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Abstract 

Speech emotion recognition has been gaining importance for years, but most of the existing models are 

based on a single signal representation or conventional convolutional layers with a large number of 

parameters. In this study, we propose a compact multi-representation architecture that combines four 

images of the speech signal: spectrogram, MFCC features, wavelet scalogram, and fuzzy transform maps. 

Furthermore, the application of Kronecker convolution for efficient feature extraction with an extended 

receptive field is shown. Another novelty is cross-fusion, a mechanism that models interactions between 

branches without significantly increasing complexity. The core of the network is complemented by a 

transformer-based block and language-independent adversarial learning. The model is evaluated in a 

scenario of quadruple cross-lingual tests covering four data corpora for four languages: English, German, 

Polish and Danish. It is trained on three languages and tested on the fourth, achieving a weighted accuracy 

of 96.3%. In addition, the influence of selected activation functions on the classification quality is 

investigated. Ablation analysis shows that removing the Kronecker convolution reduces the efficiency by 

5.6%, and removing the fuzzy transform representation by 4.7%. The obtained results indicate that the 

combination of Kronecker convolution, multi-channel fusion, and adversarial learning is a promising 

direction for building universal, language-independent emotion recognition systems. 

1. INTRODUCTION 

Verbal communication involves the exchange of information, ideas, moods, or feelings through the use of 

words and sounds (George & Ilyas, 2024). It contains a wealth of information about the speakers, the content 

of their message, and their emotional state. Speech emotion recognition (SER) has been widely applied to 

detect various emotional states that affect attention, motivation, and relationships with other people. It 

accompanies people in their daily lives, including vocal instructions, smartphones, synthesized speech, and 

criminal investigations (Ezzameli & Mahersia, 2023; Ntalampiras et al., 2009). In particular, studies on 

acoustic data have recently received much attention in the context of the rapid development of machine 

learning and deep neural networks. Classification and regression are applied to voice identification as well as 

to emotion recognition. A large number of studies concern different types of SER based on utterance-based 

(Zhao et al., 2014) context-aware (Kakuba & Han, 2022; Trigeorgis et al., 2016) cross-corpus (Latif et al., 

2020) cross-linguistic (Song et al., 2016) and cross-cultural systems (Kamaruddin et al., 2012). These 

supervised machine learning techniques provide both traditional handcrafted feature extraction and automated 

processes to extract specific information from signals (Jin et al., 2015). Speech preprocessing transforms the 

signal into different types of features. Mel Frequency Cepstral Coefficients (MFCC), Gamma Tone Cepstral 

Coefficients, Linear Predictive Cepstral Coefficients, Bark Frequency Cepstral Coefficients and Mel-

Spectrograms are prominent for SER (Chwaleba & Wach, 2024; George & Ilyas, 2024; Motamed et al., 2017; 

Prasomphan, 2015). 

Many studies deal with SER using Support Vector Machine (SVM), Neural Network (NN), Gaussian 

Mixture Model (GMM) and Hidden Markov Model (HMM) (El Ayadi et al., 2011; Ververidis & Kotropoulos, 

2006). Deep learning models have achieved remarkable performance in SER. Convolutional Neural Networks 

(CNNs) are widely used with automatic feature extraction (Chowdhury et al., 2025; Madanian et al., 2025). 
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CNN-based models using transformers with multi-dimensional attention mechanisms are said to have great 

potential for SER in human-machine interaction (Ahn et al., 2025; Tang et al., 2025). 

1.1. Motivation 

The models used for SER typically have a single signal representation or standard convolutional layers with 

a large number of parameters. Each signal representation conveys different types of features on which 

recognition is based. In this study, we apply multimodality to extract the most important features of the signal 

for speech recognition. This approach provides more accurate information about human emotion by using the 

signal representation from different modalities. Another goal is to test whether Kronecker convolution can 

improve the efficiency of feature extraction with an extended receptive field. The combination of CNN with 

transformer-based blocks provides better performance by exploiting local and global signal dependencies. This 

type of architecture can improve SER detection. 

1.2. Contribution 

This study focuses on enhancing the speech emotion recognition. The main aim is to propose a compact, 

multi-representation architecture that combines four images of the speech signal: spectrogram, MFCC features, 

wavelet scalogram and fuzzy-transform maps. Thus, the main contributions of this study are as follows: 

− Four corpora of emotional speech representing Polish, English, German and Danish are included in this 

study. They are chosen for their linguistic diversity and realistic acoustic variability. 

− The Kronecker Convolution with Four Feature Modalities (K4F-Net) model is proposed for SER. Four 

signal representations are used for signal preprocessing. Spectrogram, MFCC features, wavelet 

scalogram and fuzzy transform maps provide different types of relevant characterization of speech 

signals. The fusion of these modalities provides both local and global signal dependencies. Standard 

convolution is replaced by Kronecker operation. This approach provides a more comprehensive capture 

of local features. The novelty is cross-fusion, a mechanism that models interactions between branches 

without significantly increasing complexity. The core of the network is complemented by a transformer-

based block and language-independent adversarial learning. 

− The proposed model has been verified using the following metrics: weighted accuracy, macro precision, 

macro recall, and macro F1 score. 

− In order to quantify the importance of individual components of the proposed model, a series of ablation 

experiments are performed on the Polish-held-out fold. The ablation analysis shows that removing the 

Kronecker convolution reduces the efficiency by 5.6%, and removing the fuzzy transformation 

representation reduces the efficiency by 4.7%. 

2. RELATED WORKS 

Speech emotion recognition (SER) has become a hot topic in affective computing because prosodic cues 

convey a substantial amount of human intent. Behavioral studies attribute nearly half of communicative content 

to vocal tone, rather than facial or gestural signals (Johanson et al., 2021; Madanian et al., 2023). Correctly 

identifying a speaker's affective state is therefore essential for natural human-computer interaction, prompting 

intense efforts to design deep learning systems that can perceive and respond to users' emotions with increasing 

accuracy (Johanson et al., 2021; Mishra et al., 2025). The task remains challenging due to background noise, 

channel distortion, and the linguistic diversity that characterizes real-world deployments (Ibrahim et al., 2024; 

Powroźnik & Czerwiński, 2016). 

Modern SER pipelines rely on both one-dimensional waveforms and two-dimensional time-frequency 

images (Abdel-Hamid et al., 2014; Echim et al., 2024). Waveform level features are typically processed by 1-

D CNNs, often cascaded with recurrent layers such as LSTM or GRU. However, some studies have attempted 

to process speech signals in a feedforward manner (Avots et al., 2019; Powroźnik, 2014).Using multilayer 

perceptrons or combining spectral and prosodic features improves robustness to noise (Czerwinski & 

Powroźnik, 2018) especially when focusing on a specific language.  

