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The modelling of NiTi shape memory alloy functional properties 

by machine learning methods 

Abstract 

Shape memory alloys (SMAs) exhibit several unique properties, including superelasticity and the shape 

memory effect. They can return to their original shape after deformation when heated. SMAs are widely 

used in various fields of science and technology. Shape memory alloys are functional materials that are 

used under loading, which in many cases is cyclic in nature. In the present study, the functional properties 

of NiTi shape memory alloys were modeled using supervised learning methods. The analysis was performed 

using Orange data mining software, which allows the creation of visual flowcharts and the generation of 

results in tables and graphs. The modeling was performed on four specimens. For each specimen, several 

functional properties, such as residual strain range r and dissipated energy range Wdis. Each data set 

was divided into two unequal parts - the training and test sets. The training sets comprised 66% of the total 

data set. The remaining 34% was used for the test set. Among the methods studied, kNN, AdaBoost, 

Gradient Boosting and Random Forest showed the best results in terms of prediction errors. Therefore, ML 

learning methods are a powerful and promising tool for solving tasks related to the prediction of functional 

properties of SMAs. 

1. INTRODUCTION 

Shape memory alloys (SMAs) exhibit several unique properties, including superelasticity and the shape 

memory effect. They can recover their initial shape after deformation when heated. SMAs are widely employed 

in various fields of science and technology. For instance, SMAs can be found even in artificial space objects 

(Wang et al., 2024). SMAs are being used to create actuators in biomechatronics and biorobotics (Liu et al., 

2023; Popovic et al., 2019), as well as in the building of concrete structures (Dębska et al., 2021; Molod et al., 

2022). Some science and technology problems can be solved through classical deterministic methods 

(Pogrebnjak et al., 2022; Świć et al., 2021), while others try to employ statistical or probabilistic approaches. 

Machine learning (ML) is a subset of artificial intelligence (AI) that utilizes statistical methods. AI is 

nowadays ubiquitous (Burkov, 2019; Cabanillas-Carbonell et al., 2025; Frankiewicz et al., 2025; Hang et al., 

2024; Kirda et al., 2025; Ślesicka et al., 2025; Sujana et al., 2025; Velychko et al., 2024; Yasniy et al., 2022). 

In general, there are three main types of ML: supervised learning, unsupervised learning, and reinforcement 

learning (Cabanillas-Carbonell et al., 2025; Ślesicka et al., 2025). Regression tasks are traditionally solved 

utilizing supervised learning. The models are trained based on data. These methods enable prediction for 

unknown data that the model has not seen before. 

ML is a constantly evolving field consisting of many algorithms and methods that attempt to learn from 

available data and make predictions without being explicitly programmed. Increased computing resources, 

large amounts of data, and advances in statistical and algorithmic methods have made ML quite popular 

(Jordan & Mitchell, 2015; Lecun et al., 2015). The ML can be found almost everywhere, from the 

recommendation systems on the Internet (Smith & Linden, 2017; Steck et al., 2021) to medicinein medicine 

(Boy et al, 2025; Chen et al, 2018; Cruz & Wishart, 2007; Habti & Azmani, 2025; James & Osubor, 2025; 

Sirmayanti et al., 2025), Finance (Gao et al., 2024; Kelly & Xiu, 2023) or autonomous vehicles (Alfonso et 

al., 2024; Ravi et al., 2024).  
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By revealing patterns and relationships within the data, ML methods can make accurate predictions on new, 

unseen instances, thereby uncovering hidden patterns in the data. 

Shape memory alloys (SMAs) are functional materials that are stressed, often cyclically. The degradation 

of SMA material properties is characterized by the energy dissipated, as there is a direct relationship between 

the area under the hysteresis loop and the damage to the material. Residual strain measures the ability of the 

material to withstand cyclic loading.  

Therefore, these properties are crucial for the SMA material behavior under cyclic loading. 

The aim of this study was to model the functional properties of SMAs using ML methods. 

2. DATASET AND METHODS 

The modeling was performed using the data mining software Orange, which allows users to visually build 

flowcharts of data processing algorithms and obtain results in both numerical and graphical formats. 

The purpose of Orange software utilization was to build corresponding regression models based on the 

available experimental data. It is possible to employ various regressors from the available ones. The main role 

of Orange software was to train ML models. 

The experimental data was in CSV files. Each file contained a number of loading cycles N, and either 

residual strain range r or dissipated energy range Wdis. The number of cycles was treated as an input feature, 

and the respective functional property was chosen as a target. 

