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Abstract

Speech emotion recognition has been gaining importance for years, but most of the existing models are
based on a single signal representation or conventional convolutional layers with a large number of
parameters. In this study, we propose a compact multi-representation architecture that combines four
images of the speech signal: spectrogram, MFCC features, wavelet scalogram, and fuzzy transform maps.
Furthermore, the application of Kronecker convolution for efficient feature extraction with an extended
receptive field is shown. Another novelty is cross-fusion, a mechanism that models interactions between
branches without significantly increasing complexity. The core of the network is complemented by a
transformer-based block and language-independent adversarial learning. The model is evaluated in a
scenario of quadruple cross-lingual tests covering four data corpora for four languages: English, German,
Polish and Danish. It is trained on three languages and tested on the fourth, achieving a weighted accuracy
of 96.3%. In addition, the influence of selected activation functions on the classification quality is
investigated. Ablation analysis shows that removing the Kronecker convolution reduces the efficiency by
5.6%, and removing the fuzzy transform representation by 4.7%. The obtained results indicate that the
combination of Kronecker convolution, multi-channel fusion, and adversarial learning is a promising
direction for building universal, language-independent emotion recognition systems.

1. INTRODUCTION

Verbal communication involves the exchange of information, ideas, moods, or feelings through the use of
words and sounds (George & Ilyas, 2024). It contains a wealth of information about the speakers, the content
of their message, and their emotional state. Speech emotion recognition (SER) has been widely applied to
detect various emotional states that affect attention, motivation, and relationships with other people. It
accompanies people in their daily lives, including vocal instructions, smartphones, synthesized speech, and
criminal investigations (Ezzameli & Mahersia, 2023; Ntalampiras et al., 2009). In particular, studies on
acoustic data have recently received much attention in the context of the rapid development of machine
learning and deep neural networks. Classification and regression are applied to voice identification as well as
to emotion recognition. A large number of studies concern different types of SER based on utterance-based
(Zhao et al., 2014) context-aware (Kakuba & Han, 2022; Trigeorgis et al., 2016) cross-corpus (Latif et al.,
2020) cross-linguistic (Song et al., 2016) and cross-cultural systems (Kamaruddin et al., 2012). These
supervised machine learning techniques provide both traditional handcrafted feature extraction and automated
processes to extract specific information from signals (Jin et al., 2015). Speech preprocessing transforms the
signal into different types of features. Mel Frequency Cepstral Coefficients (MFCC), Gamma Tone Cepstral
Coefficients, Linear Predictive Cepstral Coefficients, Bark Frequency Cepstral Coefficients and Mel-
Spectrograms are prominent for SER (Chwaleba & Wach, 2024; George & Ilyas, 2024; Motamed et al., 2017;
Prasomphan, 2015).

Many studies deal with SER using Support Vector Machine (SVM), Neural Network (NN), Gaussian
Mixture Model (GMM) and Hidden Markov Model (HMM) (El Ayadi et al., 2011; Ververidis & Kotropoulos,
2006). Deep learning models have achieved remarkable performance in SER. Convolutional Neural Networks
(CNNs) are widely used with automatic feature extraction (Chowdhury et al., 2025; Madanian et al., 2025).
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CNN-based models using transformers with multi-dimensional attention mechanisms are said to have great
potential for SER in human-machine interaction (Ahn et al., 2025; Tang et al., 2025).

1.1. Motivation

The models used for SER typically have a single signal representation or standard convolutional layers with
a large number of parameters. Each signal representation conveys different types of features on which
recognition is based. In this study, we apply multimodality to extract the most important features of the signal
for speech recognition. This approach provides more accurate information about human emotion by using the
signal representation from different modalities. Another goal is to test whether Kronecker convolution can
improve the efficiency of feature extraction with an extended receptive field. The combination of CNN with
transformer-based blocks provides better performance by exploiting local and global signal dependencies. This
type of architecture can improve SER detection.

1.2. Contribution

This study focuses on enhancing the speech emotion recognition. The main aim is to propose a compact,
multi-representation architecture that combines four images of the speech signal: spectrogram, MFCC features,
wavelet scalogram and fuzzy-transform maps. Thus, the main contributions of this study are as follows:

— Four corpora of emotional speech representing Polish, English, German and Danish are included in this

study. They are chosen for their linguistic diversity and realistic acoustic variability.

— The Kronecker Convolution with Four Feature Modalities (K4F-Net) model is proposed for SER. Four
signal representations are used for signal preprocessing. Spectrogram, MFCC features, wavelet
scalogram and fuzzy transform maps provide different types of relevant characterization of speech
signals. The fusion of these modalities provides both local and global signal dependencies. Standard
convolution is replaced by Kronecker operation. This approach provides a more comprehensive capture
of local features. The novelty is cross-fusion, a mechanism that models interactions between branches
without significantly increasing complexity. The core of the network is complemented by a transformer-
based block and language-independent adversarial learning.

— The proposed model has been verified using the following metrics: weighted accuracy, macro precision,
macro recall, and macro F1 score.

— In order to quantify the importance of individual components of the proposed model, a series of ablation
experiments are performed on the Polish-held-out fold. The ablation analysis shows that removing the
Kronecker convolution reduces the efficiency by 5.6%, and removing the fuzzy transformation
representation reduces the efficiency by 4.7%.