Although CNNs still dominate SER, Vision Transformer (ViT) architectures have gained momentum due 

to their self-attention mechanism, which models long-range spatial dependencies more efficiently than 

convolutions (Akinpelu et al., 2024; Khasgiwala & Tailor, 2021). Hybrid CNN/ViT solutions have improved 
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classification accuracy by up to 17.7% (Khasgiwala & Tailor, 2021). CNN backbones such as ResNet-50 are 

often used to suppress noise (Kim & Lee, 2025) while lightweight variants of ViT (e.g., l-ViT) can outperform 

traditional CNNs in accuracy (Akinpelu et al., 2024). 

Pre-trained ViT and BEiT backbones tested for human-robot interaction (Mishra et al., 2025). A dual-path 

fusion of MaxViT and MViTv2 with an MLP head (MaxMViT-MLP) achieved state-of-the-art results by 

combining CQT and Mel-STFT spectrograms, thus exploiting both logarithmic and linear frequency scales 

(Ong et al., 2024). SepTr decouples temporal and spectral attention via separable transformer blocks (Ristea 

et al., 2022) while the Audio Spectrogram Transformer (AST) performs well with either random initialization 

or AudioSet pre-training (AST).(Gong et al., 2021). Vertically segmented patches of log-Mel spectrograms 

further push accuracy (Kim & Lee, 2024). 

For Arabic and English corpora, transformer-based models outperform ViT, wave2vec, and other baselines. 

CoordViT, which concatenates coordinate information, also performs well (Mohamed et al., 2024). Combining 

ViT patching along the time axis with parallel CNN feature extractors improves performance (Hashemi & 

Asgari, 2023). Compact Convolutional Transformers (CCTs) Demonstrate Robustness in Cross-Corpus 

Environments (Arezzo & Berretti, 2022). In a large Romanian-German benchmark, CvT and AlexNet 

outperformed alternatives such as CNN-LSTM, VGG-16, ViT, and LeViT; Grad-CAM++ maps revealed the 

most salient spectral regions (Echim et al., 2024). 

Interest is shifting to models that fuse multiple modalities. Transformer architectures that combine facial 

landmarks, action units, head pose, and MFCCs improve robustness (Chumachenko et al., 2022). Joint speech-

face embeddings have been explored with xlsr-Wav2Vec 2.0 (Luna-Jiménez et al., 2021) while the Fuzzy 

Multimodal Transformer (FMMT) integrates audio, visual, and textual cues for a richer affective context (Liu 

et al., 2025). 

Noting that there is no single large, language-universal corpus, recent work also explores the merging of 

heterogeneous datasets to improve generalization across languages and speaking styles (Ibrahim et al., 2024). 

3. MATERIALS AND METHODS 

3.1. Datasets 

To ensure both linguistic diversity and realistic acoustic variability, the experimental material combines 

four publicly available corpora of emotional speech in Polish, English, German and Danish. 

The Polish corpus (Database A) consists of 240 studio-quality utterances recorded by eight professional 

actors, evenly divided by gender, expressing joy, anger, sadness, fear, boredom and a neutral mood. It was 

compiled at the Lodz University of Technology and is described in (Kaminska et al., 2013). 

The English corpus (Database B) was collected at the Center for Strategic Technology Research and 

contains 700 utterances covering anger, happiness, sadness, fear and neutrality. Thirty actors produced the 

material, which was then validated by a separate panel of thirty listeners (Petrushin, 2000). 

The German corpus (Database C) is the Berlin Emotional Speech Database, which consists of a total of 535 

carefully selected recordings depicting anxiety, fear, boredom, joy, anger, and indignation (Hareli & Hess, 

2012). Twenty trained actors contributed the speech, and only items with a recognition rate of at least 80% in 

a 20-listener evaluation were retained. 

Finally, the Danish corpus (Database D) - the Danish Emotional Speech Database (DES) - comes from the 

Center for Personal Communication at Aalborg University (Engberg & Hansen, 1996). It includes isolated 

words, short sentences, two passages, and eighteen longer segments representing anger, sadness, joy, surprise, 

and a neutral tone. Recordings of four actors were included and subsequently reviewed by a group of twenty 

listeners ranging in age from 18 to 58. 

To increase acoustic diversity and minimize model overfitting on small, acted corpora, a number of 

different speech enhancement techniques were used in this study. Each sample was randomly modified with 

parameters chosen from continuous intervals to preserve natural speech. A time shift of up to ±50ms was 

introduced, training the network to be robust to small decalibrations of the STFT windows. A speed/pitch 

perturbation was applied: a factor of 0.9-1.1 changed the tempo without significantly affecting intelligibility, 

while shifting the formants and enriching the acoustic space. Background noise with an SNR of 10-25 dB, 

randomly selected from office, street, and white noise recordings, was added to increase robustness to typical 

field listening conditions. In selected samples, reverberation was synthetically simulated by convolution with 
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a randomly selected room impulse response, and bandpass filters mimicking cell phone or laptop speakers 

were applied to 20% of the examples. At the spectral level, time-frequency masking was applied, randomly 

excluding narrow bands or short temporal fragments, forcing the search for generalized patterns. Finally, rare 

emotion classes were augmented by mixing two examples of the same label, maintaining the balance between 

languages and emotions without artificially duplicating identical recordings. In total, the augmentation 

increased the effective size of the training set by more than five times. The final structure of the applied data 

set is shown in Table 1. 

Tab. 1. The final structure of used datasets 

Corpus 

(Language) 

No. of 

speakers 
Emotions 

No. of items  

before augmentation 

No. of items  

after augmentation 

A (Polish) 8 
joy, anger, sadness, fear, boredom, 

neutral 
240 1112 

B - SAVEE 

(English) 
30 anger, joy, sadness, fear, neutral 700 3326 

C – Emo-DB 

(German) 
10 

anxiety, fear, boredom, joy, anger, 

indignation 
535 2675 

D – DES 

(Danish) 
4 anger, sadness, joy, surprise, neutral 250 1232 

3.2. Discrete fourier transform 

The spectrogram representation is one of the four signal views integrated into our multi-view classifier for 

speech emotion recognition. A spectrogram is a visual representation of the frequency content of a signal as it 

varies with time, obtained by the Short-Time Fourier Transform (STFT), a time-dependent adaptation of the 

Discrete Fourier Transform (DFT) (Kozieł et al., 2024). 