Each dataset was split into two uneven parts - the training and test sets. The training sets comprised 66% 

of the total dataset. The remaining 34% were left for the test set. 

Initially, the import file was processed via CSV file import. After that, feature selection was performed 

utilizing the Select Columns widget. Additionally, data preprocessing was performed to segment the range of 

[0, 1]. After that, a certain regressor was chosen to train the model. Afterwards, performance metrics were 

evaluated, and respective predictions were performed. Figure 1 shows the block diagram of the calculations. 

 

Fig. 1. The block diagram of computations in Orange data mining software 

The modeling was performed on four specimens. For each specimen, several functional properties were 

obtained, such as the residual strain range Δεr and the dissipated energy range ΔWdis. 

Prior to modeling, the data was pre-processed. Namely, the data set was augmented by applying the Akima 

interpolation method (1970). This method takes into account the fast growth of the function and shows quite 

good results. The interpolation was performed using the Python 3 programming language. As a result of such 

data augmentation, one gets 1000 points for the functional property of each sample. 

Figure 2 shows the flowchart of calculations in Orange data mining software. 
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Fig. 2. The flowchart of computations in Orange data mining software 

The modeling was performed using k-Nearest Neighbors (kNN), Support Vector Machines (SVMs), 

Stochastic Gradient Descent (SGD), Random Forest, Neural Network (NN), Gradient Boosting and AdaBoost. 

As a result of the modeling, the regression dependencies of the available data were obtained. In addition, a 10-

fold cross-validation of the models was performed. 

The kNN method is a relatively simple but robust regression algorithm. It solves the regression problem by 

using a similarity measure. This algorithm is a nonparametric method (Srisuradetchai & Suksrikran, 2024). 

SVMs are methods based on the structural risk minimization principle of inductive learning. It works well 

with small sample sizes. The algorithm is based on an attempt to minimize empirical risk and the VC (Vapnik-

Chervonenkis) dimension. Vapnik and his colleagues at AT&T Bell Laboratories refined the methods. SVM 

algorithm allows finding hidden patterns in complicated data sets (Basak et al., 2007).  

The gradient descent method is one of the most widely used optimization algorithms for solving ML 

problems. Its stochastic version has recently received considerable attention and is mainly used to train deep 

neural networks (DNNs). In DNN, the gradient after a sample or a set of samples is used to avoid the 

consumption of expensive computational resources and saddle points. Stochastic optimization is a fundamental 

method used in machine learning, mainly due to the back-propagation algorithm in a neural network (NN) (Lu, 

2022). 

Random forest is a method developed by Leo Breiman in the 2000s that is based on an ensemble of multiple 

decision trees. The algorithms are remarkably effective and cope well with sparsity; their convergence speed 

depends only on the number of strong features and not on the number of noise variables provided.(Biau, 2012). 

A classical NN consists of many simple interconnected units called neurons, each of which performs a set 

of activations. Input neurons are activated by sensors that sense the environment, and other neurons are 

activated by weighted connections from previously active neurons. Specific neurons can affect the 

environment by triggering actions. Learning an NN means calculating the weights that make the NN show the 

desired behavior (Schmidhuber, 2015). 

Boosting is a method that makes it possible to build highly accurate predictions by combining several less 

accurate ones. Proposed by Friedman (2001; 2002) and Natekin and Knoll (2013) Gradient Boosting Machines 

(GBMs) are predictive models built using back-fitting and nonparametric regression. Instead of building a 

single model, the GBM generates an initial model and proposes new models by minimizing the loss function 

to obtain the most accurate model (He et al., 2019; Natekin & Knoll, 2013). 
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Boosting algorithms are quite different, each with its own characteristics and strengths. One of the earliest 

and most effective boosting methods is Adaptive Boosting (Freund & Schapire, 1997) also known as 

AdaBoost. AdaBoost iteratively recalculates the weights of misclassified samples, with subsequent models 

paying more attention to these examples. 

3. RESULTS AND DISCUSSION 

The data for four samples were described by the respective machine learning models. The MSE, RMSE, 

MAE, and R2 were calculated for each model. The model metrics for Sample #10 are shown in Table 1. 