2. RELATED WORKS

Speech emotion recognition (SER) has become a hot topic in affective computing because prosodic cues
convey a substantial amount of human intent. Behavioral studies attribute nearly half of communicative content
to vocal tone, rather than facial or gestural signals (Johanson et al., 2021; Madanian et al., 2023). Correctly
identifying a speaker's affective state is therefore essential for natural human-computer interaction, prompting
intense efforts to design deep learning systems that can perceive and respond to users' emotions with increasing
accuracy (Johanson et al., 2021; Mishra et al., 2025). The task remains challenging due to background noise,
channel distortion, and the linguistic diversity that characterizes real-world deployments (Ibrahim et al., 2024;
Powroznik & Czerwinski, 2016).

Modern SER pipelines rely on both one-dimensional waveforms and two-dimensional time-frequency
images (Abdel-Hamid et al., 2014; Echim et al., 2024). Waveform level features are typically processed by 1-
D CNN:s, often cascaded with recurrent layers such as LSTM or GRU. However, some studies have attempted
to process speech signals in a feedforward manner (Avots et al., 2019; Powroznik, 2014).Using multilayer
perceptrons or combining spectral and prosodic features improves robustness to noise (Czerwinski &
Powroznik, 2018) especially when focusing on a specific language.

Although CNNs still dominate SER, Vision Transformer (ViT) architectures have gained momentum due
to their self-attention mechanism, which models long-range spatial dependencies more efficiently than
convolutions (Akinpelu et al., 2024; Khasgiwala & Tailor, 2021). Hybrid CNN/ViT solutions have improved
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classification accuracy by up to 17.7% (Khasgiwala & Tailor, 2021). CNN backbones such as ResNet-50 are
often used to suppress noise (Kim & Lee, 2025) while lightweight variants of ViT (e.g., [-ViT) can outperform
traditional CNNs in accuracy (Akinpelu et al., 2024).

Pre-trained ViT and BEiT backbones tested for human-robot interaction (Mishra et al., 2025). A dual-path
fusion of MaxViT and MViTv2 with an MLP head (MaxMViT-MLP) achieved state-of-the-art results by
combining CQT and Mel-STFT spectrograms, thus exploiting both logarithmic and linear frequency scales
(Ong et al., 2024). SepTr decouples temporal and spectral attention via separable transformer blocks (Ristea
et al., 2022) while the Audio Spectrogram Transformer (AST) performs well with either random initialization
or AudioSet pre-training (AST).(Gong et al., 2021). Vertically segmented patches of log-Mel spectrograms
further push accuracy (Kim & Lee, 2024).

For Arabic and English corpora, transformer-based models outperform ViT, wave2vec, and other baselines.
CoordViT, which concatenates coordinate information, also performs well (Mohamed et al., 2024). Combining
ViT patching along the time axis with parallel CNN feature extractors improves performance (Hashemi &
Asgari, 2023). Compact Convolutional Transformers (CCTs) Demonstrate Robustness in Cross-Corpus
Environments (Arezzo & Berretti, 2022). In a large Romanian-German benchmark, CvT and AlexNet
outperformed alternatives such as CNN-LSTM, VGG-16, ViT, and LeViT; Grad-CAM++ maps revealed the
most salient spectral regions (Echim et al., 2024).

Interest is shifting to models that fuse multiple modalities. Transformer architectures that combine facial
landmarks, action units, head pose, and MFCCs improve robustness (Chumachenko et al., 2022). Joint speech-
face embeddings have been explored with xlsr-Wav2Vec 2.0 (Luna-Jiménez et al., 2021) while the Fuzzy
Multimodal Transformer (FMMT) integrates audio, visual, and textual cues for a richer affective context (Liu
et al., 2025).

Noting that there is no single large, language-universal corpus, recent work also explores the merging of
heterogeneous datasets to improve generalization across languages and speaking styles (Ibrahim et al., 2024).

3. MATERIALS AND METHODS
3.1. Datasets

To ensure both linguistic diversity and realistic acoustic variability, the experimental material combines
four publicly available corpora of emotional speech in Polish, English, German and Danish.

The Polish corpus (Database A) consists of 240 studio-quality utterances recorded by eight professional
actors, evenly divided by gender, expressing joy, anger, sadness, fear, boredom and a neutral mood. It was
compiled at the Lodz University of Technology and is described in (Kaminska et al., 2013).

The English corpus (Database B) was collected at the Center for Strategic Technology Research and
contains 700 utterances covering anger, happiness, sadness, fear and neutrality. Thirty actors produced the
material, which was then validated by a separate panel of thirty listeners (Petrushin, 2000).

The German corpus (Database C) is the Berlin Emotional Speech Database, which consists of a total of 535
carefully selected recordings depicting anxiety, fear, boredom, joy, anger, and indignation (Hareli & Hess,
2012). Twenty trained actors contributed the speech, and only items with a recognition rate of at least 80% in
a 20-listener evaluation were retained.

Finally, the Danish corpus (Database D) - the Danish Emotional Speech Database (DES) - comes from the
Center for Personal Communication at Aalborg University (Engberg & Hansen, 1996). It includes isolated
words, short sentences, two passages, and eighteen longer segments representing anger, sadness, joy, surprise,
and a neutral tone. Recordings of four actors were included and subsequently reviewed by a group of twenty
listeners ranging in age from 18 to 58.