The Discrete Fourier Transform of a Finite Discrete-Time Signal 𝑥(𝑛)where 𝑛 = 0,1, . . . , 𝑁 − 1transforms 

it from the time domain to the frequency domain, and is expressed mathematically as Eq. 1 (Powroźnik et al., 

2021): 

𝑋(𝑘) = ∑ 𝑥[𝑛]𝑁−1
𝑛=0 𝑒−𝑗2π

𝑘𝑛

𝑁 ,   𝑘 = 0,1, … , 𝑁 − 1          (1) 

where 𝑋(𝑘)is the frequency domain representation, and 𝑁is the total number of samples in the analyzed 

segment. The resulting complex-valued 𝑋(𝑘)encodes both amplitude and phase information of the frequency 

components.  

To capture the temporal evolution of the frequency content, the STFT is applied. The STFT divides the 

speech signal into short overlapping segments, applies a suitable windowing function 𝑤(𝑛)(in this case, a 

Hamming window) to each segment and computes the DFT separately for each windowed segment. 

Mathematically, the STFT of the signal 𝑥(𝑛)is given as equation 2 (Allen & Rabiner, 1977): 

𝑋(𝑚, 𝑘) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑚𝑅)𝑒−𝑗2π
𝑘𝑛

𝑁                   (2) 

where 𝑚indexes the discrete time frame, 𝑅is the hop size between neighboring frames, and 𝑘indexes the 

frequency bins. 

The spectrogram 𝑆(𝑚, 𝑘) is obtained by computing the squared magnitude of the STFT, effectively 

discarding phase information and providing the distribution of energy across frequencies and time frames (Eq. 

3): 

𝑆(𝑚, 𝑘) = |𝑋(𝑚, 𝑘)|2                 (3) 

3.3. Mel-frequency cepstral coefficients 

One of the signal representations used in our multi-view speech emotion recognition model is based on 

MFCC, which provides a perceptually relevant characterization of speech signals. The MFCC representation 

is derived from the short-term power spectrum of speech, modified by a perceptually motivated frequency 
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distortion known as the Mel scale, which reflects the human auditory perception mechanism (Abdul & Al-

Talabani, 2022). 

To compute MFCCs (Equation 4), a given speech frame 𝑥(𝑛) first undergoes a windowing operation 

(usually a Hamming window) to mitigate boundary effects, resulting in windowed frames 𝑥𝑤(𝑛): 

𝑥𝑤(𝑛) = 𝑥(𝑛)  ⋅ 𝑤(𝑛)̇   0 ≤ 𝑛 ≤ 𝑁 − 1             (4) 

where 𝑤(𝑛)is the window function, typically defined as in Equation 5: 

 𝑤(𝑛) = 0.54 − 0.46𝑐𝑜𝑠 (
2π𝑛

𝑁−1
)               (5) 

The next step is to calculate the Discrete Fourier Transform of each windowed frame to obtain the power 

spectrum 𝑋(𝑘) Eq. 1. Then, a set of triangular Mel-scaled filter banks 𝐻𝑚(𝑘) is applied to the power spectrum 

to generate the Mel-spectrum coefficients Eq. 6: 

𝑆(𝑚) = ∑ |𝑋(𝑘)|2𝑁−1
𝑘=0 𝐻𝑚(𝑘),   𝑚 = 1,2, … , 𝑀            (6) 

where the filter banks are spaced according to the Mel scale 𝑓𝑚𝑒𝑙, defined as Eq. 7: 

𝑓𝑚𝑒𝑙 = 2595𝑙𝑜𝑔10 (1 +
𝑓

700
)               (7) 

with 𝑓 being the linear frequency (in Hz). This nonlinear transformation reflects human ear perception, 

emphasizing lower frequencies. 

Finally, the MFCC coefficients 𝑐(𝑙) are computed by applying the Discrete Cosine Transform on the 

logarithmic Mel spectrum coefficients 𝑆(𝑚) defined by Eq. 8: 

𝑐(𝑙) = √
2

𝑀
∑ 𝑙𝑜𝑔[𝑆(𝑚)]𝑐𝑜𝑠 [

π𝑙

𝑀
(𝑚 −

1

2
)]𝑀

𝑚=1 ,   𝑙 = 1,2, … , 𝐿         (8) 

Typically, only the first 13 coefficients are retained, as higher order coefficients represent rapid spectral 

changes and often carry less meaningful information about speech emotion characteristics (Zheng et al., 2015). 

3.4. Wavelet scalograms 

A wavelet scalogram is a two-dimensional energy map that illustrates how the spectral content of a signal 

varies over time. It is obtained from the continuous wavelet transform (CWT), which projects a real-valued 

speech waveform 𝑥(𝑡) onto a family of scaled and translated copies of a mother wavelet ψ(𝑡). 

The CWT coefficient at scale 𝑎 > 0 and translation 𝑏 ∈ 𝑅 is defined by Eq. 9. 

𝑊𝑥(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡)

∞

∞
 ψ∗ (

𝑡−𝑏

𝑎
)  𝑑𝑡           (9) 

where ψ∗(⋅)denotes complex conjugation, and the factor 1/√|𝑎| equalizes energy across scales (Mallat, 

2009). Small values of 𝑎analyzes high-frequency, short-duration phenomena, while large emphasizes slowly 

varying, low-frequency structures, giving the CWT its multiresolution capability. The scalogram itself is the 

squared modulus of the CWT coefficients (Eq. 10):  

𝑃𝑥(𝑎, 𝑏) = |𝑊𝑥(𝑎, 𝑏)|2            (10) 

Equations (9)-(10) describe the continuous time CWT for a waveform 𝑥(𝑡). In practice, all corpora are 

resampled to 16 kHz and processed as discrete-time sequences 𝑥[𝑛] = 𝑥(𝑛𝑇𝑠) with 𝑇𝑠 = 1/16,000𝑠. The 

implemented CWT therefore uses discrete scales ak and translations 𝑏𝑚 = 𝑚𝐻 (skip 𝐻in samples), yielding 

coefficients 𝑊𝑥[𝑎𝑘 , 𝑏𝑚] that populate the scalogram image. This aligns the notation with Eq. (1), where the 

STFT/DFT is assumed to be 𝑥𝑛. The continuous forms are retained for clarity. All downstream operations use 

their standard discrete counterparts. 