Tab. 1. The models metrics for specimen # 10 

Specimen #10 MSE RMSE MAE R2 MSE RMSE MAE R2 

SVM 0.089 0.298 0.244 0.95 0.395 0.628 0.092 0.137 

SGD 0.199 0.446 0.401 0.888 0.409 0.639 0.156 0.107 

Random Forest 0 0.016 0.008 1 0.331 0.575 0.034 0.277 

Neural Network 0.024 0.155 0.111 0.986 0.402 0.634 0.099 0.121 

Gradient Boosting 0 0.018 0.013 1 0.212 0.460 0.028 0.537 

AdaBoost 0 0.014 0.008 1 0.212 0.460 0.027 0.537 

kNN 0 0.018 0.006 1 0.276 0.525 0.032 0.397 

 

For the example #10, the lowest MSE was achieved by Random Forest, Gradient Boosting, AdaBoost, and 

kNN for the res. The same is true for RMSE and MAE. These methods also gave the highest values of R2 = 

1. The same picture is observed for Wdis. The first place in terms of lowest error was taken by AdaBoost with 

MAE equal to 0.027. Gradient Boosting came in second with an MAE of 0.028. Third was kNN with an MAE 

of 0.032. Fourth place goes to SVM with an MAE of 0.092. However, the R2 values are acceptable only for 

the first three ML models. These results confirm that ensemble methods provide superior performance for this 

example.  

The models metrics for specimen #13 are shown in Table 2. 

Tab. 2. The models metrics for specimen # 13 

Specimen #13 MSE RMSE MAE R2 MSE RMSE MAE R2 

SVM 0.055 0.234 0.089 0.515 0.352 0.539 0.122 0.187 

SGD 0.089 0.299 0.164 0.211 0.408 0.639 0.216 0.058 

Random Forest 0.015 0.121 0.014 0.87 0.102 0.319 0.026 0.765 

Neural Network 0.086 0.293 0.13 1 0.398 0.631 0.149 0.08 

Gradient Boosting 0.015 0.121 0.016 0.871 0.081 0.285 0.025 0.812 

AdaBoost 0.015 0.121 0.017 0.871 0.081 0.285 0.024 0.812 

kNN 0.02 0.142 0.015 0.823 0.138 0.371 0.025 0.681 

 

The same picture is observed for the sample #13 as for the sample #10. The lowest values of MSE, RMSE, 

and MAE were obtained by Random Forest, Gradient Boosting, AdaBoost, and kNN for the res. The highest 

values of R2 = 1 were also obtained by these methods. The slightly worse results were obtained by Neural 

Network, SGD and SVM. This confirms the fact that they are not suitable for this case. The same applies to 

Wdis. 

The model metrics for Sample #16 are shown in Table 3. 

Tab. 3. The models metrics for specimen # 16  

Specimen #16 MSE RMSE MAE R2 MSE RMSE MAE R2 

SVM 0.006 0.080 0.073 0.796 0.027 0.165 0.096 0.418 

SGD 0.008 0.088 0.077 0.756 0.04 0.2 0.119 0.15 

Random Forest 0 0.008 0.001 0.998 0.007 0.082 0.006 0.855 

Neural Network 0.006 0.078 0.063 0.807 0.036 0.189 0.080 0.241 

Gradient Boosting 0 0.005 0.001 0.999 0.004 0.064 0.006 0.914 

AdaBoost 0 0.005 0.001 0.999 0.004 0.063 0.005 0.914 

kNN 0 0.007 0.001 0.998 0.006 0.078 0.004 0.871 
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As for sample #16, the four methods mentioned above are the best for the two datasets studied, res and 

Wdis. The lowest values of MSE, RMSE, and MAE were calculated by Gradient Boosting, AdaBoost, kNN, 

and Random Forest for the res, and for the Wdis. The highest R² values of 1 were also obtained by these 

methods. As for the Wdis, the highest values of R2 were obtained by Gradient Boosting and AdaBoost. This 

result confirms the high potential of this type of ML models for predicting the functional properties of SMA. 

Also, these two methods showed R2 = 0.914, which is quite a good result. 

The model metrics for sample #17 are shown in Table 4. 

Tab. 4. The models metrics for specimen # 17  

Specimen #17 MSE RMSE MAE R2 MSE RMSE MAE R2 

SVM 0.011 0.106 0.079 0.986 0.134 0.366 0.127 0.622 

SGD 0.155 0.394 0.295 0.813 0.243 0.493 0.26 0.317 

Random Forest 0 0.021 0.005 0.999 0.01 0.102 0.01 0.971 

Neural Network 0.003 0.059 0.027 0.996 0.017 0.131 0.046 0.951 

Gradient Boosting 0 0.017 0.008 1 0.004 0.062 0.009 0.989 

AdaBoost 0 0.016 0.005 1 0.004 0.062 0.008 0.989 

kNN 0.001 0.024 0.004 0.999 0.011 0.103 0.01 0.97 

 

As in the three previous cases, kNN, AdaBoost, Gradient Boosting and Random Forest gave the best results 

in terms of prediction errors.  

