulation before 

personalization). At the current stage of the project (i.e., theoretical analysis and computer experiment), the 

only feasible method of validation was retrospective verification. This validation demonstrated satisfactory 

results of the developed system and clearly supports a positive recommendation for proceeding to the clinical 

research stage. 

The article summarizes the achievements of the first stage of work on an expert system for the automatic 

generation of therapeutic recommendations for patients with type 1 diabetes, based solely on the digital 

footprint of modern therapeutic devices. This stage involved the development of mathematical models 

applicable in practice and the selection of algorithmic methods for effective work with these models. The 

exploration was largely conducted using a trial-and-error approach. This stage was highly labor-intensive, due, 

among other factors, to the need to create successive models, develop original software, and perform time-

consuming computer simulations. Ultimately, a method was developed that can automatically generate 

therapeutic recommendations based only on the available data. The method was successfully verified 

retrospectively. This indicates that it may be useful in practice, although this does not provide a definitive 

conclusion. 

The next stage of the work involves verifying the developed method in clinical settings with the 

participation of real patients and under strict medical supervision. Only this verification will provide an answer 

as to whether the proposed method can be useful in medical practice. At present, research efforts are directed 

toward this goal. Consequently, in-depth theoretical analyses of the proposed models and methods (including 

the stability of the T1DDS model, optimization of the genetic algorithm, the impact of approximation 

assumptions or the blood glucose similarity criterion on the obtained results, cross-day retrospective 

verification, consideration of periods longer than a single day in retrospective verification, etc.) have been 

postponed to a subsequent stage of the project. Carrying out these analyses will only be meaningful if the 

results of the clinical verification indicate the relevance of further work on the proposed solutions. Moreover, 

the clinical verification will undoubtedly provide rich data for conducting such analyses. At the current stage, 

it should be emphasized that the method has not yet been fully explored, and therefore any verification 

involving real patients must be carried out exclusively under medical supervision. 

The aim of the clinical verification is to determine whether the assumptions and simplifications on which 

the method was developed sufficiently reflect reality. However, this verification will necessarily have to be 

conducted in a manner entirely different from the retrospective validation presented earlier. For reasons of 

patient safety, changes to the medical device settings should not be made abruptly but rather gradually. In this 

case, the newly generated therapeutic recommendations will serve only as a basis for modifying the current 

settings. The patient’s response to a modified setting will then form the basis for generating subsequent 

recommendations, which in turn will be used for further adjustments. From a therapeutic perspective, it is 

desirable for this process to converge toward a generally understood equilibrium point. Moreover, the optimal 

time window of historical data to be used in constructing a virtual twin is currently unknown. Most likely, this 

period will need to extend beyond a single day. In such a case, the patient’s virtual twin at a given moment 

would be constructed based on historical data covering a defined time span in the past (a situation resembling 

a moving average). It can be assumed that new therapeutic recommendations cause the patient’s body to 

function differently, which leads to the obsolescence of the digital twin. At present, it is unclear whether each 

new twin should be built independently or derived as a modification of the previous one, as well as how 

frequently therapeutic recommendations should be updated. 
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Another issue concerns the method of verifying the effectiveness of the proposed approach in real-world 

therapy. The criterion proposed in the article, based on calculating the area under the blood glucose curve that 

exceeds permissible limits, should certainly not be applied. Instead, primarily medical measures such as TIR 

(Time in Range), TBR (Time Below Range), and TAR (Time Above Range) should be used. In this study, 

TIR, TAR, and TBR indicators were not applied, as the analyzed periods—namely, one day—were too short 

for their use. Furthermore, at this stage it is not possible to draw conclusions about the practical usefulness of 

the proposed method, and the application of these indicators could misleadingly suggest otherwise, potentially 

leading to erroneous interpretations. 

A possible subsequent stage of research will therefore involve the selection of research hypotheses, the 

development of analytical methods appropriate to medical practice, and the design of corresponding computer 

applications. 

5. CONCLUSIONS 

This paper presents an original method for determining therapeutic recommendations for individuals with 

type 1 diabetes, based on the digital footprint generated by modern insulin pumps and CGM systems used by 

the patient, using machine learning techniques. The method has been implemented as a computer program that 

can be classified as an expert system. Numerical experiments conducted with this system showed satisfactory 

performance. The obtained results clearly support the recommendation of the developed system for further 

research. 

Disclaimer 

Any information contained in the paper is not intended to provide personal medical advice. If you need 

medical advice regarding your diabetic problems, you must contact a diabetes specialist. No human or animal 

experiments were conducted for the purposes of the presented research. 
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