115 

For a digitally sampled signal at rate 𝑓𝑠, scale is converted to a pseudo-frequency 𝑓 =
𝑓𝑐

𝑎
, with 𝑓𝑐 the centre 

frequency of the chosen mother wavelet (Powroźnik et al., 2021). Discrete scales 𝑎𝑚 (𝑚 = 1, … , 𝑀) and 

translations 𝑏𝑛 =
𝑛𝑅

𝑓𝑠
, 𝑛 = 1, … , 𝑁, where 𝑅 is the hop size, yield a matrix representation Pm,n = 𝑃𝑥(𝑎𝑚, 𝑏𝑛) ∈

𝑅𝑀×𝑁 , whose entries become pixel intensities in the scalogram image. 

3.5. Fuzzy-transform images 

A fuzzy transform (F-T) image encodes the temporal evolution of low-dimensional fuzzy coefficients that 

approximate a signal by a fuzzy partition of its domain. Let 𝑥(𝑡) is a real-valued speech waveform defined on 

a compact interval Ω ⊂ 𝑅(e.g. a short time frame) and let 𝒜 = {𝐴1, . . . , 𝐴𝐾} is a fuzzy partition of Ω. 

Each fuzzy set 𝐴𝑘 is characterised by a membership function (Eq. 11): 

μ𝑘(𝑡) = 𝐴𝑘(𝑡): Ω ⟶ [0,1],   𝑘 = 1, … , 𝐾,         (11) 

Satisfies the α- normalization and Ruspini conditions (eq. 12): 

∑ μ𝑘(𝑡)𝐾
𝑘=1 = 1,   ∀ 𝑡 ∈  Ω            (12) 

In practice, triangular or other "hat" functions are chosen as prototype membership functions for simplicity 

and local support (Eq. 13): 

μ𝑘(𝑡) = max {0,1 −
|𝑡−𝑐𝑘|

ℎ
},                 (13) 

where 𝑐𝑘 is the center of 𝐴𝑘and ℎis half the base width, ensuring overlap with neighboring fuzzy sets. 

The 𝑘-th fuzzy coefficient of 𝑥(𝑡)is obtained as the membership-weighted average defined in equation 14: 

𝐹𝑘 =
∫ 𝑥(𝑡)𝜇𝑘(𝑡)𝑑𝑡

Ω

∫ 𝜇𝑘(𝑡)𝑑𝑡
Ω

,  𝑘 = 1, … , 𝐾           (14) 

which can be interpreted as a localized, smoothed sample of the signal (Perfilieva, 2006). For a uniformly 

sampled frame {𝑥𝑛}𝑛=1
𝑁  with sample period Δ𝑡the discrete form is as in equation 15: 

𝐹𝑘 =
∑ 𝑥𝑛

𝑁
𝑛=1 μ𝑘(𝑡𝑛)

∑ μ𝑘(𝑡𝑛)𝑁
𝑛=1

,              (15) 

where 𝑡𝑛 = 𝑛Δ𝑡. 

For each STFT-like frame of length 𝑁, the 𝐾-dimensional vector F(m) = [𝐹1
(𝑚)

, … , 𝐹𝐾
(𝑚)

]
⊤

is computed. 

Stacking these column-wise over successive frames 𝑚 = 1, … , 𝑀 produces a matrix F = [F(1) F(2)  ⋯  F(M)] ∈

𝑅𝐾×𝑀 , whose entries are linearly rescaled to ([0,255]) and rendered as a grey-scale bitmap.  

This F-transform image becomes the fourth parallel input of K4F-Net, complementing spectrograms, mel-

spectrum maps, and wavelet scalograms. Because fuzzy coefficients integrate local information through 

overlapping membership functions, the image captures smooth temporal-spectral trends that have proven 

discriminative in speech emotion tasks, while exhibiting robustness to noise and speaker variability. 

The membership-driven locality of the F-transform provides tunable resolution: narrower support 

(ℎ! ↓)emphasize rapid energy fluctuations associated with high arousal, while broader supports emphasize 

slower prosodic drifts associated with low arousal or neutral affect. These complementary features, when fused 

with the other three representations in the cross-fusion layers, significantly enhance recognition accuracy. 

3.6. Kronecker convolution 

Kronecker Convolution (KC) extends the receptive field of a standard convolution without introducing 

additional learnable parameters by factorizing the kernel by a fixed Kronecker product. Let the input feature 

map be 𝑋 ∈ 𝑅𝐶𝑖𝑛×𝐻×𝑊 and the learnable base kernel is 𝐺 ∈ 𝑅𝐶𝑂𝑢𝑡×𝐶in×𝑘×𝑘. 
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A standard 𝑘 × 𝑘 convolution produces the output activation at spatial index 𝑝 ∈ 𝑍𝟚 as Eq. 16 (Patro et al., 

2023): 

 𝑌(𝑝) = ∑ ∑ 𝐺𝑐
𝑐(𝑞)𝑋𝑐

𝑐(𝑝 − 𝑞)𝑞∈ℛ𝓀

𝐶in
𝑐=1 ,             (16) 

where ℛ𝓀 = {−⌊𝑘/2⌋, … , ⌊𝑘/2⌋}2 indexes the local receptive field. 

Kronecker convolution replaces the original kernel by (Eq. 17): 

𝑊K = 𝐺 ⊗ 𝑇𝑟,𝑠                     (17) 

where “⊗’’ denotes the Kronecker product and 𝑇𝑟,𝑠 ∈ {0,1}(𝑟𝑠)×(𝑟𝑠) is a fixed binary transformation matrix 

that expands 𝐺 both geometrically and structurally (Wu et al., 2019): 

𝑇𝑟,𝑠 = (

𝐽𝑠 0 ⋯ 0
0 𝐽𝑠 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 𝐽𝑠

) ,   𝐽𝑠 = 1𝑠×𝑠, 

with 𝐽𝑠one 𝑠 × 𝑠All-One Block, 0 is a zero block of the same size, 𝑟 ∈ 𝑁+is the inter-dilatation factor that 

controls the spacing between blocks, and 𝑠 ∈ 𝑁+is the intra-sharing factor that controls the size of each block. 

The effective kernel size thus increases from 𝑘to 𝑘′ = 𝑘𝑟which gives a receptive field identical to that of 

an atrous (dilated) convolution with rate 𝑟but the number of parameters remains 𝐶out𝐶in𝑘2 because 𝑇𝑟,𝑠 is not 

trainable. 