From the obtained result, it can be concluded that it is advisable to use boosting methods as well as Random 

Forest. Also, kNN showed remarkably high results. It can also be used in engineering practice. 

  

a) b) 

  

c) d) 

Fig. 3. The true vs. predicted dissipated energy Wdis for specimen # 13 obtained by ML methods:  

a) Gradient Boosting; b) Random Forest; c) Ada Boost; 4) kNN 

0

1

2

3

4

5

6

7

8

0 2 4 6 8

True vs predicted Wdis for specimen #13, 

Gradient Boosting
Wdis_true

Wdis_pred 0

1

2

3

4

5

6

7

8

0 2 4 6 8

True vs predicted Wdis for specimen #13, 

Random Forest

Wdis_pred

Wdis_true

0

1

2

3

4

5

6

7

8

0 2 4 6 8

True vs predicted Wdis for specimen #13,  

Ada  Boost

Wdis_pred

Wdis_true

0

1

2

3

4

5

6

7

8

0 2 4 6 8

True vs predicted Wdis for specimen #13,  kNN
Wdis_true

Wdis_pred



132 

Fig. 3 shows the dependencies of true versus predicted dissipated energy Wdis obtained by four ML 

methods with the best prediction error: a) Gradient Boosting; b) Random Forest; c) Ada Boost; 4) kNN. As 

can be seen from the plot, the points are close to the bisector of the first coordinate angle, confirming the high 

prediction accuracy. 

  

a) b) 

  

c) d) 

Fig. 4. The true vs. predicted residual strain res for specimen # 13 obtained by ML methods:  

a) Gradient Boosting; b) Random Forest; c) Ada Boost; 4) kNN 

Figure 4 shows the dependencies of the true versus predicted residual strain range ress calculated by the 

four best ML methods in terms of prediction error: a) Gradient Boosting; b) Random Forest; c) Ada Boost; 4) 

kNN. As in the previous case, the points on the plot are close to the bisector of the first coordinate angle, 

indicating high prediction accuracy. 
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a) b) 

  

c) d) 

Fig. 5. The true vs. predicted residual strain res for specimen # 17 obtained by ML methods:  

a) Gradient Boosting; b) Random Forest; c) Ada Boost; 4) kNN 

Figure 5 shows the dependence of the true versus predicted residual strain range ress obtained by the four 

best ML methods in terms of prediction error: a) Gradient Boosting; b) Random Forest; c) Ada Boost; 4) kNN. 

As in the case of sample 17, the points on the plot are very close to the bisector of the first coordinate angle, 

confirming the low prediction error and therefore high prediction accuracy. 

4. CONCLUSIONS 

During the study, the functional properties of NiTi shape memory alloys were modeled using supervised 

machine learning methods. The modeling was performed on the Orange data mining platform. As a result, the 

regression dependencies of the residual strain and dissipated energy ranges for the four specimens studied were 

obtained using the k-Nearest Neighbors (kNN) method, as well as Support Vector Machines, Stochastic 

Gradient Descent method, Random Forest methods, Neural Networks, Gradient Boosting and AdaBoost. 

Among the methods studied, kNN, AdaBoost, Gradient Boosting, and Random Forest showed the best results 

in terms of prediction errors. This demonstrates the high potential of ensemble models in predicting the areas 

of dissipated energy and residual strain. Therefore, ML learning methods are a powerful and promising tool 

for solving tasks related to the prediction of functional properties of SMAs. In future research, it is planned to 

use model stacking to further improve the predictive power with respect to the functional properties of SMA. 

 

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

res_pred, %

res_true, %
True vs predicted _res, %,  for 
specimen # 17,Gradient Boosting

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

res_pred, 

res_true, 

%

True vs predicted _res, %,  
for specimen # 17, Random Forest

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

res_pred, %

res_true, %True vs predicted _res, %, 
for specimen # 17, Ada Boost

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

res_pred, %

res_true,%
True vs predicted _res, %, 
for specimen # 17, kNN



134 

Conflicts of interest 

The authors declare no conflict of interest. 

Acknowledgments 

This work was co-financed by the Military University of Technology, Poland under the research project 

UGB/22-016. 