To increase acoustic diversity and minimize model overfitting on small, acted corpora, a number of
different speech enhancement techniques were used in this study. Each sample was randomly modified with
parameters chosen from continuous intervals to preserve natural speech. A time shift of up to +£50ms was
introduced, training the network to be robust to small decalibrations of the STFT windows. A speed/pitch
perturbation was applied: a factor of 0.9-1.1 changed the tempo without significantly affecting intelligibility,
while shifting the formants and enriching the acoustic space. Background noise with an SNR of 10-25 dB,
randomly selected from office, street, and white noise recordings, was added to increase robustness to typical
field listening conditions. In selected samples, reverberation was synthetically simulated by convolution with
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a randomly selected room impulse response, and bandpass filters mimicking cell phone or laptop speakers
were applied to 20% of the examples. At the spectral level, time-frequency masking was applied, randomly
excluding narrow bands or short temporal fragments, forcing the search for generalized patterns. Finally, rare
emotion classes were augmented by mixing two examples of the same label, maintaining the balance between
languages and emotions without artificially duplicating identical recordings. In total, the augmentation
increased the effective size of the training set by more than five times. The final structure of the applied data
set is shown in Table 1.

Tab. 1. The final structure of used datasets

Corpus No. of Emotions No. of items No. of items
(Language) speakers before augmentation | after augmentation
A (Polish) R Jnoe}lfl,tra;ger, sadness, fear, boredom, 240 112
](BE;lzhAs X)E E 30 anger, joy, sadness, fear, neutral 700 3326

C — Emo-DB anxiety, fear, boredom, joy, anger,

(German) 10 1indignation >33 2675
g);;?si? 4 anger, sadness, joy, surprise, neutral 250 1232

3.2. Discrete fourier transform

The spectrogram representation is one of the four signal views integrated into our multi-view classifier for
speech emotion recognition. A spectrogram is a visual representation of the frequency content of a signal as it
varies with time, obtained by the Short-Time Fourier Transform (STFT), a time-dependent adaptation of the
Discrete Fourier Transform (DFT) (Koziet et al., 2024).

The Discrete Fourier Transform of a Finite Discrete-Time Signal x(n)wheren = 0,1,..., N — 1transforms
it from the time domain to the frequency domain, and is expressed mathematically as Eq. 1 (Powroznik et al.,
2021):

. _kn
X(k) = ¥N=tx[n] e *™N, k=01,..,N—-1 (1)

where X (k)is the frequency domain representation, and Nis the total number of samples in the analyzed
segment. The resulting complex-valued X (k)encodes both amplitude and phase information of the frequency
components.

To capture the temporal evolution of the frequency content, the STFT is applied. The STFT divides the
speech signal into short overlapping segments, applies a suitable windowing function w(n)(in this case, a
Hamming window) to each segment and computes the DFT separately for each windowed segment.
Mathematically, the STFT of the signal x(n)is given as equation 2 (Allen & Rabiner, 1977):

X(mk) =Y x(mwh — mR)e_jZ“kWn (2)

where mindexes the discrete time frame, Ris the hop size between neighboring frames, and kindexes the
frequency bins.

The spectrogram S(m, k) is obtained by computing the squared magnitude of the STFT, effectively
discarding phase information and providing the distribution of energy across frequencies and time frames (Eq.
3):

S(m, k) = |X(m, k)|? A3)
3.3. Mel-frequency cepstral coefficients

One of the signal representations used in our multi-view speech emotion recognition model is based on
MFCC, which provides a perceptually relevant characterization of speech signals. The MFCC representation
is derived from the short-term power spectrum of speech, modified by a perceptually motivated frequency
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distortion known as the Mel scale, which reflects the human auditory perception mechanism (Abdul & Al-
Talabani, 2022).

To compute MFCCs (Equation 4), a given speech frame x(n) first undergoes a windowing operation
(usually a Hamming window) to mitigate boundary effects, resulting in windowed frames x,,, (n):

x, (M) = x(n) - w(n) 0<n<N-1 (4)

where w(n)is the window function, typically defined as in Equation 5:
w(n) = 0.54 — 0.46co0s (%) (5)

The next step is to calculate the Discrete Fourier Transform of each windowed frame to obtain the power
spectrum X (k) Eq. 1. Then, a set of triangular Mel-scaled filter banks H,,, (k) is applied to the power spectrum
to generate the Mel-spectrum coefficients Eq. 6:

Sm) = S IXUOP Hy(k),  m=12,..,M (6)

where the filter banks are spaced according to the Mel scale f,,,.;, defined as Eq. 7:

f
fmet = 2595l0gso (1 + L) 7
with f being the linear frequency (in Hz). This nonlinear transformation reflects human ear perception,
emphasizing lower frequencies.
Finally, the MFCC coefficients c(l) are computed by applying the Discrete Cosine Transform on the
logarithmic Mel spectrum coefficients S(m) defined by Eq. 8:

c() = \/%Z%ﬂlog[.?(m)]cos [%l (m — %)], 1=12,..,L (8)

Typically, only the first 13 coefficients are retained, as higher order coefficients represent rapid spectral
changes and often carry less meaningful information about speech emotion characteristics (Zheng et al., 2015).

3.4. Wavelet scalograms

A wavelet scalogram is a two-dimensional energy map that illustrates how the spectral content of a signal
varies over time. It is obtained from the continuous wavelet transform (CWT), which projects a real-valued
speech waveform x(t) onto a family of scaled and translated copies of a mother wavelet (t).

The CWT coefficient at scale a > 0 and translation b € R is defined by Eq. 9.