Using the extended kernel, the KC output is as in equation 18: 

𝑌(𝑝) = ∑ ∑ b𝑊𝑐
KC(𝑞)𝑋𝑐

𝑐(𝑝 − 𝑞)𝑞∈ℛ𝓀′

𝐶in
𝑐=1 ,         (18) 

where non-zero entries 𝑊K are divided into 𝑠 × 𝑠sub-regions, allowing the operator to capture both long-

range context (via 𝑟) and dense local detail (via 𝑠). The proportion of input locations that contribute to each 

output, called the Valid-Feature-Ratio (VFR), is VFR(𝑟, 𝑠) =
𝑠2

(𝑅𝑆)2 =
1

𝑟2, which exceeds that of a dilated 

convolution at the same rate (𝑠 = 1) for any 𝑠 > 1to reduce information loss in sparse sampling. The setting 

(𝑟, 𝑠) = (1,1) recovers the standard convolution, while (𝑟 > 1, 𝑠 = 1)degenerates to atrous convolution. 

Kronecker convolution thus generalizes both operators within a unified parameter-efficient formulation. 

3.7. K4F-Net architecture 

The proposed network ingests four synchronized time-frequency images extracted from a multi-speaker 

signal: a wavelet scalogram, an STFT spectrogram, a Mel-frequency spectrogram, and a fuzzy transform map. 

Each modality is resampled to the common spatial resolution 𝑅1×224×224 and standardized. A dedicated 

representation branch processes each image with three successive Kronecker Convolution Blocks (KCBs) 

whose purpose is to enlarge the receptive field without increasing the number of parameters. The entire 

architecture is summarized in Fig. 1 and detailed in Table 2 (per-branch flow) and Table 3 (shared trunk). 

Each branch uses three KCBs with channel widths of (1 → 32 → 64 → 128). The first two blocks use an 

intermediate dilation factor of 𝑟 = 2while the third uses 𝑟 = 1. An internal division factor 𝑠 = 2is kept 

constant. Each KCB ends with a 2 × 2max pooling layer, so the spatial resolution shrinks from 224 × 224to 

112 × 112then 56 × 56and finally 28 × 28. The resulting tensor of each branch is therefore denoted by 𝑍𝑖 ∈
𝑅128𝑥28𝑥28, 𝑖 ∈ {1, . . . ,4}. 
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Tab. 2. The general structure of view processing blocks. KC denotes Kronecker convolution 

Layer No Layer/Block Main Params Output (single 

branch) 

1. KC-Conv2D filters no: 32, kernel: 3 × 3, 𝑟 = 2, 𝑠 = 2, 𝑆𝑖𝐿𝑈 224 × 224 × 32 

2. KC-Conv2D filters no: 32, kernel: 3 × 3, 𝑟 = 2, 𝑠 = 2, 𝑆𝑖𝐿𝑈 224 × 224 × 32 

3. MaxPooling2D 2 × 2 112 × 112 × 32 

4. KC-Conv2D filters no: 64, kernel: 3 × 3, 𝑟 = 2, 𝑠 = 2, 𝑆𝑖𝐿𝑈 112 × 112 × 64 

5. KC-Conv2D filters no: 64, kernel: 3 × 3, 𝑟 = 2, 𝑠 = 2, 𝑆𝑖𝐿𝑈 112 × 112 × 64 

6. MaxPooling2D 2 × 2 56 × 56 × 64 

7. KC-Conv2D filters no: 128, kernel: 3 × 3, 𝑟 = 2, 𝑠 = 2, 𝑆𝑖𝐿𝑈 56 × 56 × 128 

8. KC-Conv2D filters no: 128, kernel: 3 × 3, 𝑟 = 2, 𝑠 = 2, 𝑆𝑖𝐿𝑈 56 × 56 × 128 

9. MaxPooling2D 2 × 2 28 × 28 × 128 

 

Fig. 1. The overall architecture of proposed K4F-Net 
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Tab. 3. The general structure of concatenated views processing blocks. KC denotes Kronecker convolution 

Layer No Layer/Block Main Params Output (after 

fusion) 

10. Concatenate - 28 × 28 × 512 

11. KC-Conv2D filters no: 512, kernel: 1 × 1, 𝑟 = 2, 𝑠 = 2, 

𝑆𝑖𝐿𝑈 

28 × 28 × 512 

12. KC - Attn 8 heads 28 × 28 × 512 

13. Transformer 3 blocks, 𝑑 = 512, 8 heads 28 × 28 × 512 

14. GlobalAvgPooling2D - 512 

15. Dense 512 → 128, 𝑆𝑖𝐿𝑈 128 

16. Dense  512 → 𝐶𝑙𝑎𝑠𝑠 𝑛𝑜, 𝑆𝑜𝑓𝑡𝑀𝑎𝑥  

 

In Table 1 and Table 2 KC stands for Kronecker Convolution. Effective kernel size 𝑘 ⋅ 𝑟 × 𝑘 ⋅ 𝑟is derived 

from the base 𝑘 × 𝑘 by the Kronecker product with the matrix 𝑇𝑟,𝑠. The number of learning weights remains 

the same 𝐶𝑜𝑢𝑡𝐶𝑖𝑛𝑘2. 

The four tensors are concatenated along the channel axis to give 𝑍 ∈ 𝑅512×𝐻′×𝑊′
and are then represented 

by a 1 × 1 Kronecker Convolution in Queries 𝑄, keys and values 𝑉of dimension 𝑑 = 512. Self-attention 

augmented with Kronecker structure is performed as in Eq. 19: 

𝐾𝐶 − 𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾⊤

√𝑑
) ⊗  𝑇2,2𝑉        (19) 

so that the local neighbourhood cues provided by 𝑇2,2 to preserve fine-grained detail while attention weights 

model long-range intermodal relationships. 

Three stacked encoder blocks follow, each consisting of layer normalization, eight-headed KC attention 

(KC-Attn) of width 𝑑 = 512, a position-wise feed-forward network of size 2𝑑 and remaining links. The 

Kronecker pattern embedded in the projection matrices maintains the low parameter number, but the receptive 

field, already expanded by the previous KCBs, now covers the entire joint feature map. 

Global spatial averaging reduces the tensor to a 512-dimensional vector. A dropout layer with probability 

0.2 mitigates co-adaptation. A fully connected layer maps 512 → 128 with Swish enabled, and the last layer 

projects 128 → 𝐶𝑙𝑎𝑠𝑠 𝑁𝑜 followed by a SoftMax that estimates posterior probabilities. 