REFERENCES 

Akima, H. (1970). A new method of interpolation and smooth curve fitting based on local procedures. Journal of the ACM, 17(4), 589–

602. https://doi.org/10.1145/321607.321609 

Alfonso, G., Zaccagnino, R., Gobbo, E. Del, Garikapati, D., & Sudhir Shetiya, S. (2024). Autonomous vehicles: Evolution of artificial 

intelligence and the current industry landscape. Big Data and Cognitive Computing, 8(4), 42. 

https://doi.org/10.3390/BDCC8040042 

Basak, D., Pal, S., & Patranabis, D. (2007). Support vector regression. Statistics and Computing, 11(10), 203–209.  

Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13(38), 1063–1095. 

Boy, A. F., Akhyar, A., Arif, T. Y., & Syahrial, S. (2025). Development of an artificial intelligence model based on MobileNetV3 for 

early detection of dental caries using smartphone images: A preliminary study. Advances in Science and Technology. Research 

Journal, 19(4), 109–116. https://doi.org/10.12913/22998624/200308 

Burkov, A. (2019). The Hundred-Page Machine Learning Book. Andriy Burkov. 

Cabanillas-Carbonell, M., Rivera, J. S., & Muñoz, J. S. (2025). Artificial intelligence in video surveillance systems for suspicious 

activity detection and incident response: A systematic review. Advances in Science and Technology. Research Journal, 19(3), 

389–405. https://doi.org/10.12913/22998624/196795 

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery 

Today, 23(6), 1241–1250. https://doi.org/10.1016/J.DRUDIS.2018.01.039 

Cruz, J. A., & Wishart, D. S. (2007). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 59. 

https://doi.org/10.1177/117693510600200030 

Dębska, A. A., Gwoździewicz, P., Seruga, A., Balandraud, X., & Destrebecq, J. F. (2021). The application of Ni–Ti SMA wires in the 

external prestressing of concrete hollow cylinders. Materials, 14(6), 1354. https://doi.org/10.3390/MA14061354 

Frankiewicz, P., Góral, T., & Bembenek, M. (2025). Influence of process parameters in tungsten inert gas welding of titanium, 

supported by you only look once–based defect detection algorithm. Advances in Science and Technology. Research Journal, 

19(8), 1–14. https://doi.org/10.12913/22998624/203803 

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-Line learning and an application to boosting. Journal 

of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/JCSS.1997.1504 

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. 

https://doi.org/10.1214/AOS/1013203451 

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378. 

https://doi.org/10.1016/S0167-9473(01)00065-2 

Gao, H., Kou, G., Liang, H., Zhang, H., Chao, X., Li, C.-C., & Dong, Y. (2024). Machine learning in business and finance: A literature 

review and research opportunities. Financial Innovation, 10, 86. https://doi.org/10.1186/S40854-024-00629-Z 

Habti, W. E., & Azmani, A. (2025). Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment 

analysis. Applied Computer Science, 21(1), 70–82. https://doi.org/10.35784/ACS_6670 

Hang, L., Lu, L., & Huanqiang, Z. (2024). Machine Learning Methods (1st ed.). Springer. 

He, Z., Lin, D., Lau, T., & Wu, M. (2019). Gradient Boosting Machine: A Survey. ArXiv, abs/1908.06951v1. 

https://arxiv.org/abs/1908.06951v1 

James, I., & Osubor, V. (2025). Machine learning evidence towards eradication of malaria burden: A scoping review. Applied Computer 

Science, 21(1), 44–69. https://doi.org/10.35784/ACS_6873 

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. 

https://doi.org/10.1126/SCIENCE.AAA8415 

Kelly, B. T., & Xiu, D. (2023). Financial machine learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4501707 

Kirda, A. W., Majewski, P., Bursy, G., Bartoszuk, M., Yassin, H., Królczyk, G., Akbar, N. A., & Caesarendra, W. (2025). Integrating 

YOLOv5, Jetson nano microprocessor, and Mitsubishi robot manipulator for real-time machine vision application in 

manufacturing: A lab experimental study. Advances in Science and Technology. Research Journal, 19(5), 248–270. 

https://doi.org/10.12913/22998624/201366 

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539 

Liu, Q., Ghodrat, S., Huisman, G., & Jansen, K. M. B. (2023). Shape memory alloy actuators for haptic wearables: A review. Materials 

& Design, 233, 112264. https://doi.org/10.1016/J.MATDES.2023.112264 

Lu, J. (2022). Gradient Descent, Stochastic Optimization, and Other Tales. ArXiv, abs/2205.00832v2. https://arxiv.org/abs/2205.00832v2 