Wy(a, b) = = [ 7x(e) W () dt ©)

where *(-)denotes complex conjugation, and the factor 1 /\/m equalizes energy across scales (Mallat,
2009). Small values of aanalyzes high-frequency, short-duration phenomena, while large emphasizes slowly
varying, low-frequency structures, giving the CWT its multiresolution capability. The scalogram itself is the
squared modulus of the CWT coefficients (Eq. 10):

Pc(a,b) = [Wy(a, b)|? (10)

Equations (9)-(10) describe the continuous time CWT for a waveform x(t). In practice, all corpora are
resampled to 16 kHz and processed as discrete-time sequences x[n] = x(nTs) with Ty = 1/16,000s. The
implemented CWT therefore uses discrete scales ak and translations b,,, = mH (skip Hin samples), yielding
coefficients W, [ay, b, | that populate the scalogram image. This aligns the notation with Eq. (1), where the
STFT/DFT is assumed to be x,,. The continuous forms are retained for clarity. All downstream operations use
their standard discrete counterparts.
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For a digitally sampled signal at rate f;, scale is converted to a pseudo-frequency f = %, with f; the centre
frequency of the chosen mother wavelet (Powroznik et al., 2021). Discrete scales a,, (m =1, ..., M) and
translations b,, = 7}—R, n =1,..,N, where R is the hop size, yield a matrix representation Py, , = P.(a;,, by) €

S
RM*N whose entries become pixel intensities in the scalogram image.
3.5. Fuzzy-transform images

A fuzzy transform (F-T) image encodes the temporal evolution of low-dimensional fuzzy coefficients that
approximate a signal by a fuzzy partition of its domain. Let x(t) is a real-valued speech waveform defined on
a compact interval 0 € R(e.g. a short time frame) and let A = {4, ..., Ag} is a fuzzy partition of ().

Each fuzzy set A is characterised by a membership function (Eq. 11):

we(t) = A (0):Q—[01],  k=1,..,K, (11
Satisfies the a- normalization and Ruspini conditions (eq. 12):
SKam@®=1  VteQ (12)

In practice, triangular or other "hat" functions are chosen as prototype membership functions for simplicity
and local support (Eq. 13):

e (£) = max{0,1 - %} (13)

where cj, is the center of A, and his half the base width, ensuring overlap with neighboring fuzzy sets.
The k-th fuzzy coefficient of x(t)is obtained as the membership-weighted average defined in equation 14:

_ Jox@ur(®)dt

Fk - fﬂ“k(t)dt ’ = 1! ,K (14)

which can be interpreted as a localized, smoothed sample of the signal (Perfilieva, 2006). For a uniformly
sampled frame {x,,}}_; with sample period Atthe discrete form is as in equation 15:

_ ENe1 xnbk(tn)
Fie = N et (15)

where t,, = nAt.
-
For each STFT-like frame of length N, the K-dimensional vector F(™ = [Fl(m), ...,FK(m)] is computed.

Stacking these column-wise over successive framesm = 1, ..., M produces a matrix F = [F(l) F@ ... F(M)] €
RK¥*M '\whose entries are linearly rescaled to ([0,255]) and rendered as a grey-scale bitmap.

This F-transform image becomes the fourth parallel input of K4F-Net, complementing spectrograms, mel-
spectrum maps, and wavelet scalograms. Because fuzzy coefficients integrate local information through
overlapping membership functions, the image captures smooth temporal-spectral trends that have proven
discriminative in speech emotion tasks, while exhibiting robustness to noise and speaker variability.

The membership-driven locality of the F-transform provides tunable resolution: narrower support
(h! l)emphasize rapid energy fluctuations associated with high arousal, while broader supports emphasize
slower prosodic drifts associated with low arousal or neutral affect. These complementary features, when fused
with the other three representations in the cross-fusion layers, significantly enhance recognition accuracy.

3.6. Kronecker convolution

Kronecker Convolution (KC) extends the receptive field of a standard convolution without introducing
additional learnable parameters by factorizing the kernel by a fixed Kronecker product. Let the input feature
map be X € RCn*HXW and the learnable base kernel is G € RCout*CinXkxk
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A standard k X k convolution produces the output activation at spatial index p € Z% as Eq. 16 (Patro et al.,
2023):

Y(p) = 2o Yger, GE@XE(D — @), (16)

where R, = {—|k/2], ..., k/2]}? indexes the local receptive field.
Kronecker convolution replaces the original kernel by (Eq. 17):

W¥=G6QT, (17)

where “®’’ denotes the Kronecker product and T ¢ € {0,1}"9%() is a fixed binary transformation matrix
that expands G both geometrically and structurally (Wu et al., 2019):

Jo 0 - 0
0 “~ 0

Tr,s = : ]S K Js = 1gxs
0 ~ 0 Js

with Jsone s X sAll-One Block, 0 is a zero block of the same size, r € N *is the inter-dilatation factor that
controls the spacing between blocks, and s € N *is the intra-sharing factor that controls the size of each block.

The effective kernel size thus increases from kto k' = krwhich gives a receptive field identical to that of
an atrous (dilated) convolution with rate rbut the number of parameters remains C,,,Ci,k? because T, s 1s not
trainable.

Using the extended kernel, the KC output is as in equation 18:

Y(0) = Te2 Tqer,, WEC(@DXED — @), (18)

where non-zero entries WX are divided into s X ssub-regions, allowing the operator to capture both long-

range context (via r) and dense local detail (via s). The proportion of input locations that contribute to each
2

output, called the Valid-Feature-Ratio (VFR), is VFR(r,s) = (RST)Z = riz, which exceeds that of a dilated

convolution at the same rate (s = 1) for any s > 1to reduce information loss in sparse sampling. The setting

(r,s) = (1,1) recovers the standard convolution, while (r > 1,s = 1)degenerates to atrous convolution.