3.8. Language-independent adversarial learning 

The multi-view front-end described in Sections 3.2 - 3.6 yields a joint feature tensor 𝐇 ∈ 𝑅𝑑×28×28 which 

encodes spectral-temporal cues from four complementary signal images. Although these cues are effective for 

emotion recognition, they still carry language-specific idiosyncrasies that interfere with cross-linguistic 

generalization. To suppress such disruptive information, we employ an adversarial strategy analogous to 

domain-adversarial neural networks (Ganin & Lempitsky, 2014; Xia et al., 2019). 

The Shared Feature Extractor ℱθincludes all layers up to and including the transformer encoder. Two task-

dependent heads are connected in parallel: an emotion classifier 𝒞ϕ
ℯ𝓂ℴwith SoftMax output of size 𝐾emo =

5and a language discriminator 𝒞ψ
ℓℴ𝓃ℊ

 with SoftMax Size 𝐾long = 4. The latter is preceded by a gradient reversal 

layer ℛλ which multiplies the backward signal by −λ < 0 during parameter updates, thereby inducing an 

adversarial objective without changing the forward pass.  

To construct a cost function, optimization objectives must be defined. Let (𝒙, 𝑦𝑒𝑚𝑜, 𝑦𝑙𝑜𝑛𝑔) denotes an input 

batch with an emotion label 𝑦𝑒𝑚𝑜and language label 𝑦𝑙𝑜𝑛𝑔. The two cross entropy losses are defined by Eq. 

20 and Eq. 21: 

ℒℯ𝓂ℴ = − ∑ 1[𝑦emo = 𝑘]𝐾emo
𝑘=1 log 𝒞ϕ

ℯ𝓂ℴ (ℱθ(𝑥))
𝑘

,          (20) 

ℒℓ𝒶𝓃ℊ = − ∑ 1[𝑦lang = l] log 𝒞ψ
ℓ𝒶𝓃ℊ

(ℛλ ∘ ℱθ(𝑥))
l

𝐾lang

l=1
.        (21) 

The overall objective to be minimized is therefore ℒ𝓉ℴ𝓉𝒶ℓ = ℒℯ𝓂ℴ + βℒℓℴ𝓃ℊ where β > 0 controls the 

trade-off between emotion fidelity and language invariance. Because the gradient of ℒℓℴ𝓃ℊ is reversed when 
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it reaches θthe extractor ℱθ is trained to maximize the error of the discriminator, i.e. to produce features that 

disguise language identity, while ψtries to minimize the same error. 

The resulting min-max game converges to a saddle point where ℱθ retains information essential for emotion 

prediction, but discards language-dependent artifacts, so that 𝒞ϕ
ℯ𝓂ℴ generalizes to English, German, Polish and 

Danish. 

To ensure the fastest possible convergence of the model, we empirically set λ = 1 and anneal βoff 0.0 to 

0.5according to schedule β𝑡 = 0.5 (1 + cos (
π𝑡

𝑇
)) over the first 𝑇 = 10 epochs, after which it remains 

constant. This warm-start stabilizes learning in the early iterations and yielded the highest average weighted 

accuracy on the evolutionary folds. 

The adversarial branch is purely auxiliary and does not alter the forward path of the emotion classifier. 

Consequently, it is fully compatible with the multi-view Kronecker convolutional backbone, the cross-fusion 

mechanism, and the transformer coder described in the previous sections. All tensor forms remain unchanged: 

𝐻 = ℱθ(𝑥) has shape 512 × 28 × 28 before global averaging, exactly as in Table 2, and the additional 

parameters 𝒞ψ
ℓℴ𝓃ℊ

 increase the total footprint by less than 1%. 

3.9. Evaluation metrics 

The effectiveness of the proposed classifier is evaluated using four class-level measures that are robust to 

label imbalance (Powers, 2020; Sokolova & Lapalme, 2009). Let us 𝑦𝑖̂ ∈ {1, . . . , 𝐾}denote the predicted 

emotion and 𝑦𝑖is the ground truth for sample 𝑖 = 1, . . . , 𝑁 then true positive (𝑇𝑃𝑐), false positive (𝐹𝑃𝑐), false 

negative (𝐹𝑁𝑐) can be defined as Eq. 22, Eq. 23, Eq. 24,  𝑛𝑐(Eq. 21) denotes the number of all examples in 

the test set whose ground truth belongs to class c: 

𝑛𝑐 = ∑ 1[𝑦𝑖 = 𝑐]𝑁
𝑖=1 ,             (21) 

𝑇𝑃𝑐 = ∑ 1[𝑦𝑖 = 𝑐] 1[𝑦𝑖̂ = 𝑐],𝑁
𝑖=1            (22) 

𝐹𝑃𝑐 = ∑ 1[𝑦𝑖 ≠ 𝑐] 1[𝑦𝑖̂ = 𝑐]𝑁
𝑖=1 ,           (23) 

𝐹𝑁𝑐 = ∑ 1[𝑦𝑖 = 𝑐]1[𝑦𝑖̂ ≠ 𝑐]𝑁
𝑖=1 .           (24) 

Weighted Accuracy (WA) gives the proportion of correctly classified instances while respecting the natural 

class priors Eq. 25: 

WA =
∑ TPc

K
c=1

∑ nc
K
c=1

             (25) 

Macro Precision and Macro Recall are obtained by first calculating the per-class values defined in 

Equations 26 and 27: 

𝑃𝑟𝑒𝑐𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑃𝑐
             (26) 

𝑅𝑒𝑐𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐+𝐹𝑁𝑐
              (27) 

and then averaged uniformly over the 𝐾 classes: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛macro =
1

𝐾
∑ 𝑃𝑟𝑒𝑐𝑐

𝐾
𝑐=1            (28) 

𝑅𝑒𝑐𝑎𝑙𝑙macro =
1

𝐾
∑ 𝑅𝑒𝑐𝑐

𝐾
𝑐=1            (29) 

Macro F1 is the harmonic mean of the two macro quantities as defined in Equation 30: 

𝐹1macro = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛macro∗𝑅𝑒𝑐𝑎𝑙𝑙macro

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛macro+𝑅𝑒𝑐𝑎𝑙𝑙macro
         (30) 
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While Equation 25 reflects overall operational accuracy in mission scenarios, the macro metrics Equations 

26 - 30 weigh each emotion equally and therefore highlight performance in minority conditions. 