Molod, M. A., Spyridis, P., & Barthold, F. J. (2022). Applications of shape memory alloys in structural engineering focusing on 

concrete construction – A comprehensive review. Construction and Building Materials, 337, 127565. 

https://doi.org/10.1016/J.CONBUILDMAT.2022.127565 

Natekin, A., & Knoll, A. (2013). Gradient boosting machines: A tutorial. Frontiers in Neurorobotics, 7, 63623. 

https://doi.org/10.3389/FNBOT.2013.00021/BIBTEX 



135 

Pogrebnjak, A. D., Buranich, V. V., Horodek, P., Budzynski, P., Konarski, P., Amekura, H., Okubo, N., Ishikawa, N., Bagdasaryan, A., 

Rakhadilov, B., Tarelnik, V., Sobaszek, Zukowski, P., & Opielak, M. (2022). Evaluation of the phase stability, microstructure, and 

defects in high-entropy ceramics after high-energy ion implantation. High Temperature Material Processes: An International 

Quarterly of High-Technology Plasma Processes, 26(3), 77–93. https://doi.org/10.1615/HIGHTEMPMATPROC.2022043733 

Popovic, M. B., Lamkin-Kennard, K. A., Beckerle, P., & Bowers, M. P. (2019). Actuators. Biomechatronics, 45–79. 

https://doi.org/10.1016/B978-0-12-812939-5.00003-3 

Ravi, S. K., Ravi, S. K., & Prabha, A. H. (2024). The advent of machine learning in autonomous vehicles. International Journal of 

Science and Research Archive, 13(1), 1219–1226. https://doi.org/10.30574/IJSRA.2024.13.1.1760 

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. 

https://doi.org/10.1016/J.NEUNET.2014.09.003 

Sirmayanti, Prastyo, P. H., Mahyati, & Rahman, F. (2025). A systematic literature review of diabetes prediction using metaheuristic 

algorithm-based feature selection: Algorithms and challenges method. Applied Computer Science, 21(1), 126–142. 

https://doi.org/10.35784/ACS_6849 

Ślesicka, A., Ślesicki, B., Kawalec, A., Walenczykowska, M., & Krenc, K. (2025). AI-assisted frequency-modulated continuous wave 

radar for drone detection near runways: Challenges, trends, and research gaps. Advances in Science and Technology. Research 

Journal, 19(7), 266–279. https://doi.org/10.12913/22998624/203910 

Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing, 21(3), 12–18. 

https://doi.org/10.1109/MIC.2017.72 

Srisuradetchai, P., & Suksrikran, K. (2024). Random kernel k-nearest neighbors regression. Frontiers in Big Data, 7, 1402384. 

https://doi.org/10.3389/FDATA.2024.1402384/BIBTEX 

Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., & Basilico, J. (2021). Deep Learning for recommender systems: A Netflix 

case study. AI Magazine, 42(3), 7–18. https://doi.org/10.1609/AIMAG.V42I3.18140 

Sujana, J. A. J., Mystica, I., Jeremiah, R. J., & Stebel, K. (2025). Heart health fog: A deep learning approach leveraging internet of 

things and fog computing for real-time heart disease prediction. Advances in Science and Technology. Research Journal, 19(7), 

406–414. https://doi.org/10.12913/22998624/204392 

Świć, A., Gola, A., Sobaszek, Ł., & Šmidová, N. (2021). A thermo-mechanical machining method for improving the accuracy and 

stability of the geometric shape of long, low-rigidity shafts. Journal of Intelligent Manufacturing, 32, 1939–1951. 

https://doi.org/10.1007/s10845-020-01733-4 

Velychko, D., Osukhivska, H., Palaniza, Y., Lutsyk, N., & Sobaszek, Ł. (2024). Artificial intelligence-based emergency identification 

computer system. Advances in Science and Technology. Research Journal, 18(2), 296–304. 

https://doi.org/10.12913/22998624/184343 

Wang, B., Zhu, J., Zhong, S., Liang, W., & Guan, C. (2024). Space deployable mechanics: A review of structures and smart driving. 

Materials & Design, 237, 112557. https://doi.org/10.1016/J.MATDES.2023.112557 

Yasniy, O., Demchyk, V., & Lutsyk, N. (2022). Modelling of functional properties of shape-memory alloys by machine learning 

methods. Scientific Journal of the Ternopil National Technical University, 108(4), 74–78. 

https://doi.org/10.33108/VISNYK_TNTU2022.04.074 