Kronecker convolution thus generalizes both operators within a unified parameter-efficient formulation.
3.7. K4F-Net architecture

The proposed network ingests four synchronized time-frequency images extracted from a multi-speaker
signal: a wavelet scalogram, an STFT spectrogram, a Mel-frequency spectrogram, and a fuzzy transform map.
Each modality is resampled to the common spatial resolution R1*?24%224 and standardized. A dedicated
representation branch processes each image with three successive Kronecker Convolution Blocks (KCBs)
whose purpose is to enlarge the receptive field without increasing the number of parameters. The entire
architecture is summarized in Fig. 1 and detailed in Table 2 (per-branch flow) and Table 3 (shared trunk).

Each branch uses three KCBs with channel widths of (1 —» 32 — 64 — 128). The first two blocks use an
intermediate dilation factor of r = 2while the third uses r = 1. An internal division factor s = 2is kept
constant. Each KCB ends with a 2 X 2max pooling layer, so the spatial resolution shrinks from 224 X 224to
112 X 112then 56 X 56and finally 28 X 28. The resulting tensor of each branch is therefore denoted by Z; €
R128x28x28’ i€ {1’ . ,4}‘
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Tab. 2. The general structure of view processing blocks. KC denotes Kronecker convolution

Layer No | Layer/Block Main Params

Output (single
branch)

1. KC-Conv2D filters no: 32, kernel: 3 X 3,r = 2,5 = 2, SiLU 224 X 224 x 32
2. KC-Conv2D filters no: 32, kernel: 3 X 3,r = 2,5 = 2, SiLU 224 X 224 x 32
3. MaxPooling2D |2 X 2 112 x 112 x 32
4. KC-Conv2D filters no: 64, kernel: 3 X 3,r =2,s = 2, SiLU 112 x 112 X 64
5. KC-Conv2D filters no: 64, kernel: 3 X 3,r =2,s = 2, SiLU 112 x 112 X 64
6. MaxPooling2D |2 X 2 56 X 56 X 64

7. KC-Conv2D filters no: 128, kernel: 3 X 3, r =2,s = 2, SiLU 56 x 56 x 128

8. KC-Conv2D filters no: 128, kernel: 3 X 3,r = 2,s = 2, SiLU 56 X 56 x 128
9. MaxPooling2D |2 X 2 28 x 28 x 128

SPECTOGRAM

| kcB |- KCB |—>| KCB f—

SCALOGRAM

Fuzzy Transform Spectrum

Fig. 1. The overall architecture of proposed K4F-Net
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Tab. 3. The general structure of concatenated views processing blocks. KC denotes Kronecker convolution

Layer No | Layer/Block Main Params Output (after
fusion)

10. Concatenate - 28 x 28 x 512

11. KC-Conv2D filters no: 512, kernel: 1 X 1,r = 2,5 = 2, 28 X 28 x 512
SiLU

12. KC - Attn 8 heads 28 x 28 x 512

13. Transformer 3 blocks, d = 512, 8 heads 28 x 28 x 512

14. GlobalAvgPooling2D | - 512

15. Dense 512 — 128, SiLU 128

16. Dense 512 - Class no, SoftMax

In Table 1 and Table 2 KC stands for Kronecker Convolution. Effective kernel size k - X k - ris derived
from the base k X k by the Kronecker product with the matrix T, ;. The number of learning weights remains
the same C,y; Cin k2.

The four tensors are concatenated along the channel axis to give Z € and are then represented
by a 1 X 1 Kronecker Convolution in Queries Q, keys and values Vof dimension d = 512. Self-attention
augmented with Kronecker structure is performed as in Eq. 19:

R512><H'><W’

KC — Attn(Q,K,V) = SoftMax( )® Ty 2y (19)

so that the local neighbourhood cues provided by T , to preserve fine-grained detail while attention weights
model long-range intermodal relationships.

Three stacked encoder blocks follow, each consisting of layer normalization, eight-headed KC attention
(KC-Attn) of width d = 512, a position-wise feed-forward network of size 2d and remaining links. The
Kronecker pattern embedded in the projection matrices maintains the low parameter number, but the receptive
field, already expanded by the previous KCBs, now covers the entire joint feature map.

Global spatial averaging reduces the tensor to a 512-dimensional vector. A dropout layer with probability
0.2 mitigates co-adaptation. A fully connected layer maps 512 — 128 with Swish enabled, and the last layer
projects 128 — Class No followed by a SoftMax that estimates posterior probabilities.

3.8. Language-independent adversarial learning

The multi-view front-end described in Sections 3.2 - 3.6 yields a joint feature tensor H € R4*28%28 \hich
encodes spectral-temporal cues from four complementary signal images. Although these cues are effective for
emotion recognition, they still carry language-specific idiosyncrasies that interfere with cross-linguistic
generalization. To suppress such disruptive information, we employ an adversarial strategy analogous to
domain-adversarial neural networks (Ganin & Lempitsky, 2014; Xia et al., 2019).

The Shared Feature Extractor Fgincludes all layers up to and including the transformer encoder. Two task-
dependent heads are connected in parallel: an emotion classifier Cg™“with SoftMax output of size Kepo =

5and a language discriminator qu "% with SoftMax Size Kiong = 4. The latter is preceded by a gradient reversal
layer R, which multiplies the backward signal by —A < 0 during parameter updates, thereby inducing an
adversarial objective without changing the forward pass.