4. EXPERIMENTS AND RESULTS 

All experiments follow a leave-one-language-out protocol in which three languages provide the training 

material, while the fourth language forms a strictly unseen test set. The procedure is repeated four times, so 

that English, German, Polish, and Danish each serve as the target language once. Within each training batch, 

the data is divided by speaker into 80% training and 20% development subsets. Mini-folds contain 16 

utterances; each utterance is divided on-the-fly into the four 224 × 224 images as described in Section 3 and 

extended with the scheme of Section 3.1. The model is optimized with AdamW (initial learning rate 3 × 10−4 

Weight Decay 10−4) and cosine annealing decay. Training stops after ten epochs with no loss or improvement 

in accuracy. Otherwise it continues for 100 epochs. All runs are performed under PyTorch~2.1 on 

Ubuntu~22.04 with an Intel i9-13900K CPU, 64GB RAM, and a single NVIDIA RTX 4070 GPU. Performance 

is reported using the metrics described in Section 3.9. 

4.1. Cross-language performance 

Table 4 shows the cross-lingual results obtained with the proposed K4F-Net when each of the four 

languages is omitted in turn and evaluated as an unseen target. The metric values are macro-averaged across 

the emotion classes so that each class contributes equally, regardless of its prior frequency in the corpus. Since 

different emotions occur in all sets (datasets A-D), the classes used for testing are those that occur in the test 

set and at least one training set. In all four folds, the network achieves an accuracy above 95%, while 

maintaining a balanced trade-off between precision and recall. The average weighted accuracy over the four 

folds is 96.3%. 

Tab. 4. Cross-language emotion recognition performance of K4F-Net. The model is trained on three languages and evaluated 

on the fourth. Numbers are macro-averaged across the tested classes and expressed in % 

Target language Accuracy Precision Recall F1-score 

English 95.9 95.4 95.1 95.2 

German 96.8 96.3 96.6 96.4 

Polish 97.1 96.8 97.2 97.0 

Danish 95.6 95.0 95.3 95.1 

Mean 96.3 95.9 96.1 95.9 

 

A companion experiment with a parameter-matched four-branch ResNet-34 serves as the main baseline. 

As summarized in Table 5, K4F-Net delivers consistent gains for each language, with an average improvement 

of 4.8 percentage points in accuracy and 4.2 points in macro-F1. The largest accuracy gain, +6.1%, occurs 

when Polish is the target language, supporting the hypothesis that multi-view representation and Kronecker 

cross-fusion benefit highly inflected languages with large prosodic variation. 

Our leave-one-language-out protocol operates on the intersection of available emotion labels between the 

training set and the held-out target (Table 3). Thus, English and Danish folds (with 4-5 emotions available for 

testing) are evaluated on a smaller label set than Polish and German folds (6-7 emotions). Despite this variance, 

accuracy remains above 95% for all targets, suggesting that K4F-Net's gains are not an artifact of a simpler 

label set. Furthermore, German and Danish, both Germanic languages, show no systematic advantage when 

either is the target: German achieves 96.8% accuracy, Danish 95.6%. This suggests that our adversarial 

language regularization and cross-fusion reduces reliance on family-specific elements rather than 

memorization of Germanic features. 

 

 

 

 

 



121 

Tab. 5. Performance gap (∆) between K4F-Net and the ResNet-34 baseline. Positive numbers indicate an improvement in favour 

of K4F-Net 

Target language ∆ Accuracy ∆ Precision ∆ Recall ∆ F1-score 

English +4.6 +4.1 +4.3 +4.2 

German +4.4 +4.0 +3.9 +4.0 

Polish +6.1 +5.7 +5.9 +5.8 

Danish +4.1 +3.6 +3.8 +3.5 

Mean +4.8 +4.3 +4.5 +4.2 

  

  

Fig. 2. The confusion matrices for proposed classifier for 4 databases.  

J – joy, A – anger, S – sadness, F – fear, B - boredom N – neutral  

Inspection of the confusion matrices in Fig. 2 shows that the pattern of residual errors is strongly language 

dependent, but broadly consistent with the acoustic similarity between anger (A) and fear (F). For Polish, 

English and Danish, between 3% and 4% of fear tokens are mistaken for anger, while the reciprocal error never 

exceeds 4%. The German fold is less affected, with only a1% of fear being mistaken for anger. Aside from 
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this pair, the most notable confusions are boredom (B) misread as anger in German 3% and sadness (S) drifting 

toward neutral in Danish 3%. 

4.2. Ablation study 

To quantify the importance of each component, a series of ablation experiments are performed on the 

polished fold. The results are shown in Table 6. Replacing each Kronecker convolution with a standard 

3 × 3kernel of the matched receptive field, but larger parameter counts reduce the weighted accuracy from 

96.3% to 90.5%. Removing the fuzzy transform branch while keeping the other three modalities yields 91.4% 

WA (Δ =  −4.7%). Disabling cross-fusion KC attention reduces performance to 92.3%, confirming that 

intermodal interactions cannot be mimicked by simple concatenation. Removing the scalogram layer decreases 

weighted accuracy by 3.2% and increases language discriminator accuracy to 83%, demonstrating that the 

adversary's head is indeed erasing language-specific cues. Finally, replacing the Kronecker convolutions with 

standard convolutions of the same receptive span increases the parameter budget by 47%, but still lags behind 

the WA by 1.9%, highlighting the superior efficiency of the Kronecker operations. 

Tab. 6. Ablation study on the Polish-held-out fold. WA – weighted accuracy; 𝚫 – absolute change with respect to the full K4F-

Net; #𝑷 – number of trainable parameters. 

Variant #𝑷 [𝑴] 𝑾𝑨 [%] ∆ [%] 
K4F-Net (full) 5.1 97.1 - 

with standard 3 × 3 convolution 7.5 91.5 -5.6 

without F-transform branch 4.8 92.4 -4.7 

without scalogram branch 4.8 93.1 -4.0 

without mel-spectrogram branch 4.8 91.2 -5.9 

without spectrogram branch 4.8 92.7 -4.4 

without KC cross-attention 5.0 92.9 -4.2 

 

The comparative evaluation in Table 7 assesses how well the proposed lightweight multi-view approach 

performs relative to a broad set of speech-emotion recognition baselines. Most of the baselines exceed 80% 

accuracy, but their effectiveness varies significantly with the corpus, the chosen signal representation, and the 

underlying network topology. ViT models benefit from global self-attention, which captures long-range time-

frequency relationships, resulting in strong overall performance. Self-attention is particularly valuable for SER 

because it can explicitly model the spatial variations that encode subtle affective cues. 