To construct a cost function, optimization objectives must be defined. Let (x, y*™°, y'°"9) denotes an input

batch with an emotion label y®™°and language label y'°™9. The two cross entropy losses are defined by Eq.
20 and Eq. 21:

Lomo = Zkemo 1[y*™° = k]log qu)mo (?e(x))k, (20)
Logng = — T 1[y'ane = 1] log c"“”g (Ra e Fo (), 1)

The overall objective to be minimized is therefore Liorar = Lomo + BLrgng Where B> 0 controls the
trade-off between emotion fidelity and language invariance. Because the gradient of Ly, is reversed when

118



it reaches Othe extractor Fy is trained to maximize the error of the discriminator, i.e. to produce features that
disguise language identity, while Yrtries to minimize the same error.
The resulting min-max game converges to a saddle point where Fg retains information essential for emotion

prediction, but discards language-dependent artifacts, so that C’j,m" generalizes to English, German, Polish and

Danish.
To ensure the fastest possible convergence of the model, we empirically set A = 1 and anneal Boff 0.0 to

0.5according to schedule f; = 0.5 (1 + cos (n?t)) over the first T = 10 epochs, after which it remains

constant. This warm-start stabilizes learning in the early iterations and yielded the highest average weighted
accuracy on the evolutionary folds.

The adversarial branch is purely auxiliary and does not alter the forward path of the emotion classifier.
Consequently, it is fully compatible with the multi-view Kronecker convolutional backbone, the cross-fusion
mechanism, and the transformer coder described in the previous sections. All tensor forms remain unchanged:
H = Fg(x) has shape 512 X 28 x 28 before global averaging, exactly as in Table 2, and the additional

parameters Cimg increase the total footprint by less than 1%.

3.9. Evaluation metrics

The effectiveness of the proposed classifier is evaluated using four class-level measures that are robust to
label imbalance (Powers, 2020; Sokolova & Lapalme, 2009). Let us ¥, € {1,..., K}denote the predicted
emotion and y;is the ground truth for sample i = 1,..., N then true positive (TF;), false positive (FF,), false
negative (FN,) can be defined as Eq. 22, Eq. 23, Eq. 24, n.(Eq. 21) denotes the number of all examples in
the test set whose ground truth belongs to class c:

ne=YN 1y =], (1)
TP, =Y 1[y; = cl 1[5, = c], (22)
FP. =Y 1[y; # c] 1[5, = c], (23)
FN, = YN 1[y; = c]1[5, # cl. (24)

Weighted Accuracy (WA) gives the proportion of correctly classified instances while respecting the natural
class priors Eq. 25:

K
WA = Ze=1TPe (25)

- K
Ec=1 nC

Macro Precision and Macro Recall are obtained by first calculating the per-class values defined in
Equations 26 and 27:

TP,

Precc = i (26)
TP,
Rec. = TP.+FN, (27)
and then averaged uniformly over the K classes:
. Y
Precision .o = 7 2ic=1 Prec, (28)
1k
Recallyero = EZczl Rec, (29)
Macro F1 is the harmonic mean of the two macro quantities as defined in Equation 30:
isi Unac
Flypro = 2 Precisiong,cro*Recallpacro (30)

Precisionm,cro+Recall pacro
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While Equation 25 reflects overall operational accuracy in mission scenarios, the macro metrics Equations
26 - 30 weigh each emotion equally and therefore highlight performance in minority conditions.

4. EXPERIMENTS AND RESULTS

All experiments follow a leave-one-language-out protocol in which three languages provide the training
material, while the fourth language forms a strictly unseen test set. The procedure is repeated four times, so
that English, German, Polish, and Danish each serve as the target language once. Within each training batch,
the data is divided by speaker into 80% training and 20% development subsets. Mini-folds contain 16
utterances; each utterance is divided on-the-fly into the four 224 X 224 images as described in Section 3 and
extended with the scheme of Section 3.1. The model is optimized with AdamW (initial learning rate 3 x 10~*
Weight Decay 10™%) and cosine annealing decay. Training stops after ten epochs with no loss or improvement
in accuracy. Otherwise it continues for 100 epochs. All runs are performed under PyTorch~2.1 on
Ubuntu~22.04 with an Intel 19-13900K CPU, 64GB RAM, and a single NVIDIA RTX 4070 GPU. Performance
is reported using the metrics described in Section 3.9.

4.1. Cross-language performance

Table 4 shows the cross-lingual results obtained with the proposed K4F-Net when each of the four
languages is omitted in turn and evaluated as an unseen target. The metric values are macro-averaged across
the emotion classes so that each class contributes equally, regardless of its prior frequency in the corpus. Since
different emotions occur in all sets (datasets A-D), the classes used for testing are those that occur in the test
set and at least one training set. In all four folds, the network achieves an accuracy above 95%, while
maintaining a balanced trade-off between precision and recall. The average weighted accuracy over the four
folds is 96.3%.

Tab. 4. Cross-language emotion recognition performance of K4F-Net. The model is trained on three languages and evaluated
on the fourth. Numbers are macro-averaged across the tested classes and expressed in %

Target language | Accuracy | Precision Recall F1-score
English 95.9 95.4 95.1 95.2
German 96.8 96.3 96.6 96.4
Polish 97.1 96.8 97.2 97.0
Danish 95.6 95.0 95.3 95.1
Mean 96.3 95.9 96.1 95.9

A companion experiment with a parameter-matched four-branch ResNet-34 serves as the main baseline.
As summarized in Table 5, K4F-Net delivers consistent gains for each language, with an average improvement
of 4.8 percentage points in accuracy and 4.2 points in macro-F1. The largest accuracy gain, +6.1%, occurs
when Polish is the target language, supporting the hypothesis that multi-view representation and Kronecker
cross-fusion benefit highly inflected languages with large prosodic variation.

Our leave-one-language-out protocol operates on the intersection of available emotion labels between the
training set and the held-out target (Table 3). Thus, English and Danish folds (with 4-5 emotions available for
testing) are evaluated on a smaller label set than Polish and German folds (6-7 emotions). Despite this variance,
accuracy remains above 95% for all targets, suggesting that K4F-Net's gains are not an artifact of a simpler
label set. Furthermore, German and Danish, both Germanic languages, show no systematic advantage when
either is the target: German achieves 96.8% accuracy, Danish 95.6%. This suggests that our adversarial
language regularization and cross-fusion reduces reliance on family-specific elements rather than
memorization of Germanic features.

120



Tab. 5. Performance gap (A) between K4F-Net and the ResNet-34 baseline. Positive numbers indicate an improvement in favour
of K4F-Net

Target language | A Accuracy | A Precision | A Recall | A Fl-score
English +4.6 +4.1 +4.3 +4.2
German +4.4 +4.0 +3.9 +4.0
Polish +6.1 +5.7 +5.9 +5.8
Danish +4.1 +3.6 +3.8 +3.5
Mean +4.8 +4.3 +4.5 +4.2
Polish German

J§ 97.0% [ 0.0% 0.0% 0.0% 2.0%

J A S B F N ] A B
Predicted Predicted

English Danish

0.0% 0.0%

True
(V)]
True
(V)]

-

j A S F N ] A S F N
Predicted Predicted

Fig. 2. The confusion matrices for proposed classifier for 4 databases.
J —joy, A — anger, S — sadness, F — fear, B - boredom N — neutral

Inspection of the confusion matrices in Fig. 2 shows that the pattern of residual errors is strongly language
dependent, but broadly consistent with the acoustic similarity between anger (A) and fear (F). For Polish,
English and Danish, between 3% and 4% of fear tokens are mistaken for anger, while the reciprocal error never
exceeds 4%. The German fold is less affected, with only al% of fear being mistaken for anger. Aside from
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this pair, the most notable confusions are boredom (B) misread as anger in German 3% and sadness (S) drifting
toward neutral in Danish 3%.

4.2. Ablation study

To quantify the importance of each component, a series of ablation experiments are performed on the
polished fold. The results are shown in Table 6. Replacing each Kronecker convolution with a standard
3 x 3kernel of the matched receptive field, but larger parameter counts reduce the weighted accuracy from
96.3% to 90.5%. Removing the fuzzy transform branch while keeping the other three modalities yields 91.4%
WA (A = —4.7%). Disabling cross-fusion KC attention reduces performance to 92.3%, confirming that
intermodal interactions cannot be mimicked by simple concatenation. Removing the scalogram layer decreases
weighted accuracy by 3.2% and increases language discriminator accuracy to 83%, demonstrating that the
adversary's head is indeed erasing language-specific cues. Finally, replacing the Kronecker convolutions with
standard convolutions of the same receptive span increases the parameter budget by 47%, but still lags behind
the WA by 1.9%, highlighting the superior efficiency of the Kronecker operations.

Tab. 6. Ablation study on the Polish-held-out fold. WA — weighted accuracy; A — absolute change with respect to the full K4F-
Net; #P — number of trainable parameters.

Variant #P [M] WA [%] A [%]
K4F-Net (full) 5.1 97.1 -
with standard 3 X 3 convolution 7.5 91.5 -5.6
without F-transform branch 4.8 92.4 -4.7
without scalogram branch 4.8 93.1 -4.0
without mel-spectrogram branch 4.8 91.2 -5.9
without spectrogram branch 4.8 92.7 -4.4
without KC cross-attention 5.0 92.9 -4.2

The comparative evaluation in Table 7 assesses how well the proposed lightweight multi-view approach
performs relative to a broad set of speech-emotion recognition baselines. Most of the baselines exceed 80%
accuracy, but their effectiveness varies significantly with the corpus, the chosen signal representation, and the
underlying network topology. ViT models benefit from global self-attention, which captures long-range time-
frequency relationships, resulting in strong overall performance. Self-attention is particularly valuable for SER
because it can explicitly model the spatial variations that encode subtle affective cues.

The proposed K4F-Net achieves a weighted accuracy of over 96%, outperforming all competing methods
listed in Table 6. Its advantage stems from the complementary fusion of four orthogonal feature domains:
fuzzy transform energy maps, discrete wavelet scalograms, complex STFT spectrograms, and Mel cepstral
coefficients, combined with parameter-efficient Kronecker convolutions and cross-modal self-attention.
Within the current state of the art, K4F-Net thus offers one of the most effective and computationally
economical solutions for robust, language-independent speech emotion recognition.