The proposed K4F-Net achieves a weighted accuracy of over 96%, outperforming all competing methods 

listed in Table 6. Its advantage stems from the complementary fusion of four orthogonal feature domains: 

fuzzy transform energy maps, discrete wavelet scalograms, complex STFT spectrograms, and Mel cepstral 

coefficients, combined with parameter-efficient Kronecker convolutions and cross-modal self-attention. 

Within the current state of the art, K4F-Net thus offers one of the most effective and computationally 

economical solutions for robust, language-independent speech emotion recognition. 

The studies in Table 6 use different datasets (different emotion sets, languages, and recording conditions), 

so a direct comparison of absolute values may not be meaningful. When evaluated on a common dataset and 

protocol, attention-based architectures (e.g., ViT/BEiT variants) reliably exploit long-range temporal-spectral 

dependencies, whereas conventional CNNs often underperform on categories characterized by subtle or low-

saliency spectral cues. Our results complement this trend by showing that multi-view fusion (spectrogram, 

MFCC, wavelet, fuzzy) plus Kronecker cross-fusion closes the gap without inflating parameters, and that the 

gains are largest when the target language belongs to the group where accent plays an important role in 

conveying information (e.g., Polish). We emphasize that Table 6 should be read as evidence for families of 

methods rather than as a table of corpora results, and we therefore provide a corpus-controlled comparison 

with a parameter-matched four-branch net (Table 4), where K4F-Net averages +4.8 pp of accuracy. 
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Tab. 7. Comparison with the-state-of-the-art 

Model Signal transform Dataset Accuracy [%] Reference 

ViT 

log-Mel spectrogram CREMA-D 39.02 (Kim & Lee, 2025) 

Mel spectrogram 

RAVDESS 97.49 

(Mishra et al., 2025) 
CREMA-D 72.06 

ESD 95.84 

MELD 49.83 

Mel frequency GTZAN, FMA 56.85 (Khasgiwala & Tailor, 2021) 

BEiT Mel spectrogram 

RAVDESS 94.62 

(Mishra et al., 2025) 
CREMA-D 71.85 

ESD 96.25 

MELD 43.32 

l-ViT Mel spectrogram 
EMODB 91.03 

(Akinpelu et al., 2024) 
TESS 98.00 

Wav2.0 feature extractor RAVDESS 98.05 (Luna-Jiménez et al., 2021) 

SepTr spectrogram 

CREMA-D 70.47 

(Ristea et al., 2022) SCV2 98.51 

ESC-50 91.13 

CvT 

linear 
Emo-DB 96.99 

(Echim et al., 2024) 

Emo-IIT 97.75 

Mel spectrogram 
Emo-DB 97.38 

Emo-IIT 96.57 

CQT 
Emo-DB 97.08 

Emo-IIT 97.63 

MFCC 
Emo-DB 96.18 

Emo-IIT 96.43 

CoordViT spectrogram CREMA-D 82.96 (Kim & Lee, 2023) 

CCT spectrogram 

Emo-DB 55.84 

(Arezzo & Berretti, 2022) EMOVO 37.36 

SAVEE 29.47 

MLP, k-NN, 

Decision 

Trees, Naive 

Bayes, 

Random 

Forest, 

Probabilistic 

Neural 

Network, 

Fuzzy Rule 

Classifier,  

scalograms 

EMO-DB, DES, 

Polish corpus, 

English corpus 

62-94 (Powroźnik et al., 2021) 

Our 4 features 

EMO-DB, DES, 

Polish corpus, 

English corpus 

96.30  

 

In machine learning approaches, four main types of fusions are widely used. The first is data fusion, which 

combines different types of data from different modalities as input to a single model (e.g., images and text). 

Model fusion is the second type where different models are combined to improve accuracy and generalization, 

usually by applying ensemble learning techniques. In this case, the training of this model is longer than that of 

the single model. Feature fusion is the third type of fusion, which aims to improve the ability to learn complex 

patterns using the same or different types of input data. Decision fusion is the final type where the outputs of 

different models are combined to make a final classification/decision. This method involves various types of 

averaging or voting mechanisms. 

A lightweight, attention-based interaction layer is placed after each modality branch (spectrogram, MFCC, 

scalogram, and fuzzy) and before the common trunk. The four branch tensors are concatenated and projected 

(via 1×1 Kronecker conv) into Q/K/V, then a multi-head KC attention mixes information across modalities so 

that features from one view can content-adaptively enhance/suppress features in another. Unlike data fusion, 
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cross-fusion does not merge raw inputs. It operates on learned feature maps according to per-modality 

encoders, where the representations are cleaner and more aligned in size, so the interactions are more 

meaningful. In this case, we cannot talk about model fusion. There is one model, not many. No 

voting/averaging of separate predictors. Cross-fusion learns intermodal communication within a single 

network, keeping training/inference compact. Unlike standard feature fusion, cross-fusion is dynamic: 

attention weights depend on the current signal, capturing pairwise and higher-order relationships between 

modalities. In contrast to decision fusion, cross-fusion is applied before classification, forming a single, richer 

representation. There is no late voting. The classifier sees a fused tensor influenced by content-aware cross-

modal interactions. 

5. CONCLUSIONS 

This paper presents K4F-Net, a compact and language-robust framework for speech-emotion recognition 

that processes: STFT spectrograms, Mel-frequency cepstral maps, wavelet scalograms, and fuzzy transform 

images in four parallel branches. Kronecker convolutions extend the receptive field of standard kernels at zero 

additional parameter cost, while a cross-fusion self-attention module merges complementary cues before a 

lightweight Transformer encoder captures long-range context. A gradient reversal head further regularizes the 

feature space towards language independence.  

Experiments on four publicly available corpora covering Polish, English, German and Danish show that 

K4F-Net achieves a mean weighted accuracy of 96.3% under a fourfold leave-one-language-out protocol, 

outperforming a size-matched ResNet-34. 

Ablation results confirm the importance of the proposed design choices: eliminating Kronecker kernels, the 

fuzzy transform spectrum, or the cross-fusion block reduces weighted accuracy by 4-6%. The language-

adversarial loss reduces discriminator accuracy to chance level, suggesting an effective removal of language-

specific artifacts without compromising emotion recognition. 

Future work will explore self-supervised pre-training on unlabeled multilingual corpora to further improve 

cross-domain robustness. It can also be extended to spontaneous and noisy conversational speech. Multimodal 

fusion with facial and linguistic cues for richer affective understanding can also be explored. The results are 

very encouraging and suggest that parameter-efficient Kronecker convolutions together with multi-view 

representations open a very promising direction for building real-time, language-agnostic SER systems. 
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