The studies in Table 6 use different datasets (different emotion sets, languages, and recording conditions),
so a direct comparison of absolute values may not be meaningful. When evaluated on a common dataset and
protocol, attention-based architectures (e.g., ViT/BEiT variants) reliably exploit long-range temporal-spectral
dependencies, whereas conventional CNNs often underperform on categories characterized by subtle or low-
saliency spectral cues. Our results complement this trend by showing that multi-view fusion (spectrogram,
MFCC, wavelet, fuzzy) plus Kronecker cross-fusion closes the gap without inflating parameters, and that the
gains are largest when the target language belongs to the group where accent plays an important role in
conveying information (e.g., Polish). We emphasize that Table 6 should be read as evidence for families of
methods rather than as a table of corpora results, and we therefore provide a corpus-controlled comparison
with a parameter-matched four-branch net (Table 4), where K4F-Net averages +4.8 pp of accuracy.
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Tab. 7. Comparison with the-state-of-the-art

Model Signal transform Dataset Accuracy [%] | Reference
log-Mel spectrogram CREMA-D 39.02 (Kim & Lee, 2025)
RAVDESS 97.49
ViT Mel spectrogram CR];EI;IS -D ;§22 (Mishra et al., 2025)
MELD 49.83
Mel frequency GTZAN, FMA 56.85 (Khasgiwala & Tailor, 2021)
RAVDESS 94.62
BEiT Mel spectrogram CR];EI;IS -D ;égg (Mishra et al., 2025)
MELD 43.32
1-ViT Mel spectrogram EI,}/IEOS]gB g 31383 (Akinpelu et al., 2024)
Wav2.0 feature extractor RAVDESS 98.05 (Luna-Jiménez et al., 2021)
CREMA-D 70.47
SepTr spectrogram SCV2 98.51 (Ristea et al., 2022)
ESC-50 91.13
linear Emo-DB 96.99
Emo-IIT 97.75
Mel spectrogram ]}EEIIE(;-]I)I]"I% 3223
CvT ot Emo-DB 97 03 (Echim et al., 2024)
Emo-IIT 97.63
Emo-DB 96.18
MFCC Emo-IIT 96.43
CoordViT spectrogram CREMA-D 82.96 (Kim & Lee, 2023)
Emo-DB 55.84
CCT spectrogram EMOVO 37.36 (Arezzo & Berretti, 2022)
SAVEE 29.47
MLP, k-NN,
Decision
Trees, Naive
Bayes,
Random EMO-DB, DES,
Forest, scalograms Polish corpus, 62-94 (Powroznik et al., 2021)
Probabilistic English corpus
Neural
Network,
Fuzzy  Rule
Classifier,
EMO-DB, DES,
Our 4 features Polish corpus, 96.30
English corpus

In machine learning approaches, four main types of fusions are widely used. The first is data fusion, which
combines different types of data from different modalities as input to a single model (e.g., images and text).
Model fusion is the second type where different models are combined to improve accuracy and generalization,
usually by applying ensemble learning techniques. In this case, the training of this model is longer than that of
the single model. Feature fusion is the third type of fusion, which aims to improve the ability to learn complex
patterns using the same or different types of input data. Decision fusion is the final type where the outputs of
different models are combined to make a final classification/decision. This method involves various types of
averaging or voting mechanisms.

A lightweight, attention-based interaction layer is placed after each modality branch (spectrogram, MFCC,
scalogram, and fuzzy) and before the common trunk. The four branch tensors are concatenated and projected
(via 1x1 Kronecker conv) into Q/K/V, then a multi-head KC attention mixes information across modalities so
that features from one view can content-adaptively enhance/suppress features in another. Unlike data fusion,
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cross-fusion does not merge raw inputs. It operates on learned feature maps according to per-modality
encoders, where the representations are cleaner and more aligned in size, so the interactions are more
meaningful. In this case, we cannot talk about model fusion. There is one model, not many. No
voting/averaging of separate predictors. Cross-fusion learns intermodal communication within a single
network, keeping training/inference compact. Unlike standard feature fusion, cross-fusion is dynamic:
attention weights depend on the current signal, capturing pairwise and higher-order relationships between
modalities. In contrast to decision fusion, cross-fusion is applied before classification, forming a single, richer
representation. There is no late voting. The classifier sees a fused tensor influenced by content-aware cross-
modal interactions.

5. CONCLUSIONS

This paper presents K4F-Net, a compact and language-robust framework for speech-emotion recognition
that processes: STFT spectrograms, Mel-frequency cepstral maps, wavelet scalograms, and fuzzy transform
images in four parallel branches. Kronecker convolutions extend the receptive field of standard kernels at zero
additional parameter cost, while a cross-fusion self-attention module merges complementary cues before a
lightweight Transformer encoder captures long-range context. A gradient reversal head further regularizes the
feature space towards language independence.

Experiments on four publicly available corpora covering Polish, English, German and Danish show that
K4F-Net achieves a mean weighted accuracy of 96.3% under a fourfold leave-one-language-out protocol,
outperforming a size-matched ResNet-34.

Ablation results confirm the importance of the proposed design choices: eliminating Kronecker kernels, the
fuzzy transform spectrum, or the cross-fusion block reduces weighted accuracy by 4-6%. The language-
adversarial loss reduces discriminator accuracy to chance level, suggesting an effective removal of language-
specific artifacts without compromising emotion recognition.

Future work will explore self-supervised pre-training on unlabeled multilingual corpora to further improve
cross-domain robustness. It can also be extended to spontaneous and noisy conversational speech. Multimodal
fusion with facial and linguistic cues for richer affective understanding can also be explored. The results are
very encouraging and suggest that parameter-efficient Kronecker convolutions together with multi-view
representations open a very promising direction for building real-time, language-agnostic SER systems.
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